1
|
Yang WQ, Ge JY, Zhang X, Zhu WY, Lin L, Shi Y, Xu B, Liu RJ. THUMPD2 catalyzes the N2-methylation of U6 snRNA of the spliceosome catalytic center and regulates pre-mRNA splicing and retinal degeneration. Nucleic Acids Res 2024; 52:3291-3309. [PMID: 38165050 PMCID: PMC11014329 DOI: 10.1093/nar/gkad1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Zhang
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lin Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064,Zhejiang Province, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Yan F, Xiao X, Long C, Tang L, Wang C, Zhang M, Zhang J, Lin H, Huang H, Zhang Y, Li S. Molecular Characterization of U6 Promoters from Orange-Spotted Grouper (Epinephelus coioides) and Its Application in DNA Vector-Based RNAi Technology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10212-9. [PMID: 37154998 DOI: 10.1007/s10126-023-10212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The U6 promoter, a typical RNA polymerase III promoter, is widely used to transcribe small RNAs in vector-based siRNA systems. The RNAi efficiency is mainly dependent on the transcriptional activity of the U6 promoter. However, studies have found that U6 promoters isolated from some fishes do not work well in distantly related species. To isolate a U6 promoter with high transcriptional efficiency from fish, in this study, we cloned five U6 promoters in orange-spotted grouper, of which only the grouper U6-1 (GU6-1) promoter contains the OCT element in the distant region. Functional studies revealed that the GU6-1 promoter has high transcriptional ability, which could efficiently transcribe shRNA and result in target gene knockdown in vitro and in vivo. Subsequently, the deletion or mutation of the OCT motif resulted in a significant decrease in promoter transcriptional activity, demonstrating that the OCT element plays an important role in enhancing the grouper U6 promoter transcription. Moreover, the transcriptional activity of the GU6-1 promoter showed little species specificity. It not only works in the grouper but also possesses high transcriptional activity in the zebrafish. Knockdown of the mstn gene in zebrafish and grouper through shRNA driven by the GU6-1 promoter could promote fish growth, suggesting that the GU6-1 promoter can be used as a potential molecular tool in aquaculture practice.
Collapse
Affiliation(s)
- Fengying Yan
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Xinxun Xiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chen Long
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Lin Tang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Chongwei Wang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Mingqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China
| | - Hai Huang
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, 572022, Sanya, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 266373, Qingdao, China.
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Xin Gang Xi Road, Haizhu District, 510275, Guangzhou, Guangdong Province, China.
| |
Collapse
|
3
|
Zhang Z, Wang J, Li J, Liu X, Liu L, Zhao C, Tao W, Wang D, Wei J. Establishment of an Integrated CRISPR/Cas9 Plasmid System for Simple and Efficient Genome Editing in Medaka In Vitro and In Vivo. BIOLOGY 2023; 12:biology12020336. [PMID: 36829610 PMCID: PMC9953409 DOI: 10.3390/biology12020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Although CRISPR/Cas9 has been used in gene manipulation of several fish species in vivo, its application in fish cultured cells is still challenged and limited. In this study, we established an integrated CRISPR/Cas9 plasmid system and evaluated its efficiency of gene knock-out or knock-in at a specific site in medaka (Oryzias latipes) in vitro and in vivo. By using the enhanced green fluorescent protein reporter plasmid pGNtsf1, we demonstrate that pCas9-U6sgRNA driven by endogenous U6 promoter (pCas9-mU6sgRNA) mediated very high gene editing efficiency in medaka cultured cells, but not by exogenous U6 promoters. After optimizing the conditions, the gene editing efficiencies of eight sites targeting for four endogenous genes were calculated, and the highest was up to 94% with no detectable off-target. By one-cell embryo microinjection, pCas9-mU6sgRNA also mediated efficient gene knock-out in vivo. Furthermore, pCas9-mU6sgRNA efficiently mediated gene knock-in at a specific site in medaka cultured cells as well as embryos. Collectively, our study demonstrates that the genetic relationship of U6 promoter is critical to gene editing efficiency in medaka cultured cells, and a simple and efficient system for medaka genome editing in vitro and in vivo has been established. This study provides an insight into other fish genome editing and promotes gene functional analysis.
