1
|
Tempesti J, Langeneck J, Romani L, Garrido M, Lardicci C, Maltagliati F, Castelli A. Spatial variability and context-dependence of fouling communities in recreational marinas: A study in the Western Mediterranean with a focus on non-indigenous species (NIS). MARINE POLLUTION BULLETIN 2025; 212:117558. [PMID: 39824131 DOI: 10.1016/j.marpolbul.2025.117558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Fouling communities were studied in twenty-six recreational marinas located along the continental and island coasts of Tuscany as well as Corsica (Western Mediterranean), focusing on the occurrence of non-indigenous species (NIS), in order to assess the variability of these assemblages at different spatial scales. Among the 560 taxa identified, 32 were alien or cryptogenic, with six new records for the study area. Results of this survey showed remarkable spatial variability of fouling community structure and NIS assemblage i) between marinas located on the mainland with respect to those on the islands (sectors), ii) among marinas within the same sector, and iii) among areas within the most of marinas. Macroalgae resulted the main drivers for the associated community, especially NIS, with variability level depending on different contexts. The high spatial variability observed suggests context-dependent fouling dynamics, where unique local conditions shape the structure of these communities and NIS occurrence.
Collapse
Affiliation(s)
- Jonathan Tempesti
- Dipartimento di Biologia, Università di Pisa (CoNISMa), Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Joachim Langeneck
- Consorzio Nazionale Interuniversitario per le Scienze Del Mare (CoNISMa), U.L.R. di Lecce, Campus Ecotekne, Università Del Salento, Strada Provinciale Lecce, Monteroni, 73100 Lecce, Italy
| | - Luigi Romani
- Via delle Ville, 79, 55012 Capannori, Lucca, Italy; Institute of Systematics, Evolution, Biodiversity (ISYEB), National Museum of Natural History (MNHN), CNRS, SU, EPHE, UA, CP 51, 57 rue Cuvier, 75005 Paris, France
| | - Marie Garrido
- Office de l'Environnement de la Corse, 14 Avenue Jean Nicoli, 20250 Corte, France
| | - Claudio Lardicci
- Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126 Pisa, Italy
| | - Ferruccio Maltagliati
- Dipartimento di Biologia, Università di Pisa (CoNISMa), Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alberto Castelli
- Dipartimento di Biologia, Università di Pisa (CoNISMa), Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
2
|
Sempere-Valverde J, Saenz-Arias P, Martynova A, Benzarti O, Bouhlel R, de la Cuadra CMLF, Guerra-García JM, Chebaane S. Plasticlusters: A marine litter microhabitat in a marina of Tunisia, N Africa. MARINE POLLUTION BULLETIN 2024; 202:116389. [PMID: 38677103 DOI: 10.1016/j.marpolbul.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Plastic debris is a significant and rapidly developing ecological issue in coastal marine ecosystems, especially in areas where it accumulates. This study introduces "plasticlusters", a new form of floating debris agglomeration found in the Yasmine Hammamet marina (Tunisia, North-Africa), loosely attached to pontoon ropes around the water surface level. The analysis of two samples revealed that they were formed primarily by average 2.11 mm polystyrene fragments, 3.43 mm fibers, 104 mm polypropylene and polyethylene sheets, and 122 mm decomposing seagrass leaves. They were inhabited by several taxa, including at least 2 cryptogenic and 5 non-indigenous species (NIS). Unlike other plastic formations, plasticlusters provide a novel and potentially temporal microhabitat to fouling assemblages due to their loose and unconsolidated structure which, combined with marinas being NIS hubs, could enhance NIS dispersion. The results of this study raise concerns about the combined ecological effects of debris accumulation and biocontamination inside marinas.
