1
|
Pavić V, Viljetić B, Blažetić S, Labak I, Has-Schön E, Heffer M. Temperature-Induced Seasonal Dynamics of Brain Gangliosides in Rainbow Trout ( Oncorhynchus mykiss Walbaum) and Common Carp ( Cyprinus carpio L.). Life (Basel) 2024; 14:1273. [PMID: 39459573 PMCID: PMC11509357 DOI: 10.3390/life14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
This study aimed to determine the expression and distribution of gangliosides in specific regions of the brains of rainbow trout (Oncorhynchus mykiss Walbaum) and common carp (Cyprinus carpio L.) with regard to seasonal temperature changes. Seasonal changes in ganglioside expression and distribution within the species were expected. The natural ecosystems of these fishes differ significantly due to their distinct habitat preferences, geographic distributions, and environmental requirements. Based on the fact that the common carp is eurythermic and adapts to a wide range of temperatures, while the rainbow trout is stenothermic and thrives in a narrower temperature range, it was expected that these species would exhibit distinct patterns of ganglioside modification as part of their adaptive response to temperature fluctuations. Immunohistochemistry using specific antibodies for the major brain gangliosides (GM1, GD1a, GD1b, GT1b), along with the Svennerholm method for quantifying sialic acid bound to gangliosides, revealed that cold acclimatization led to an increase in polysialylated gangliosides in the common carp brain and an increase in trisialogangliosides in the rainbow trout brain. Immunohistochemical analysis also identified region-specific changes in ganglioside expression, suggesting specific functional roles in neuronal adaptation. These results supported the hypothesis that the composition and distribution of brain gangliosides change in response to seasonal thermal shifts as part of the adaptive response. The results underscore the importance of gangliosides in neuronal function and adaptation to environmental stimuli, with implications for understanding fish resilience to temperature changes. This study offers valuable insights into species' temperature adaptation, with implications for physiological and ecological management and improved aquaculture practices. Future research could expand the species scale, study molecular mechanisms and regulatory pathways in ganglioside metabolism, and examine ganglioside interactions with membrane proteins and lipids for a deeper understanding of thermal adaptation.
Collapse
Affiliation(s)
- Valentina Pavić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Barbara Viljetić
- Department of Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Irena Labak
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Elizabeta Has-Schön
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica cara Hadrijana 8A, 31000 Osijek, Croatia; (V.P.); (S.B.); (E.H.-S.)
| | - Marija Heffer
- Department of Medical Biology, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| |
Collapse
|
2
|
da Silva NG, Ratko J, Corrêa APN, da Silva DO, Herrerias T, Pereira DMC, Schleger IC, Neundorf AKA, de Souza MRDP, Donatti L. Physiological strategies of acute thermal conditions of Rhamdia voulezi collected in the Iguaçu river watershed, Paraná, Brazil: biochemical markers of metabolic and oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37681-37704. [PMID: 38780841 DOI: 10.1007/s11356-024-33718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Thermal pollution creates substantial challenges that alter energy demand and produce reactive oxygen species that damage fish DNA, proteins, and lipids. Rhamdia voulezi is a species of fish native to the Iguaçu river, Paraná, Brazil, that does not have scientific records of minimum (CTmin) and maximum (CTmax) temperatures required for survival. As it is a top predator species in the food chain and lives at temperatures below 22 °C, the loss of the species can cause functional problems in controlling the ecosystem and energy flow. The study evaluated the tissue metabolism of the brain, heart, and muscle of R. voulezi (n = 72) subjected to acute thermal stress of 31 °C for 2, 6, 12, 24, and 96 h after acclimatization to 21 °C. The biochemical markers SOD, GPx, MDH, HK, and CK of the brain, PCO of the heart and CAT, glycogen, G6PDH, and ALT of muscle were significant. PCA, IBR, thermal sensitive, and condition factor suggested that R. voulezi has different physiological strategies for acclimatization to 31 °C to mobilize and sustain the metabolic needs of oxygenation and energy allocation/utilization for tissue ATP production.
Collapse
Affiliation(s)
- Niumaique Gonçalves da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Jonathan Ratko
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Ana Paula Nascimento Corrêa
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Diego Ortiz da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Tatiana Herrerias
- Departament of Clinical Analysis, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Diego Mauro Carneiro Pereira
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Ieda Cristina Schleger
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal Institute of Paraná, Palmas, Paraná, Brazil
| | - Ananda Karla Alves Neundorf
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Lucelia Donatti
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Av. Cell Francisco H. Dos Santos, S/N, Jardim das Américas, Curitiba, Paraná, CEP 81531-970, Brazil.