Collapse
Affiliation(s)
- Zeming Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jie Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
- Sichuan Province Yuechi Middle School, Guang’an 638300, China
| | - Jianeng Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiang Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lei Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changle Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (D.W.); (J.W.)
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
- Correspondence: (D.W.); (J.W.)
| |
Collapse
|
4
|
Xie Z, Zhong C, Liu X, Wang Z, Zhou R, Xie J, Zhang S, Jin J. Genome editing in the edible fungus Poria cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection. Front Microbiol 2022; 13:966231. [PMID: 36071963 PMCID: PMC9441760 DOI: 10.3389/fmicb.2022.966231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Poria cocos is an important edible and medicinal fungus with a long history. However, the lack of adequate genetic tools has hindered molecular genetic research and the genetic modification of this species. In this study, the endogenous U6 promoters were identified by mining data from the P. cocos genome, and the promoter sequence was used to construct a sgRNA expression vector pFC332-PcU6. Then, the protoplast isolation protocol was developed, and the sgRNA-Cas9 vector was successfully transformed into the cells of P. cocos via PEG/CaCl2-mediated transformation approach. Off-target sites were genome-widely predicted and detected. As a result, the target marker gene ura3 was successfully disrupted by the CRISPR-Cas9 system. This is the first report of genome editing in P. cocos using CRISPR-Cas9 system integrating genome-wide off-target prediction and detection. These data will open up new avenues for the investigation of genetic breeding and commercial production of edible and medicinal fungus.
Collapse
Affiliation(s)
- Zhenni Xie
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Can Zhong
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xiaoliu Liu
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Ziling Wang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Rongrong Zhou
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jian Jin
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jian Jin,
| |
Collapse
|
5
|
Li Y, Feng H, Jin L, Xin X, Yuan Q. A novel vector-based RNAi method using mouse U6 promoter-driven shRNA expression in the filamentous fungus Blakeslea trispora. Biotechnol Lett 2021; 43:1821-1830. [PMID: 34185215 DOI: 10.1007/s10529-021-03155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE There are several studies on the use of RNA interference (RNAi) for gene function analysis in fungi. However, most studies on filamentous fungi are based on in vitro-transcribed or -synthesized small interfering RNA (siRNA), and only a few have reported the use of vector-based RNAi. Here we want to develop and evaluate a new vector-based RNAi method using the mouse U6 promoter to drive short hairpin RNA (shRNA) expression in the filamentous fungi. METHODS Molecular techniques were employed to develop and evaluate a new vector-based RNAi method using the mouse U6 promoter to drive short hairpin RNA (shRNA) expression in the filamentous fungus Blakeslea trispora. RESULTS We characterized the mouse U6 promoter and utilized it for the expression of shRNA in B. trispora. Using real-time polymerase chain reaction and western blotting analyses, we confirmed the decrease in the mRNA and protein expression of carRA, respectively, in cells transformed with the mouse U6 promoter-driven shRNA expression vector. This indicated that the shRNA was transcribed from the mouse U6 promoter and correctly processed into siRNA and that the mouse U6 promoter exhibited transcription ability in the filamentous fungi. CONCLUSIONS The results suggest that the mouse U6 promoter that drives the expression of shRNA vectors may serve as a novel tool for RNAi induction in filamentous fungi.
Collapse
Affiliation(s)
- Ye Li
- Department of Biotechnology, Beijing Polytechnic, No. 9, Liang Shuihe First Street, Yi Zhuang Economic & Technological Development Zone, Beijing, 100176, China
| | - Hui Feng
- Department of Biotechnology, Beijing Polytechnic, No. 9, Liang Shuihe First Street, Yi Zhuang Economic & Technological Development Zone, Beijing, 100176, China
| | - Lihua Jin
- Department of Biotechnology, Beijing Polytechnic, No. 9, Liang Shuihe First Street, Yi Zhuang Economic & Technological Development Zone, Beijing, 100176, China
| | - Xiulan Xin
- Department of Biotechnology, Beijing Polytechnic, No. 9, Liang Shuihe First Street, Yi Zhuang Economic & Technological Development Zone, Beijing, 100176, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing, 100029, China.