Collapse
Affiliation(s)
- Juan Sempere-Valverde
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain; Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| | - Pablo Saenz-Arias
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain
| | - Anastasiia Martynova
- Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Saudi Arabia
| | - Ons Benzarti
- Research Laboratory LR14ES06 "Bioresources: Integrative Biology and Valorization", Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia; Association Notre Grand Bleu (NGB, NGO), Monastir, Tunisia
| | - Ramla Bouhlel
- Research Laboratory LR14ES06 "Bioresources: Integrative Biology and Valorization", Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia; Association Notre Grand Bleu (NGB, NGO), Monastir, Tunisia
| | - Carlos María López Fe de la Cuadra
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain
| | - José Manuel Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain
| | - Sahar Chebaane
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Funchal, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande Ed. C1, 1700 Lisboa, Portugal
| |
Collapse
|
3
|
Guerra-García JM, Ruiz-Velasco S, Navarro-Barranco C, Moreira J, Angulo G, García-Domínguez R, Amengual J, Saenz-Arias P, López-Fé CM, Martínez-Pita I, García-García FJ, Ros M. Facilitation of macrofaunal assemblages in marinas by the habitat-forming invader Amathia verticillata (Bryozoa: Gymnolaemata) across a spatiotemporal scale. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106256. [PMID: 38006852 DOI: 10.1016/j.marenvres.2023.106256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023]
Abstract
Widespread habitat-forming invaders inhabiting marinas, such as the spaghetti bryozoan Amathia verticillata, allow exploring facilitation processes across spatiotemporal contexts. Here we investigate the role of this bryozoan as habitat for native and exotic macrofaunal assemblages across different ecoregions of Western Mediterranean and East Atlantic coasts, and a monthly variation over a year. While only 7 (all peracarid crustaceans) of the 54 associated species were NIS, they dominated macrofaunal assemblages in terms of abundance, raising the potential for invasional meltdown. NIS richness and community structure differed among marinas but not among ecoregions, highlighting the importance of marina singularities in modulating facilitation at spatial scale. Despite facilitation did not depend on bryozoan abundance fluctuations, it was affected by its deciduous pattern, peaking in summer and disappearing in late winter. Monitoring A. verticillata in marinas, especially in summer periods, may improve the detection and management of multiple associated NIS.
Collapse
Affiliation(s)
- J M Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain.
| | - S Ruiz-Velasco
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - C Navarro-Barranco
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - J Moreira
- Departamento de Biología (Zoología) & Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain
| | - G Angulo
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - R García-Domínguez
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - J Amengual
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - P Saenz-Arias
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - C M López-Fé
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| | - I Martínez-Pita
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013, Sevilla, Spain
| | - F J García-García
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013, Sevilla, Spain
| | - M Ros
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012, Sevilla, Spain
| |
Collapse
|
4
|
Schourup-Kristensen V, Larsen J, Stæhr PAU, Maar M. Modelled dispersal pathways of non-indigenous species in the Danish Wadden Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106111. [PMID: 37573739 DOI: 10.1016/j.marenvres.2023.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023]
Abstract
The introduction-rate of non-indigenous species (NIS) to coastal water bodies has accelerated over the last century. We present a model study assessing the fate of NIS released in likely point sources of the Danish Wadden Sea. We show that NIS-particles released in the deep North Sea are generally transported away from the Wadden Sea, while those released in the coastal North Sea and the Wadden Sea show large variability in track pattern and settlement location. Consequently, the introduction of NIS from ships entering the port of Esbjerg pose a threat to the Wadden Sea through primary and secondary spreading, while transport of species from sources in the south likely causes a slow and steady settling of NIS in the Wadden Sea and coastal North Sea. The study points to the importance of enforcing an efficient monitoring system to ensure early detection of changes to the species composition of the Wadden Sea.
Collapse
Affiliation(s)
- Vibe Schourup-Kristensen
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark.
| | - Janus Larsen
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark
| | | | - Marie Maar
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, 4000, Roskilde, Denmark
| |
Collapse
|
5
|
Tsirintanis K, Sini M, Ragkousis M, Zenetos A, Katsanevakis S. Cumulative Negative Impacts of Invasive Alien Species on Marine Ecosystems of the Aegean Sea. BIOLOGY 2023; 12:933. [PMID: 37508363 PMCID: PMC10376206 DOI: 10.3390/biology12070933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Biological invasions are a human-induced environmental disturbance that can cause major changes in ecosystem structure and functioning. Located in the northeastern Mediterranean basin, the Aegean Sea is a hotspot of biological invasions. Although the presence of alien species in the Aegean has been studied and monitored, no assessment has been conducted on their cumulative impacts on native biodiversity. To address this gap, we applied the CIMPAL index, a framework developed for mapping the cumulative impacts of invasive species, to identify the most affected areas and habitat types and determine the most invasive species in the region. Coastal areas showed stronger impacts than the open sea. The highest CIMPAL scores were four times more frequent in the South than in the North Aegean. Shallow (0-60 m) hard substrates were the most heavily impacted habitat type, followed by shallow soft substrates and seagrass meadows. We identified Caulerpa cylindracea, Lophocladia lallemandii, Siganus luridus, Siganus rivulatus, and Womersleyella setacea as the most impactful species across their range of occurrence in the Aegean but rankings varied depending on the habitat type and impact indicator applied. Our assessment can support marine managers in prioritizing decisions and actions to control biological invasions and mitigate their impacts.