- Federal University of Paraná - Postgraduate Program On Cellular and Molecular Biology, Curitiba, Paraná, Brazil.
- Federal University of Paraná - Postgraduate Program On Ecology and Conservation, Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Mangold-Döring A, Baas J, van den Brink PJ, Focks A, van Nes EH. Toxicokinetic-Toxicodynamic Model to Assess Thermal Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21029-21037. [PMID: 38062939 PMCID: PMC10734255 DOI: 10.1021/acs.est.3c05079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023]
Abstract
Temperature is a crucial environmental factor affecting the distribution and performance of ectothermic organisms. This study introduces a new temperature damage model to interpret their thermal stress. Inspired by the ecotoxicological damage model in the General Unified Threshold model for Survival (GUTS) framework, the temperature damage model assumes that damage depends on the balance between temperature-dependent accumulation and constant repair. Mortality due to temperature stress is driven by the damage level exceeding a threshold. Model calibration showed a good agreement with the measured survival of Gammarus pulex exposed to different constant temperatures. Further, model simulations, including constant temperatures, daily temperature fluctuations, and heatwaves, demonstrated the model's ability to predict temperature effects for various environmental scenarios. With this, the present study contributes to the mechanistic understanding of temperature as a single stressor while facilitating the incorporation of temperature as an additional stressor alongside chemicals in mechanistic multistressor effect models.
Collapse
Affiliation(s)
- Annika Mangold-Döring
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Jan Baas
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Paul J. van den Brink
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Wageningen
Environmental Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Andreas Focks
- System
Science Group/Institute of Mathematics, Osnabrück University, Barbarastrasse 12, D-49076 Osnabrück, Germany
| | - Egbert H. van Nes
- Department
of Aquatic Ecology and Water Quality Management, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
4
|
Li QQ, Zhang J, Wang HY, Niu SF, Wu RX, Tang BG, Wang QH, Liang ZB, Liang YS. Transcriptomic Response of the Liver Tissue in Trachinotus ovatus to Acute Heat Stress. Animals (Basel) 2023; 13:2053. [PMID: 37443851 DOI: 10.3390/ani13132053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Trachinotus ovatus is a major economically important cultured marine fish in the South China Sea. However, extreme weather and increased culture density result in uncontrollable problems, such as increases in water temperature and a decline in dissolved oxygen (DO), hindering the high-quality development of aquaculture. In this study, liver transcriptional profiles of T. ovatus were investigated under acute high-temperature stress (31 °C and 34 °C) and normal water temperature (27 °C) using RNA sequencing (RNA-Seq) technology. Differential expression analysis and STEM analysis showed that 1347 differentially expressed genes (DEGs) and four significant profiles (profiles 0, 3, 4, and 7) were screened, respectively. Of these DEGs, some genes involved in heat shock protein (HSPs), hypoxic adaptation, and glycolysis were up-regulated, while some genes involved in the ubiquitin-proteasome system (UPS) and fatty acid metabolism were down-regulated. Our results suggest that protein dynamic balance and function, hypoxia adaptation, and energy metabolism transformation are crucial in response to acute high-temperature stress. Our findings contribute to understanding the molecular response mechanism of T. ovatus under acute heat stress, which may provide some reference for studying the molecular mechanisms of other fish in response to heat stress.
Collapse
Affiliation(s)
- Qian-Qian Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Hong-Yang Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Bao-Gui Tang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524025, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
5
|
Oliveira H, Maulvault AL, Santos CP, Silva M, Bandarra NM, Valente LMP, Rosa R, Marques A, Anacleto P. Can marine heatwaves affect the fatty acid composition and energy budget of the tropical fish Zebrasoma scopas? ENVIRONMENTAL RESEARCH 2023; 224:115504. [PMID: 36796604 DOI: 10.1016/j.envres.2023.115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.
