1
|
Singh S, Kumar S, Harshavarthini M, Kumar PV, Poojary N, Brahmane MP, Jaiswar AK, Ghode GS, Bhatkar V, Nagpure NS. Ecological risk assessment of heavy metals in varied matrices of coastal environment of Maharashtra, India, and their effects on forked venus clam, Gafrarium divaricatum (Gmelin, 1791). MARINE POLLUTION BULLETIN 2025; 213:117644. [PMID: 39914114 DOI: 10.1016/j.marpolbul.2025.117644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
The spatial and seasonal variation of heavy metal contamination was assessed in the seawater, sediments, and clam samples collected from Ratnagiri, Bandra, and Aksa Beach, along Maharashtra Coast, India, during the different seasons. The concentrations of eleven heavy metals were analyzed using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the metal concentrations were found in the order sediment > clam > seawater. Various pollution indices indicated that Cd and As mainly contributed to ecological risks, and Bandra was the most contaminated site. Bioaccumulation studies in intertidal clam, Gafrarium divaricatum (Gmelin, 1791), showed that most heavy metals exceeded permissible limits except Cu and Zn. Histopathological examination of the clam tissues revealed hemocyte infiltration, damage in cilia and lamellae of the gills, tubular atrophy, and necrosis in the digestive glands. The findings of this research highlight the potential of G. divaricatum as a reliable bioindicator species for biomonitoring and sustainable management of coastal ecosystems.
Collapse
Affiliation(s)
- Shubra Singh
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - Saurav Kumar
- Aquatic Environment & Health Management, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - M Harshavarthini
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - Pokanti Vinay Kumar
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - Nalini Poojary
- Aquatic Environment & Health Management, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - Manoj Pandit Brahmane
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - Ashok Kumar Jaiswar
- Fisheries Resource, Harvest and Post-harvest Management, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| | - Gajanan S Ghode
- Department of Aquaculture, College of Fisheries, Shirgaon, Ratnagiri, Maharashtra, India.
| | - Varsha Bhatkar
- Department of Aquaculture, College of Fisheries, Shirgaon, Ratnagiri, Maharashtra, India.
| | - N S Nagpure
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Versova, Mumbai - 400061, India.
| |
Collapse
|
2
|
Herruzo-Ruiz AM, Trombini C, Sendra M, Michán C, Moreno-Garrido I, Alhama J, Blasco J. Accumulation, biochemical responses and changes in the redox proteome promoted by Ag and Cd in the burrowing bivalve Scrobicularia plana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107123. [PMID: 39423745 DOI: 10.1016/j.aquatox.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Silver (Ag) and cadmium (Cd) are non-essential metals that, as a result of natural processes and human activities, reach the aquatic environment where they interact with biota inducing potential toxic effects. To determine the biological effects of these metals on the endobenthic bivalve Scrobicularia plana, specimens were exposed to Ag and Cd at two concentrations, 5 and 50 μg∙L-1, for 7 days in a controlled microcosm system. The levels of the metals were measured in the seawater, sediments and clam tissues. The possible toxic biological effects of Ag and Cd were studied using a battery of biochemical biomarkers that are responsive to oxidative stress: superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) activities, and metallothioneins (MTs) and lipid peroxidation (LPO) levels. Since both metals have been linked to oxidative stress, redox modifications to proteins were studied by differential isotopic labelling of the oxidised and reduced forms of cysteines (Cys). An accumulation of metals was observed in the digestive gland and gills following exposure, together with the activation of enzyme activities (SOD for the Cd exposure; SOD, CAT, GST, and GR for the Ag exposure). The MT and LPO levels (after individual exposure to Ag and Cd) increased, which suggests the existence of antioxidant and detoxification processes to mitigate the toxic oxidative effects of both metals. The redox proteomic analysis identified 771 Cys-containing peptides (out of 514 proteins), of which 195 and 226 changed after exposure to Ag and Cd, respectively. Bioinformatics analysis showed that exposure to metal affects relevant functional pathways and biological processes in S. plana, such as: "cellular respiration" (Ag), "metabolism of amino acids" and "synthesis and degradation of proteins" (Ag and Cd), "carbohydrate metabolism" and "oxidative stress" (Cd). The proteomic approach implemented here is a powerful complement to conventional biochemical biomarkers, since it evaluates changes at the protein level in a high-throughput unbiased manner, thus providing a general appraisal of the biological responses altered by exposure to the contaminants.