Collapse
Affiliation(s)
- Konstantinos Tsirintanis
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100 Mytilene, Greece
| | - Maria Sini
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100 Mytilene, Greece
| | - Michail Ragkousis
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100 Mytilene, Greece
| | - Argyro Zenetos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biological Resources and Inland Waters, 19013 Attika, Greece
| | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, Lofos Panepistimiou, 81100 Mytilene, Greece
| |
Collapse
|
6
|
Tempesti J, Langeneck J, Lardicci C, Maltagliati F, Castelli A. Cut the rope: Short-term colonization of mooring lines by fouling community within the port of Livorno (Northern Tyrrhenian Sea, Western Mediterranean), focusing on alien species recruitment. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106041. [PMID: 37327635 DOI: 10.1016/j.marenvres.2023.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
The early stages of fouling development on artificial substrates were examined for spatial-temporal variation in the commercial and touristic harbours (use destinations) of the port of Livorno (Tuscany, Italy). The experiment was carried out by submerging two types of experimental ropes with different surface textures, considering three times of submersion. Particular attention was paid to the colonization dynamics of non-indigenous species (NIS). The type of rope did not significantly affect fouling development. However, when the NIS assemblage and the whole community were taken into account, the colonization of ropes varied depending on the use destination. The touristic harbour exhibited a degree of fouling colonization higher than the commercial one. NIS were observed in both harbours since the beginning of colonization, eventually achieving higher population densities in the touristic harbour. The use of experimental ropes represents a promising quick cost-effective tool for monitoring of NIS presence in port environments.
Collapse
Affiliation(s)
- Jonathan Tempesti
- Dipartimento di Biologia, Università di Pisa (CoNISMa), Via Derna, 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Joachim Langeneck
- Consorzio Nazionale Interuniversitario per le Scienze Del Mare (CoNISMa), U.L.R. di Lecce, Campus Ecotekne, Università Del Salento, Strada Provinciale Lecce, Monteroni, 73100, Lecce, Italy.
| | - Claudio Lardicci
- Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Via Del Borghetto 80, 56124, Pisa, Italy; Dipartimento di Scienze Della Terra, Università di Pisa, Via Santa Maria, 53, 56126, Pisa, Italy
| | - Ferruccio Maltagliati
- Dipartimento di Biologia, Università di Pisa (CoNISMa), Via Derna, 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| | - Alberto Castelli
- Dipartimento di Biologia, Università di Pisa (CoNISMa), Via Derna, 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Via Del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
7
|
Santos PM, Venâncio E, Dionísio MA, Heumüller J, Chainho P, Pombo A. Comparison of the Efficiency of Different Eradication Treatments to Minimize the Impacts Caused by the Invasive Tunicate Styela plicata in Mussel Aquaculture. Animals (Basel) 2023; 13:ani13091541. [PMID: 37174578 PMCID: PMC10177385 DOI: 10.3390/ani13091541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In 2017, aquaculture producers of the Albufeira lagoon, Portugal, reported an invasion of tunicates that was disrupting mussel production, particularly the tunicate Styela plicata (Lesueur, 1823). A totally effective eradication method still does not exist, particularly for S. plicata, and the effects of the eradication treatments on bivalves' performance are also poorly understood. Our study examined the effectiveness of eradication treatments using three laboratory trials and five treatments (air exposure, freshwater immersion, sodium hypochlorite, hypersaline solution and acetic acid) for S. plicata, as well as their effects on survival and growth of blue mussel Mytilus edulis Linnaeus, 1758. While air exposure and freshwater immersion caused a 27% mortality rate in S. plicata, the acetic acid treatment was the most effective in eliminating this species (>90% mortality). However, a 33-40% mortality rate was registered in mussels. Both species were not affected by the hypersaline treatment in the last trial, but the sodium hypochlorite treatment led to a 57% mortality rate in mussels. Differences in mussels' growth rates were not detected. These trials represent a step forward in responding to the needs of aquaculture producers. However, further studies are needed to investigate the susceptibility of tunicates to treatments according to sexual maturation, as well as to ensure minimum mussel mortality in the most effective treatments, and to better understand the effects on mussel physiological performance in the long-term.