Collapse
Affiliation(s)
- Helena Oliveira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Ana L Maulvault
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO - Unit on Applied Molecular Biosciences, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, Quinta da Torre, 2819-516 Caparica, Portugal.
| | - Catarina P Santos
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Marlene Silva
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal.
| | - Narcisa M Bandarra
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Luísa M P Valente
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; ICBAS-UP, Institute of Biomedical Sciences Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Rui Rosa
- MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; Department of Animal Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Patrícia Anacleto
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; MARE, Marine and Environmental Sciences Centre & ARNET, Aquatic Research Infrastructure Network Associate Laboratory, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon (FCUL), Av. Nossa Senhora do Cabo 939, 2750-374 Cascais, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
6
|
Messina S, Costantini D, Eens M. Impacts of rising temperatures and water acidification on the oxidative status and immune system of aquatic ectothermic vertebrates: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161580. [PMID: 36646226 DOI: 10.1016/j.scitotenv.2023.161580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Species persistence in the Anthropocene is dramatically threatened by global climate change. Large emissions of carbon dioxide (CO2) from human activities are driving increases in mean temperature, intensity of heatwaves, and acidification of oceans and freshwater bodies. Ectotherms are particularly sensitive to CO2-induced stressors, because the rate of their metabolic reactions, as well as their immunological performance, are affected by environmental temperatures and water pH. We reviewed and performed a meta-analysis of 56 studies, involving 1259 effect sizes, that compared oxidative status or immune function metrics between 42 species of ectothermic vertebrates exposed to long-term increased temperatures or water acidification (≥48 h), and those exposed to control parameters resembling natural conditions. We found that CO2-induced stressors enhance levels of molecular oxidative damages in ectotherms, while the activity of antioxidant enzymes was upregulated only at higher temperatures, possibly due to an increased rate of biochemical reactions dependent on the higher ambient temperature. Differently, both temperature and water acidification showed weak impacts on immune function, indicating different direction (increase or decrease) of responses among immune traits. Further, we found that the intensity of temperature treatments (Δ°C) and their duration, enhance the physiological response of ectotherms, pointing to stronger effects of prolonged extreme warming events (i.e., heatwaves) on the oxidative status. Finally, adult individuals showed weaker antioxidant enzymatic responses to an increase in water temperature compared to early life stages, suggesting lower acclimation capacity. Antarctic species showed weaker antioxidant response compared to temperate and tropical species, but level of uncertainty in the antioxidant enzymatic response of Antarctic species was high, thus pairwise comparisons were statistically non-significant. Overall, the results of this meta-analysis indicate that the regulation of oxidative status might be one key mechanism underlying thermal plasticity in aquatic ectothermic vertebrates.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy.
| | - David Costantini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università s.n.c., 01100 Viterbo, Italy; Unité Physiologie Moléculaire et Adaptation, UMR 7221, Muséum National d'Histoire Naturelle, CNRS - 7 rue Cuvier, 75005 Paris, France
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
7
|
Grimmelpont M, Milinkovitch T, Dubillot E, Lefrançois C. Individual aerobic performance and anaerobic compensation in a temperate fish during a simulated marine heatwave. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160844. [PMID: 36528094 DOI: 10.1016/j.scitotenv.2022.160844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Marine heatwaves (MHWs) are becoming more frequent and intense due to climate change and have strong negative effects on ecosystem. Few studies have reproduced the complex nature of temperature changes of a MHW, while it is suggested that ectotherms may be more vulnerable to rapid changes such as during MHWs. Effects of an experimental MHW were investigated in the golden grey mullet Chelon auratus. Juveniles acclimated to 20 °C were exposed to a rapid 5 °C increase in temperature, followed by a five-day period at 25 °C, before quickly returning to 20°C. Metabolic variables (SMR-standard, MMR-maximum rate, AS-aerobic scope, EPOC-excess post‑oxygen consumption) and critical swimming speed (Ucrit) were measured at different phases of this MHW and after a thermally stable recovery phase. Although the pattern was only significant for the SMR, the aerobic three variables describing aerobic metabolism (SMR, MMR and AS) immediately increased in fish exposed to the acute elevation of temperature, and remained elevated when fish stayed at 25 °C for five days. A similar increase of these metabolic variables was observed for fish that were progressively acclimated to 25 °C. This suggests that temperature increases contribute to increases in metabolism; however, the acute nature of the MHW had no influence. At the end of the MHW, the SMR remained elevated, suggesting an additional cost of obligatory activities due to the extreme event. In parallel, Ucrit did not vary regardless of the thermal conditions. Concerning EPOC, it significantly increased only when fish were acutely exposed to 25 °C. This strongly suggests that fish may buffer the effects of acute changes in temperature by shifting to anaerobic metabolism. Globally, this species appears able to cope with this MHW, but that's without taking into consideration future projections describing an increase in both intensity and frequency of such events, as well as other stressors like pollution or hypoxia.