| |
Collapse
|
6
|
An efficient vector-based CRISPR/Cas9 system in an Oreochromis mossambicus cell line using endogenous promoters. Sci Rep 2021; 11:7854. [PMID: 33846462 PMCID: PMC8041756 DOI: 10.1038/s41598-021-87068-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/23/2021] [Indexed: 02/01/2023] Open
Abstract
CRISPR/Cas9 gene editing is effective in manipulating genetic loci in mammalian cell cultures and whole fish but efficient platforms applicable to fish cell lines are currently limited. Our initial attempts to employ this technology in fish cell lines using heterologous promoters or a ribonucleoprotein approach failed to indicate genomic alteration at targeted sites in a tilapia brain cell line (OmB). For potential use in a DNA vector approach, endogenous tilapia beta Actin (OmBAct), EF1 alpha (OmEF1a), and U6 (TU6) promoters were isolated. The strongest candidate promoter determined by EGFP reporter assay, OmEF1a, was used to drive constitutive Cas9 expression in a modified OmB cell line (Cas9-OmB1). Cas9-OmB1 cell transfection with vectors expressing gRNAs driven by the TU6 promoter achieved mutational efficiencies as high as 81% following hygromycin selection. Mutations were not detected using human and zebrafish U6 promoters demonstrating the phylogenetic proximity of U6 promoters as critical when used for gRNA expression. Sequence alteration to TU6 improved mutation rate and cloning efficiency. In conclusion, we report new tools for ectopic expression and a highly efficient, economical system for manipulation of genomic loci and evaluation of their causal relationship with adaptive cellular phenotypes by CRISPR/Cas9 gene editing in fish cells.
Collapse
|
7
|
Dergai O, Hernandez N. How to Recruit the Correct RNA Polymerase? Lessons from snRNA Genes. Trends Genet 2019; 35:457-469. [PMID: 31040056 DOI: 10.1016/j.tig.2019.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Nuclear eukaryotic genomes are transcribed by three related RNA polymerases (Pol), which transcribe distinct gene sets. Specific Pol recruitment is achieved through selective core promoter recognition by basal transcription factors (TFs). Transcription by an inappropriate Pol appears to be rare and to generate mostly unstable products. A collection of short noncoding RNA genes [for example, small nuclear RNA (snRNA) or 7SK RNA genes], which play essential roles in processes such as maturation of RNA molecules or control of Pol II transcription elongation, possess highly similar core promoters, and yet are transcribed for some by Pol II and for others by Pol III as a result of small promoter differences. Here we discuss the mechanisms of selective Pol recruitment to such promoters.
Collapse
Affiliation(s)
- Oleksandr Dergai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Yin L, Maddison LA, Li M, Kara N, LaFave MC, Varshney GK, Burgess SM, Patton JG, Chen W. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs. Genetics 2015; 200:431-41. [PMID: 25855067 PMCID: PMC4492370 DOI: 10.1534/genetics.115.176917] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/06/2015] [Indexed: 12/13/2022] Open
Abstract
Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward.
Collapse
Affiliation(s)
- Linlin Yin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lisette A Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Nergis Kara
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee 37240
| | - Matthew C LaFave
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - James G Patton
- Department of Biological Science, Vanderbilt University, Nashville, Tennessee 37240
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
9
|
Boonanuntanasarn S, Panyim S, Yoshizaki G. Usage of putative zebrafish U6 promoters to express shRNA in Nile tilapia and shrimp cell extracts. Transgenic Res 2009; 18:323-5. [PMID: 19225901 DOI: 10.1007/s11248-009-9249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 01/21/2009] [Indexed: 11/30/2022]
Abstract
We conducted in vitro transcription activities of the three zebrafish U6 putative promoters across species in cell extracts prepared from Nile tilapia (Oreochromis niloticus) and shrimps. The transcription efficiency of these putative U6 promoters in Nile tilapia cell extracts was similar to that of zebrafish cell extracts. In addition, all three zebrafish U6 snRNA promoters were able to express the shRNA in cell extracts prepared from two shrimp species, Penaeus monodon and Litopenaeus vannamei. However, the shRNA transcription products in shrimp cell extracts showed weaker signals. These U6 promoters could promote shRNA expression, suggesting that they have the potential for use for vector-based RNAi in Nile tilapia and shrimps. A putative U6 promoter would provide a powerful tool for long-term GKD in these aquaculture-related species.
Collapse
|