Collapse
Affiliation(s)
- Pedro M Santos
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic Institute of Leiria, 2520-630 Peniche, Portugal
| | - Eliana Venâncio
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic Institute of Leiria, 2520-630 Peniche, Portugal
| | - Maria Ana Dionísio
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal
| | - Joshua Heumüller
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal
| | - Paula Chainho
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1740-016 Lisboa, Portugal
- CINEA and ESTS, IPS-Energy and Environment Research Center, Polytechnic Institute of Setúbal, Estefanilha, 2910-761 Setúbal, Portugal
| | - Ana Pombo
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, ESTM, Polytechnic Institute of Leiria, 2520-630 Peniche, Portugal
| |
Collapse
|
8
|
Tempesti J, Langeneck J, Lardicci C, Maltagliati F, Castelli A. Short-term colonization of fouling communities within the port of Livorno (Northern Tyrrhenian Sea, Western Mediterranean): Influence of substrate three-dimensional complexity on non-indigenous species establishment. MARINE POLLUTION BULLETIN 2022; 185:114302. [PMID: 36335690 DOI: 10.1016/j.marpolbul.2022.114302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The influence of substrate morphology on early stages of fouling development was assessed through submerged experimental substrates with different morphological complexity. The experiment was carried out within commercial and touristic harbours of the port of Livorno (Italy), analysing the communities at three steps of colonization (14, 28, 42 days). We assessed the effect of substrate complexity on recruitment of non-indigenous species (NIS), combined with the influence of port use destinations. NIS were recorded in both use destination areas since the first step of colonization. Substrate morphological complexity significantly affected fouling colonization and particularly NIS assemblages. We found that high-complexity substrates are particularly suitable for NIS establishment in comparison with less complex ones. The touristic harbour exhibited a potential for fouling colonization higher than the commercial harbour. These results contributed to the understanding of factors involved in NIS establishment and spread, as well as in their spatial-temporal dynamics within port environments.
Collapse
Affiliation(s)
- Jonathan Tempesti
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Joachim Langeneck
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Lardicci
- Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126 Pisa, Italy
| | - Ferruccio Maltagliati
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Alberto Castelli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
9
|
Carvalho BMD, Freitas MO, Tomás ARG, Caires R, Charvet P, Vitule J. Citizen science as a tool for understanding the silent dispersion of toadfish Opsanus beta (Goode and Bean, 1880). JOURNAL OF FISH BIOLOGY 2022; 100:1553-1558. [PMID: 35302246 DOI: 10.1111/jfb.15044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Citizen science is an excellent tool in studies of the spatial distribution of non-native species. In Brazil, Opsanus beta has recently been introduced. Studies indicate the occurrence of this species in five estuaries off the Brazilian coast (Guanabara Bay, Sepetiba Bay, Santos Bay, Paranaguá Estuarine Complex and Guaratuba Bay). The present study aims to understand the dispersion of this species on the Brazilian coast through citizen science. Between January and May 2021, information about O. beta was weekly posted in 32 recreational fishing Facebook groups. Sixty-five fishers reported catches of O. beta in estuaries (Guanabara Bay, Sepetiba Bay, Santos Bay and Paranaguá Estuarine Complex). In addition, there were reports from other shallow areas outside adjacent estuaries (Bertioga and Peruíbe, in Sao Paulo State) and the first occurrence record for Laguna (Santa Catarina State), a southern estuarine zone (28° 29' 45″ S to 48° 45' 36″ W). In four estuaries along the Brazilian coast where O. beta was recorded, there are internal ports that trade with countries from the Gulf of Mexico and Caribbean Sea (species original range), indicating ballast water as a possible introduction route. In Laguna, the introduction may have occurred by maritime cabotage services. The reproductive capacity, the aquarists' interest, the absence of introduction policies aimed at this species and the cabotage fleet transportation may be factors that help further extend the dispersal of O. beta on the Brazilian coast.