Collapse
Affiliation(s)
- Ana María Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Marta Sendra
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Ignacio Moreno-Garrido
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
3
|
Herruzo-Ruiz AM, Trombini C, Moreno-Garrido I, Blasco J, Alhama J, Michán C. Ions and nanoparticles of Ag and/or Cd metals in a model aquatic microcosm: Effects on the abundance, diversity and functionality of the sediment bacteriome. MARINE POLLUTION BULLETIN 2024; 204:116525. [PMID: 38852299 DOI: 10.1016/j.marpolbul.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Metals can be adsorbed on particulate matter, settle in sediments and cause alterations in aquatic environments. This study assesses the effect of Ag and/or Cd, both in ionic and nanoparticle (NP) forms, on the microbiome of sediments. For that purpose, aquatic controlled-microcosm experiments were exposed to an environmentally relevant and at tenfold higher doses of each form of the metals. Changes in the bacteriome were inferred by 16S rDNA sequencing. Ionic Ag caused a significant decrease of several bacterial families, whereas the effect was opposite when mixed with Cd, e.g., Desulfuromonadaceae family; in both cases, the bacteriome functionalities were greatly affected, particularly the nitrogen and sulfur metabolism. Compared to ionic forms, metallic NPs produced hardly any change in the abundance of microbial families, although the α-biodiversity of the bacteriome was reduced, and the functionality altered, when exposed to the NPs´ mixture. Our goal is to understand how metals, in different forms and combinations, released into the environment may endanger the health of aquatic ecosystems. This work may help to understand how aquatic metal pollution alters the structure and functionality of the microbiome and biogeochemical cycles, and how these changes can be addressed.
Collapse
Affiliation(s)
- Ana M Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Chiara Trombini
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Ignacio Moreno-Garrido
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - Julián Blasco
- Dpt. Ecology and Coastal Management, ICMAN-CSIC, Campus Rio San Pedro, E-11510 Puerto Real (Cadiz), Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071 Córdoba, Spain.
| |
Collapse
|
4
|
Telahigue K, Rabeh I, Chouba L, Mdaini Z, El Cafsi M, Mhadhbi L, Hajji T. Assessment of the heavy metal levels and biomarker responses in the smooth scallop Flexopecten glaber from a heavily urbanized Mediterranean lagoon (Bizerte lagoon). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:397. [PMID: 35488006 DOI: 10.1007/s10661-022-10071-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Marine heavy metal pollution is a worldwide serious issue. Like almost all Mediterranean lagoons, the Bizerte lagoon is highly urbanized and suffers from intensive anthropogenic pressure. In the present study, we screened the metal contamination and biomarker responses in the smooth scallop Flexopecten glaber inhabiting this vulnerable ecosystem. To this end, the concentrations of six heavy metals (HM) (i.e., Cu, Pb, Zn, Cd, Hg, and Fe) and a panel of biochemical endpoints including malondialdehyde (MDA), metallothioneins (MT), reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) were determined in the gills and digestive gland across seasons (warm and cold) and sites (S1 and S2). The distribution of almost all analyzed metals in F. glaber tissues varied significantly between sites, seasons, and organs. The highest levels were recorded at S2 during the warm period. Moreover, the digestive gland was found to accumulate greater concentrations of HM than the gills. Marked spatio-temporal variations were also observed for oxidative stress biomarkers, mainly in the gills, while the digestive gland seems to be rather sensitive to seasonal variability. Particularly, we noticed that among the used biomarkers, MT did not show significant variations in the two tested organs across seasons and sites. From the obtained results, F. glaber appears as a sensitive organism to anthropogenic metal contamination and can be proposed as a promising bioindicator species for marine pollution.
Collapse
Affiliation(s)
- Khaoula Telahigue
- LR18ES41 Lab. of Ecology, Biology and Physiology of Aquatic Organisms, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia.
