1
|
Bell JJ, Micaroni V, Harris B, Strano F, Broadribb M, Rogers A. Global status, impacts, and management of rocky temperate mesophotic ecosystems. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e13945. [PMID: 35587786 DOI: 10.1111/cobi.13945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/05/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The ecology and function of rocky temperate mesophotic ecosystems (TMEs) remain poorly understood globally despite their widespread distribution. They typically occur at 20-150 m (the limit of photosynthesis), and on rocky substratum they support rich benthic communities and mobile fauna. We determined the distribution of rocky TMEs, their conservation status, and their most characteristic biological groups. Rocky TMEs were dominated by algae, turf-invertebrate matrices (<50 m only), sponges, bryozoans, and cnidarians. The community composition of TMEs differed significantly from shallow (0-15 m) subtidal reefs. Data were geographically biased and variable, available only from the North and South Atlantic, Mediterranean, and Temperate Australasia. Degree of protection of rocky TMEs varied considerably across the world. The biggest threats to rocky TMEs were identified changes in temperature, sedimentation rates, nutrient concentrations, and certain fishing types. We propose a conservation framework to inform future rocky TME management and conservation, highlighting the need to recognize the importance of these biologically diverse and functionally important ecosystems.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Benjamin Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Alice Rogers
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
2
|
Bell JJ, Strano F, Broadribb M, Wood G, Harris B, Resende AC, Novak E, Micaroni V. Sponge functional roles in a changing world. ADVANCES IN MARINE BIOLOGY 2023; 95:27-89. [PMID: 37923539 DOI: 10.1016/bs.amb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gabriela Wood
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anna Carolina Resende
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emma Novak
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Strano F, Micaroni V, Thomas T, Woods L, Davy SK, Bell JJ. Marine heatwave conditions drive carryover effects in a temperate sponge microbiome and developmental performance. Proc Biol Sci 2023; 290:20222539. [PMID: 37282536 PMCID: PMC10244974 DOI: 10.1098/rspb.2022.2539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Marine heatwaves are increasingly subjecting organisms to unprecedented stressful conditions, but the biological consequences of these events are still poorly understood. Here we experimentally tested the presence of carryover effects of heatwave conditions on the larval microbiome, settlers growth rate and metamorphosis duration of the temperate sponge Crella incrustans. The microbial community of adult sponges changed significantly after ten days at 21°C. There was a relative decrease in symbiotic bacteria, and an increase in stress-associated bacteria. Sponge larvae derived from control sponges were mainly characterised by a few bacterial taxa also abundant in adults, confirming the occurrence of vertical transmission. The microbial community of sponge larvae derived from heatwave-exposed sponges showed significant increase in the endosymbiotic bacteria Rubritalea marina. Settlers derived from heatwave-exposed sponges had a greater growth rate under prolonged heatwave conditions (20 days at 21°C) compared to settlers derived from control sponges exposed to the same conditions. Moreover, settler metamorphosis was significantly delayed at 21°C. These results show, for the first time, the occurrence of heatwave-induced carryover effects across life-stages in sponges and highlight the potential role of selective vertical transmission of microbes in sponge resilience to extreme thermal events.
Collapse
Affiliation(s)
- Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Torsten Thomas
- Centre for Marine Science and Innovation, University of New South Wales, Sydney 2052, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney 2052, Australia
| | - Lisa Woods
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - James J. Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
4
|
Durden JM, Clare MA, Vad J, Gates AR. First in-situ monitoring of sponge response and recovery to an industrial sedimentation event. MARINE POLLUTION BULLETIN 2023; 191:114870. [PMID: 37071940 DOI: 10.1016/j.marpolbul.2023.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Assessment of risks to seabed habitats from industrial activities is based on the resilience and potential for recovery. Increased sedimentation, a key impact of many offshore industries, results in burial and smothering of benthic organisms. Sponges are particularly vulnerable to increases in suspended and deposited sediment, but response and recovery have not been observed in-situ. We quantified the impact of sedimentation from offshore hydrocarbon drilling over ∼5 days on a lamellate demosponge, and its recovery in-situ over ∼40 days using hourly time-lapse photographs with measurements of backscatter (a proxy of suspended sediment) and current speed. Sediment accumulated on the sponge then cleared largely gradually but occasionally sharply, though it did not return to the initial state. This partial recovery likely involved a combination of active and passive removal. We discuss the use of in-situ observing, which is critical to monitoring impacts in remote habitats, and need for calibration to laboratory conditions.
Collapse
|
5
|
Kornder NA, Esser Y, Stoupin D, Leys SP, Mueller B, Vermeij MJA, Huisman J, de Goeij JM. Sponges sneeze mucus to shed particulate waste from their seawater inlet pores. Curr Biol 2022; 32:3855-3861.e3. [PMID: 35952668 PMCID: PMC9473484 DOI: 10.1016/j.cub.2022.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Sponges, among the oldest extant multicellular organisms on Earth,1 play a key role in the cycling of nutrients in many aquatic ecosystems.2, 3, 4, 5 They need to employ strategies to prevent clogging of their internal filter system by solid wastes,6, 7, 8 but self-cleaning mechanisms are largely unknown. It is commonly assumed that sponges remove solid waste with the outflowing water through distinct outflow openings (oscula).3,9 Here, we present time-lapse video footage and analyses of sponge waste revealing a completely different mechanism of particle removal in the Caribbean tube sponge Aplysina archeri. This sponge actively moves particle-trapping mucus against the direction of its internal water flow and ejects it into the surrounding water from its seawater inlet pores (ostia) through periodic surface contractions that have been described earlier as “sneezing.”10,11 Visually, it appears as if the sponge is continuously streaming mucus-embedded particles and sneezes to shed this particulate waste, resulting in a notable flux of detritus that is actively consumed by sponge-associated fauna. The new data are used to estimate production of detritus for this abundant sponge on Caribbean coral reefs. Last, we discuss why waste removal from the sponge inhalant pores may be a common feature among sponges and compare the process in sponges to equivalent mechanisms of mucus transport in other animals, including humans. The tube sponge Aplysina archeri moves mucus against its internal feeding current Particulate waste is trapped by the mucus and aggregates on the sponge’s surface Mucus and waste are sneezed into the environment or fed upon by associated fauna Mucus travels too slowly for known ciliary transport, suggesting a novel mechanism
Collapse
Affiliation(s)
- Niklas A Kornder
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands.