Collapse
Affiliation(s)
- Margot Grimmelpont
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Thomas Milinkovitch
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Emmanuel Dubillot
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| | - Christel Lefrançois
- La Rochelle University/CNRS France - UMR 7266 LIENSs, 2 Rue Olympe de Gouges, 17000 La Rochelle.
| |
Collapse
|
8
|
Makri V, Feidantsis K, Porlou D, Ntokou A, Georgoulis I, Giantsis IA, Anestis A, Michaelidis B. Red porgy's (Pagrus pagrus) cellular physiology and antioxidant defense in response to seasonality. J Therm Biol 2023; 113:103527. [PMID: 37055131 DOI: 10.1016/j.jtherbio.2023.103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Physiological stress patterns of marine organisms in their natural habitats are considerably complex in space and time. These patterns can eventually contribute in the shaping of fish' thermal limits under natural conditions. In the view of the knowledge gap regarding red porgy's thermal physiology, in combination with the characterization of the Mediterranean Sea as a climate change ''hotspot'', the aim of the present study was to investigate this species biochemical responses to constantly changing field conditions. To achieve this goal, Heat Shock Response (HSR), MAPKs pathway, autophagy, apoptosis, lipid peroxidation and antioxidant defense were estimated and exhibited a seasonal pattern. In general, all the examined biochemical indicators expressed high levels parallel to the increasing seawater temperature in spring, although several bio-indicators have shown increased levels when fish were cold-acclimatized. Similar to other sparids, the observed patterns of physiological responses in red porgy may support the concept of eurythermy.
Collapse
|
9
|
Missionário M, Travesso M, Calado R, Madeira D. Cellular stress response and acclimation capacity of the ditch shrimp Palaemon varians to extreme weather events - How plastic can a plastic species be? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158732. [PMID: 36122726 DOI: 10.1016/j.scitotenv.2022.158732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Species from shallow marine environments are particularly vulnerable to extreme weather events (heatwaves and extreme rainfall) that can promote abrupt environmental shifts, namely in temperature and salinity (respectively). To assess how these shifts impact species' cellular stress responses (CSR), ditch shrimps Palaemon varians were exposed to a chronic (28 days) thermohaline stress experiment. Three levels of temperature (20, 23 and 26 °C) and two levels of salinity (20 and 40) were tested in a full factorial experiment, and shrimps sampled at the 7th, 14th, 21st and 28th day of exposure. Survival, wet weight (as proxy for growth), and cellular stress biomarkers associated with oxidative stress (LPO - Lipid Peroxidation, GST - Glutathione-S-Transferase, SOD - Superoxide Dismutase, TAC - Total Antioxidant Capacity and CAT - Catalase) and protein denaturation (UBI - Ubiquitin and HSP-70 - Heat Shock Protein 70 kDa) were analysed in shrimps' muscle at each sampling day. Temperature and time of exposure significantly affected biomarker levels, with shrimps exposed to 20 and 26 °C revealing more pronounced differences. No interactions were detected between temperature and salinity, suggesting that these factors display additive effects on shrimps' CSR. Antioxidant agents (CAT and TAC) increased under elevated temperature, while protein denaturation markers (UBI and HSP-70) were mostly affected by time of exposure, decreasing at 28 days. Total protein reserves increased throughout time and no effects on wet weight were observed. A negative correlation between wet weight and HSP-70 was detected, suggesting that HSP-70 levels are dependent on organism size. Peak survival (~73 %) was found under 20 °C and salinity 40 and lower survival (~30-40 %) was associated with higher temperatures (23 and 26 °C) and lower salinity (20). We conclude that P. varians displays some level of acclimation capacity but differences in survival may indicate effects on osmoregulation processes and the need for longer timeframes to fully acclimate to heat and hyposaline stress.