Collapse
Affiliation(s)
- Barbara Maichak de Carvalho
- Laboratório de Ecologia e, Conservação (LEC), Programa de Pós-Graduação em Engenharia Ambiental, Departamento de Engenharia - UFPR, Paraná, Brazil
| | | | - Acácio R G Tomás
- Laboratório de Estudos Estuarinos, Centro do Pescado Marinho, Instituto de Pesca, APTA-SAA, Santos, Brazil
| | - Rodrigo Caires
- Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Charvet
- Laboratório de Ecologia e, Conservação (LEC), Programa de Pós-Graduação em Engenharia Ambiental, Departamento de Engenharia - UFPR, Paraná, Brazil
| | - Jean Vitule
- Laboratório de Ecologia e, Conservação (LEC), Programa de Pós-Graduação em Engenharia Ambiental, Departamento de Engenharia - UFPR, Paraná, Brazil
| |
Collapse
|
10
|
Citizen Science Helps in Tracking the Range Expansions of Non-Indigenous and Neo-Native Species in Greece and Cyprus (Eastern Mediterranean Sea). JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Raising knowledge of the dispersal of non-indigenous species (NIS) in new geographic areas is a matter of major concern, as alien species may outcompete the native biota through competition, predation, and hybridization. In the Mediterranean Sea, where biological invasions constitute a serious threat, the combined use of citizen science and social networks amplified the results obtained via traditional research activities, often recording species that would otherwise presumably have passed unnoticed. We hereby report unpublished data for five NIS (the annelid Branchiomma luctuosum, the shrimp Saron marmoratus and the fishes Lutjanus argentimaculatus, Oxyurichthys petersii, and specimens of the group of Abudefduf saxatilis/vaigiensis/troschelii) and one neo-native species (Seriola fasciata) in Greece and Cyprus (eastern Mediterranean Sea), the majority of which were obtained via a focused citizen-science project and constitute new records at a country level. We also revise and update their known distribution in the invaded area, thus contributing to the study of large-scale and well-defined distributional patterns of alien species spreading in the Mediterranean Sea.
Collapse
|
11
|
Data-Driven Recommendations for Establishing Threshold Values for the NIS Trend Indicator in the Mediterranean Sea. DIVERSITY 2022. [DOI: 10.3390/d14010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present work, we analysed time series data on the introduction of new non-indigenous species (NIS) in the Mediterranean between 1970 and 2017, aiming to arrive at recommendations concerning the reference period and provisional threshold values for the NIS trend indicator. We employed regression analysis and breakpoint structural analysis. Our results confirm earlier findings that the reference conditions differ for the four Mediterranean subregions, and support a shortening of the reporting cycle from six to three years, with a two-year time lag for the ensuing assessment. Excluding Lessepsian fishes and parasites, the reference period, defined as the most recent time segment with stable mean new NIS values, was estimated as 1997–2017 for the eastern Mediterranean, 2012–2017 for the central Mediterranean, 2000–2017 for the Adriatic and 1970–2017 for the western Mediterranean. These findings are interpreted primarily on the basis of a basin scale temperature regime shift in the late 1990s, shifts in driving forces such as shellfish culture, and as a result of intensified research efforts and citizen scientist initiatives targeting NIS in the last decade. The threshold values, i.e., the three-year average new NIS values during the reference period, are indicative and will ultimately depend on the choice of species and pathways to be used in the calculations. This is discussed through the prism of target setting in alignment with specific management objectives.
Collapse
|
12
|
Tempesti J, Langeneck J, Romani L, Garrido M, Lardicci C, Maltagliati F, Castelli A. Harbour type and use destination shape fouling community and non-indigenous species assemblage: A study of three northern Tyrrhenian port systems (Mediterranean Sea). MARINE POLLUTION BULLETIN 2022; 174:113191. [PMID: 34864465 DOI: 10.1016/j.marpolbul.2021.113191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Fouling communities were studied in three port systems of Northern Tyrrhenian Sea (Western Mediterranean), focusing on the occurrence of non-indigenous species (NIS). For each port system two harbour types (large port and recreational marina) were sampled and, within each large port, fouling samples were collected considering two use destinations (commercial and touristic harbour). Among the 431 taxa identified, forty-two were alien or cryptogenic, four of which were new records for the study area. Harbour type and use destination shaped fouling communities and NIS assemblages, with their relative influence varying among different port systems. High fouling variability was detected within port environments and between different marinas. NIS showed the highest occurrence in large ports, in which the touristic harbour generally hosted the greatest amount. Therefore, the touristic harbours within large ports were identified as susceptible areas for NIS establishment and their possible subsequent spread at local scale through recreational maritime traffic.