| | - Yuki Esser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Daniel Stoupin
- Centre for Marine Science, St Lucia Campus, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Benjamin Mueller
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands; CARMABI Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao
| | - Mark J A Vermeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands; CARMABI Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE Amsterdam, the Netherlands; CARMABI Foundation, Piscaderabaai z/n, PO Box 2090, Willemstad, Curaçao
| |
Collapse
|
6
|
Strano F, Micaroni V, Davy SK, Woods L, Bell JJ. Near-future extreme temperatures affect physiology, morphology and recruitment of the temperate sponge Crella incrustans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153466. [PMID: 35124025 DOI: 10.1016/j.scitotenv.2022.153466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Current rates of greenhouse gas emissions are leading to a rapid increase in global temperatures and a greater occurrence of extreme climatic events such as marine heatwaves. In this study, we assessed the effects of thermal conditions predicted to occur within the next 40 years (SSP3-7.0 scenario of IPCC, 2021) on the respiration rate, buoyant weight, morphology and recruitment of the temperate model sponge Crella incrustans. Under predicted average temperatures (+ 2.5 °C, over the local mean), C. incrustans did not show any physiological and morphological changes compared to current conditions. However, when exposed to a simulated marine heatwave (16 days duration and a thermal peak at 22 °C), there was a large increase in sponge respiration rate, significant weight loss resulting from tissue regression, and sponge mortality. The simulated marine heatwave resulted also in a shorter period of recruitment, lower recruitment rate and higher mortality of settlers. Despite the tissue regression, the majority of sponges that survived the extreme temperatures showed respiration rates similar to controls 13 days after the thermal peak, indicating some resilience of C. incrustans to extreme thermal events. Our study shows that marine heatwaves will significantly impact the physiology, morphology, and recruitment of temperate sponges under near-future conditions, but that these sponges are likely to persist in warmer oceans.
Collapse
Affiliation(s)
- Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand.
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lisa Woods
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
7
|
Kaikkonen L, Helle I, Kostamo K, Kuikka S, Törnroos A, Nygård H, Venesjärvi R, Uusitalo L. Causal Approach to Determining the Environmental Risks of Seabed Mining. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8502-8513. [PMID: 34152746 PMCID: PMC8277135 DOI: 10.1021/acs.est.1c01241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mineral deposits containing commercially exploitable metals are of interest for seabed mineral extraction in both the deep sea and shallow sea areas. However, the development of seafloor mining is underpinned by high uncertainties on the implementation of the activities and their consequences for the environment. To avoid unbridled expansion of maritime activities, the environmental risks of new types of activities should be carefully evaluated prior to permitting them, yet observational data on the impacts is mostly missing. Here, we examine the environmental risks of seabed mining using a causal, probabilistic network approach. Drawing on a series of expert interviews, we outline the cause-effect pathways related to seabed mining activities to inform quantitative risk assessments. The approach consists of (1) iterative model building with experts to identify the causal connections between seabed mining activities and the affected ecosystem components and (2) quantitative probabilistic modeling. We demonstrate the approach in the Baltic Sea, where seabed mining been has tested and the ecosystem is well studied. The model is used to provide estimates of mortality of benthic fauna under alternative mining scenarios, offering a quantitative means to highlight the uncertainties around the impacts of mining. We further outline requirements for operationalizing quantitative risk assessments in data-poor cases, highlighting the importance of a predictive approach to risk identification. The model can be used to support permitting processes by providing a more comprehensive description of the potential environmental impacts of seabed resource use, allowing iterative updating of the model as new information becomes available.
Collapse
Affiliation(s)
- Laura Kaikkonen
- Ecosystems
and Environment Research Programme, Faculty of Biological and Environmental
Sciences, University of Helsinki, 00014 Helsinki, Finland
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, 00014 Helsinki, Finland
| | - Inari Helle
- Helsinki
Institute of Sustainability Science (HELSUS), University of Helsinki, 00014 Helsinki, Finland
- Natural
Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Organismal
and Evolutionary Biology Research Programme, Faculty of Biological
and Environmental Sciences, University of
Helsinki, 00014 Helsinki, Finland
| | - Kirsi Kostamo
- Finnish
Environment Institute, 00790 Helsinki, Finland
| | - Sakari Kuikka
- Ecosystems
and Environment Research Programme, Faculty of Biological and Environmental
Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Törnroos
- The
Sea, Environmental and Marine Biology, Åbo
Akademi University, 20520 Turku, Finland
| | - Henrik Nygård
- Finnish
Environment Institute, 00790 Helsinki, Finland
| | | | | |
Collapse
|