Collapse
Affiliation(s)
- Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
10
|
Husson B, Lind S, Fossheim M, Kato‐Solvang H, Skern‐Mauritzen M, Pécuchet L, Ingvaldsen RB, Dolgov AV, Primicerio R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:3728-3744. [PMID: 35253321 PMCID: PMC9321067 DOI: 10.1111/gcb.16153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrey V. Dolgov
- Polar Branch of the Federal State Budget Scientific InstitutionRussian Federal Research Institute of Fisheries and Oceanography (“PINRO” named after N.M.Knipovich)MurmanskRussia
- Murmansk State Technical UniversityMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Raul Primicerio
- Institute of Marine ResearchTromsøNorway
- UiT – The Arctic University of TromsøTromsøNorway
| |
Collapse
|
11
|
Missionário M, Fernandes JF, Travesso M, Freitas E, Calado R, Madeira D. Sex-specific thermal tolerance limits in the ditch shrimp Palaemon varians: Eco-evolutionary implications under a warming ocean. J Therm Biol 2022; 103:103151. [PMID: 35027201 DOI: 10.1016/j.jtherbio.2021.103151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
As global temperatures continue to rise due to global change, marine heatwaves are also becoming more frequent and intense, impacting marine biodiversity patterns worldwide. Organisms inhabiting shallow water environments, such as the commercially relevant ditch shrimp Palaemon varians, are expected to be the most affected by rising temperatures. Thus, addressing species' thermal ecology and climate extinction-risk is crucial to foster climate-smart conservation strategies for shallow water ecosystems. Here, we estimated sex-specific upper thermal tolerance limits for P. varians via the Critical Thermal Maximum method (CTmax), using loss of equilibrium as endpoint. We further calculated thermal safety margins for males and females and tested for correlations between upper thermal limits and shrimps' body size. To determine sex-biased variation in P. varians' traits (CTmax, weight and length), we compared trait variation between females and males through the coefficient of variation ratio (lnCVR). Females displayed an average CTmax value 1.8% lower than males (CTmaxfemales = 37.0 °C vs CTmaxmales = 37.7 °C). This finding may be related to the larger body size exhibited by females (156% heavier and 39% larger than males), as both length and weight had a significant effect on CTmax. The high energetic investment of females in offspring may also contribute to the differences recorded in thermal tolerance. Overall, organisms with a smaller body-size displayed a greater tolerance to elevated temperature, thus suggesting that smaller individuals may be positively selected in warmer environments. This selection may result in a reduction of size-at-maturity and shifts in sex ratio, given the sexual dimorphism in body size of shrimps. The thermal safety margin of P. varians was narrow (∼2.2 °C for males and ∼1.5 °C for females), revealing the vulnerability of this species to ocean warming and heatwaves.
Collapse
Affiliation(s)
- Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Eduardo Freitas
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
12
|
Madeira D, Fernandes JF, Jerónimo D, Martins P, Ricardo F, Santos A, Domingues MR, Diniz MS, Calado R. Salinity shapes the stress responses and energy reserves of marine polychaetes exposed to warming: From molecular to functional phenotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148634. [PMID: 34246144 DOI: 10.1016/j.scitotenv.2021.148634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Estuarine systems are critical transition zones influenced by sea, land and freshwater. An array of human activities impacts these areas leading to multiple-stressor interactions. Temperature and salinity are among the most relevant drivers in estuaries, shaping species growth, reproduction and distribution. However, few studies provide an overview of cellular rewiring processes under multiple-stressor environments. Here, we tested how salinity could shape the response of ragworms Hediste diversicolor, an important bioindicator and commercial species, to elevated temperature. We exposed polychaetes to three temperatures for a month, simulating control, ocean warming and heatwave conditions (24, 27 and 30 °C, respectively) combined with two salinities (20 and 30). We quantified whole-organism performance (wet weight gain and survival), along with cellular stress response (CSR) and energy reserves of worms after 14 and 28 days of exposure. Significant three-way interactions between temperature, salinity and exposure time show the non-linearity of molecular responses. Worms at a salinity of 20 were more sensitive to warming than worms exposed to a salinity of 30. The combination of high temperature and low salinity can act synergistically to induce oxidative stress and macromolecular damage in worm tissues. This finding was supported by an induction of the CSR, with a concomitant decrease of energy reserves, pointing towards a metabolic compensation strategy. However, under a higher salinity (30), the need for a CSR upon thermal challenge was reduced and energy content increased with temperature, which suggests that environmental conditions were within the optimum range. Heatwaves striking low-salinity areas of estuaries can therefore negatively impact the cellular physiology of H. diversicolor, with greater metabolic costs. However, extreme stress levels were not reached as worms incremented wet weight and survival was high under all conditions tested. Our findings are important for the optimization of ragworm aquaculture and adaptive conservation strategies of estuarine systems.