| | - Imen Rabeh
- LR18ES41 Lab. of Ecology, Biology and Physiology of Aquatic Organisms, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Lassaad Chouba
- National Institute of Marine Science and Technology (INSTM), La Goulette Center, 2060 Tunis. Univ. Carthage, 2025, Tunis, Tunisia
| | - Zied Mdaini
- LR18ES41 Lab. of Ecology, Biology and Physiology of Aquatic Organisms, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
- Institut Des Sciences de La Mer de Rimouski, Université du Québec À Rimouski, 310 allée des Ursulines, Rimouski, QC, G5L 3A1, Canada
| | - M'hamed El Cafsi
- LR18ES41 Lab. of Ecology, Biology and Physiology of Aquatic Organisms, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Lazhar Mhadhbi
- LR18ES41 Lab. of Ecology, Biology and Physiology of Aquatic Organisms, Faculty of Sciences of Tunis, University Tunis El Manar, 2092, Tunis, Tunisia
| | - Tarek Hajji
- BVBGR-LR11ES31, Higher Institute of Biotechnology - Sidi Thabet, Biotechpole Sidi Thabet, , Univ., 2020, Manouba, Ariana, Tunisia
| |
Collapse
|
5
|
Spatial and annual distribution of age structure in the Tunisian populations of European clams Venerupis decussata. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Michán C, Blasco J, Alhama J. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol 2021; 14:870-885. [PMID: 33559398 PMCID: PMC8085945 DOI: 10.1111/1751-7915.13763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aquatic environments are the recipients of many sources of environmental stress that trigger both local and global changes. To evaluate the associated risks to organisms and ecosystems more sensitive and accurate strategies are required. The analysis of the microbiome is one of the most promising candidates for environmental diagnosis of aquatic systems. Culture-independent interconnected meta-omic approaches are being increasing used to fill the gaps that classical microbial approaches cannot resolve. Here, we provide a prospective view of the increasing application of these high-throughput molecular technologies to evaluate the structure and functional activity of microbial communities in response to changes and disturbances in the environment, mostly of anthropogenic origin. Some relevant topics are reviewed, such as: (i) the use of microorganisms for water quality assessment, highlighting the incidence of antimicrobial resistance as an increasingly serious threat to global public health; (ii) the crucial role of microorganisms and their complex relationships with the ongoing climate change, and other stress threats; (iii) the responses of the environmental microbiome to extreme pollution conditions, such as acid mine drainage or oil spills. Moreover, protists and viruses, due to their huge impacts on the structure of microbial communities, are emerging candidates for the assessment of aquatic environmental health.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| | - Julián Blasco
- Department of Ecology and Coastal ManagementICMAN‐CSICCampus Rio San PedroPuerto Real (Cádiz)E‐11510Spain
| | - José Alhama
- Departamento de Bioquímica y Biología MolecularCampus de Excelencia Internacional Agroalimentario CeiA3Universidad de CórdobaCampus de Rabanales, Edificio Severo OchoaCórdobaE‐14071Spain
| |
Collapse
|
7
|
Li Y, Wang WX. Protein molecular responses of field-collected oysters Crassostrea hongkongensis with greatly varying Cu and Zn body burdens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105749. [PMID: 33513458 DOI: 10.1016/j.aquatox.2021.105749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/27/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The oyster Crassostrea hongkongensis is an ideal biomonitor due to its widespread distribution along the coast of Southern China and the ability to hyperaccumulate metals including Cu and Zn. In this study, we conducted the first investigation of the molecular responses to metal hyperaccumulation based on quantitative shotgun proteomics technique and genome information. Gill tissue of oysters collected from the uncontaminated environment (Site 1, 59.6 μg/g and 670 μg/g dry weight for Cu and Zn) displayed significant protein profile differentiation compared to those from a moderately contaminated (Site 2, 1,465 μg/g and 10,170 μg/g for Cu and Zn) and a severely contaminated environment (Site 3, 3,899 μg/g and 39,170 μg/g for Cu and Zn). There were 626 proteins identified to be differentially expressed at Site 3 but only 247 proteins at Site 2. Oysters from a moderately contaminated estuary (Site 2) displayed fewer effects as compared to oysters under severe contamination, with fluctuated small molecule metabolism and enhanced translation process. At Site 3, the induction of reactive oxygen species (ROS) was the main toxicity under the extremely high level of metal stress, which resulted in protein damage. Additionally, the impaired structure of cytoskeleton and modified membrane tracking process at Site 3 oysters led to the blockage or less efficient protein or macromolecule distribution within cells. Nonetheless, proteomic analysis in this study revealed that oysters could partly alleviate the adverse metal effects by boosting the translation process, enhancing the ability to recycle the misfolded proteins, and enhancing the potential to eliminate the excess ROS. Our study demonstrated an adaptive potential of oysters at the protein level to survive under conditions of metal hyper-accumulation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|