Collapse
Affiliation(s)
- Jonathan Tempesti
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Joachim Langeneck
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Luigi Romani
- Via delle Ville, 79 - 55012 Capannori, Lucca, Italy
| | - Marie Garrido
- Office de l'Environnement de la Corse, 14 Avenue Jean Nicoli, 20250 Corte, France
| | - Claudio Lardicci
- Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, 56126 Pisa, Italy
| | - Ferruccio Maltagliati
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| | - Alberto Castelli
- Dipartimento di Biologia, Università di Pisa, Via Derna, 1, 56126 Pisa, Italy; Centro Interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
13
|
Kourantidou M, Cuthbert RN, Haubrock PJ, Novoa A, Taylor NG, Leroy B, Capinha C, Renault D, Angulo E, Diagne C, Courchamp F. Economic costs of invasive alien species in the Mediterranean basin. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58926] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Invasive alien species (IAS) negatively impact the environment and undermine human well-being, often resulting in considerable economic costs. The Mediterranean basin is a culturally, socially and economically diverse region, harbouring many IAS that threaten economic and societal integrity in multiple ways. This paper is the first attempt to collectively quantify the reported economic costs of IAS in the Mediterranean basin, across a range of taxonomic, temporal and spatial descriptors. We identify correlates of costs from invasion damages and management expenditures among key socioeconomic variables, and determine network structures that link countries and invasive taxonomic groups. The total reported invasion costs in the Mediterranean basin amounted to $27.3 billion, or $3.6 billion when only realised costs were considered, and were found to have occurred over the last three decades. Our understanding of costs of invasions in the Mediterranean was largely limited to a few, primarily western European countries and to terrestrial ecosystems, despite the known presence of numerous high-impact aquatic invasive taxa. The vast majority of costs were attributed to damages or losses from invasions ($25.2 billion) and were mostly driven by France, Spain and to a lesser extent Italy and Libya, with significantly fewer costs attributed to management expenditure ($1.7 billion). Overall, invasion costs increased through time, with average annual costs between 1990 and 2017 estimated at $975.5 million. The lack of information from a large proportion of Mediterranean countries, reflected in the spatial and taxonomic connectivity analysis and the relationship of costs with socioeconomic variables, highlights the limits of the available data and the research effort needed to improve a collective understanding of the different facets of the costs of biological invasions. Our analysis of the reported costs associated with invasions in the Mediterranean sheds light on key knowledge gaps and provides a baseline for a Mediterranean-centric approach towards building policies and designing coordinated responses. In turn, these could help reach socially desirable outcomes and efficient use of resources invested in invasive species research and management.
Collapse
|
14
|
Costanzo LG, Marletta G, Alongi G. Non-indigenous macroalgal species in coralligenous habitats of the Marine Protected Area Isole Ciclopi (Sicily, Italy). ITALIAN BOTANIST 2021. [DOI: 10.3897/italianbotanist.11.60474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biological invasions are considered one of the main threats for biodiversity. In the last decades, more than 60 macroalgae have been introduced in the Mediterranean Sea, causing serious problems in coastal areas. Nevertheless, the impacts of alien macroalgae in deep subtidal systems have been poorly studied, especially in the coralligenous habitats of the eastern coast of Sicily (Italy). Therefore, within the framework of the programme “Progetto Operativo di Monitoraggio (P.O.M.)” of the EU Marine Strategy Framework Directive (MSFD), the aim of the present study was to gain knowledge on the alien macroalgae present in coralligenous habitats of the Marine Protected Area (MPA) Isole Ciclopi, along the Ionian coast of Sicily. By Remotely Operated Vehicle (ROV) videos and destructive samples analysed in the laboratory, five alien species were identified: Caulerpa cylindracea, Antithamnion amphigeneum, Asparagopsis armata, Bonnemaisonia hamifera, and Lophocladia lallemandii. Since A. amphigeneum was previously reported only in the western Mediterranean and Adriatic Sea, the present report represents the first record of this species in the eastern Mediterranean. The ROV surveys showed that the alien species do not have a high coverage and do not appear to be invasive in the coralligenous area of the MPA. Since ocean temperatures are predicted to increase as climate change continues and alien species are favoured by warming of the Mediterranean Sea, the risk of biotic homogenisation caused by the spread of alien species is realistic. Therefore, further studies are needed to assess the incidence and invasiveness of alien species in phytobenthic assemblages of coralligenous in the MPA.
Collapse
|