Collapse
Affiliation(s)
- Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; University of Quebec in Rimouski (UQAR), Department of Biology, Chemistry and Geography, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada.
| | - Joana Filipa Fernandes
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Daniel Jerónimo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Fernando Ricardo
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Andreia Santos
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV REQUIMTE-Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal; ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal
| | - Mário Sousa Diniz
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
13
|
Madeira C, Madeira D, Ladd N, Schubert CJ, Diniz MS, Vinagre C, Leal MC. Conserved fatty acid profiles and lipid metabolic pathways in a tropical reef fish exposed to ocean warming - An adaptation mechanism of tolerant species? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146738. [PMID: 33836377 DOI: 10.1016/j.scitotenv.2021.146738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Climate warming is causing rapid spatial expansion of ocean warm pools from equatorial latitudes towards the subtropics. Sedentary coral reef inhabitants in affected areas will thus be trapped in high temperature regimes, which may become the "new normal". In this study, we used clownfish Amphiprion ocellaris as model organism to study reef fish mechanisms of thermal adaptation and determine how high temperature affects multiple lipid aspects that influence physiology and thermal tolerance. We exposed juvenile fish to two different experimental conditions, implemented over 28 days: average tropical water temperatures (26 °C, control) or average warm pool temperatures (30 °C). We then performed several analyses on fish muscle and liver tissues: i) total lipid content (%), ii) lipid peroxides, iii) fatty acid profiles, iv) lipid metabolic pathways, and v) weight as body condition metric. Results showed that lipid storage capacity in A. ocellaris was not affected by elevated temperature, even in the presence of lipid peroxides in both tissues assessed. Additionally, fatty acid profiles were unresponsive to elevated temperature, and lipid metabolic networks were consequently well conserved. Consistent with these results, we did not observe changes in fish weight at elevated temperature. There were, however, differences in fatty acid profiles between tissue types and over time. Liver showed enhanced α-linolenic and linoleic acid metabolism, which is an important pathway in stress response signaling and modulation on environmental changes. Temporal oscillations in fatty acid profiles are most likely related to intrinsic factors such as growth, which leads to the mobilization of energetic reserves between different tissues throughout time according to organism needs. Based on these results, we propose that the stability of fatty acid profiles and lipid metabolic pathways may be an important thermal adaptation feature of fish exposed to warming environments.
Collapse
Affiliation(s)
- Carolina Madeira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Diana Madeira
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal; CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Nemiah Ladd
- Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland; Ecosystem Physiology, University of Freiburg, 53/54 Georges-Köhler Allee, 79119 Freiburg, Germany
| | - Carsten J Schubert
- Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Mário S Diniz
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Miguel C Leal
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, Edifício ECOMARE, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal; Centre for Ecology, Evolution and Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Seestrasse 79, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
14
|
Aslanidi KB, Kharakoz DP. Limits of temperature adaptation and thermopreferendum. Cell Biosci 2021; 11:69. [PMID: 33823918 PMCID: PMC8025563 DOI: 10.1186/s13578-021-00574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Managing the limits of temperature adaptation is relevant both in medicine and in biotechnology. There are numerous scattered publications on the identification of the temperature limits of existence for various organisms and using different methods. Dmitry Petrovich Kharakoz gave a general explanation for many of these experimental results. The hypothesis implied that each cycle of synaptic exocytosis includes reversible phase transitions of lipids of the presynaptic membrane due to the entry and subsequent removal of calcium ions from the synaptic terminal. The correspondence of the times of phase transitions has previously been experimentally shown on isolated lipids in vitro. In order to test the hypothesis of D.P. Kharakoz in vivo, we investigated the influence of the temperature of long-term acclimatization on the temperature of heat and cold shock, as well as on the kinetics of temperature adaptation in zebrafish. Testing the hypothesis included a comparison of our experimental results with the results of other authors obtained on various models from invertebrates to humans. RESULTS The viability polygon for Danio rerio was determined by the minimum temperature of cold shock (about 6 °C), maximum temperature of heat shock (about 43 °C), and thermopreferendum temperature (about 27 °C). The ratio of the temperature range of cold shock to the temperature range of heat shock was about 1.3. These parameters obtained for Danio rerio describe with good accuracy those for the planarian Girardia tigrina, the ground squirrel Sermophilus undulatus, and for Homo sapiens. CONCLUSIONS The experimental values of the temperatures of cold shock and heat shock and the temperature of the thermal preferendum correspond to the temperatures of phase transitions of the lipid-protein composition of the synaptic membrane between the liquid and solid states. The viability range for zebrafish coincides with the temperature range, over which enzymes function effectively and also coincides with the viability polygons for the vast majority of organisms. The boundaries of the viability polygon are characteristic biological constants. The viability polygon of a particular organism is determined not only by the genome, but also by the physicochemical properties of lipids that make up the membrane structures of synaptic endings. The limits of temperature adaptation of any biological species are determined by the temperature range of the functioning of its nervous system.
Collapse
Affiliation(s)
- K B Aslanidi
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290.
| | - D P Kharakoz
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia, 142290
| |
Collapse
|