1
|
Chowdhury R, Roure A, le Pétillon Y, Mayeur H, Daric V, Darras S. Highly distinct genetic programs for peripheral nervous system formation in chordates. BMC Biol 2022; 20:152. [PMID: 35761237 PMCID: PMC9238270 DOI: 10.1186/s12915-022-01355-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Vertebrates develop their peripheral nervous system (PNS) from transient unique embryonic structures, the neural crest, and the ectodermal placodes that are located at the border of the forming central nervous system. By contrast, in the invertebrate chordates, amphioxus and ascidians, a large part of the PNS originates at the opposite of the embryo, in the ventral ectoderm. In both groups, a biphasic mechanism regulates ventral PNS formation: high BMP levels specify a neurogenic territory within which glutamatergic epidermal sensory neuron formation is controlled by the Notch pathway. Given these similarities and the phylogenetic relationships within chordates, it is likely that ventral PNS is an ancestral feature in chordates and that it has been lost in vertebrates.
Results
In order to get insights into the molecular control of ventral PNS formation and to test the hypothesis of their homology and potential contribution to the emergence of vertebrate PNS, we undertook a close comparison of ventral PNS formation in the ascidian Phallusia mammillata and the amphioxus Branchiostoma lanceolatum. Using timed RNA-seq series, we identified novel markers of the ventral PNS during different phases of its development in both species. By extensively determining the expression of paralogous and orthologous genes, we observed that only a minority of genes have a shared expression in the ventral PNS. However, a large fraction of ventral PNS orthologous genes are expressed in the dorsally forming PNS of vertebrates.
Conclusions
Our work has significantly increased the molecular characterization of ventral PNS formation in invertebrate chordates. The low observed conservation of gene expression in the ventral PNS suggests that the amphioxus and ascidian ventral PNS are either not homologous, or alternatively extensive drift has occurred in their regulatory mechanisms following a long period (600 My) of separate evolution and accelerated evolution in the ascidian lineage. The homology to genes expressed in the dorsally forming PNS of vertebrates suggests that ancestral sensory neurons gene networks have been redeployed in vertebrates.
Collapse
|
2
|
Faria R, Johannesson K, Stankowski S. Speciation in marine environments: Diving under the surface. J Evol Biol 2021; 34:4-15. [PMID: 33460491 DOI: 10.1111/jeb.13756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Marine environments are inhabited by a broad representation of the tree of life, yet our understanding of speciation in marine ecosystems is extremely limited compared with terrestrial and freshwater environments. Developing a more comprehensive picture of speciation in marine environments requires that we 'dive under the surface' by studying a wider range of taxa and ecosystems is necessary for a more comprehensive picture of speciation. Although studying marine evolutionary processes is often challenging, recent technological advances in different fields, from maritime engineering to genomics, are making it increasingly possible to study speciation of marine life forms across diverse ecosystems and taxa. Motivated by recent research in the field, including the 14 contributions in this issue, we highlight and discuss six axes of research that we think will deepen our understanding of speciation in the marine realm: (a) study a broader range of marine environments and organisms; (b) identify the reproductive barriers driving speciation between marine taxa; (c) understand the role of different genomic architectures underlying reproductive isolation; (d) infer the evolutionary history of divergence using model-based approaches; (e) study patterns of hybridization and introgression between marine taxa; and (f) implement highly interdisciplinary, collaborative research programmes. In outlining these goals, we hope to inspire researchers to continue filling this critical knowledge gap surrounding the origins of marine biodiversity.
Collapse
Affiliation(s)
- Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,IST Austria, Klosterneuburg, Austria
| |
Collapse
|
3
|
Huan P, Cui M, Wang Q, Liu B. CRISPR/Cas9-mediated mutagenesis reveals the roles of calaxin in gastropod larval cilia. Gene 2021; 787:145640. [PMID: 33845135 DOI: 10.1016/j.gene.2021.145640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/27/2022]
Abstract
Obtaining detectable knockout phenotypes in the G0 generation is essential for gene function studies. Although CRISPR/Cas9-mediated gene editing has been employed to knock out molluscan genes, detectable phenotypes in the G0 generation have not been reported in these animals. In this study, we determined the knockout phenotype of a cilium-related gene, calaxin, using CRISPR/Cas9 technology in the gastropod mollusk Lottia goshimai. Injections with the Cas9-sgRNA complex caused approximately 30-80% of the injected larvae to exhibit a short-cilia phenotype characteristic of shortened cilia and decreased motility in the larvae. This phenotype was detectable in the G0 generation and was consistent for two independent sgRNAs. Genotyping of the injected larvae revealed various types of deletions and insertions in the target gene, which occurred in all sequences from the short-cilia larvae. This result indicated that the short-cilia phenotype was indeed caused by calaxin knockout. This possibility was supported by an RNAi assay targeting calaxin, which produced a highly similar short-cilia phenotype. We observed that a single SNP in the target sequences of the sgRNAs could show varied effects on the efficiency of mutagenesis. These results help to establish a foundation for future studies on molluscan gene editing using the CRISPR/Cas9 technique and contribute to the body of knowledge on molluscan ciliary functions.
Collapse
Affiliation(s)
- Pin Huan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Menglu Cui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
| | - Baozhong Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266000 Qingdao, China; University of Chinese Academy of Sciences, 100039 Beijing, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China.
| |
Collapse
|
4
|
Li H, Yu H, Li Q. Striated myosin heavy chain gene is a crucial regulator of larval myogenesis in the pacific oyster Crassostrea gigas. Int J Biol Macromol 2021; 179:388-397. [PMID: 33689771 DOI: 10.1016/j.ijbiomac.2021.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Pacific oyster (Crassostrea gigas), the most productive economical bivalve mollusc, is identified as an attractive model for developmental studies due to its classical mosaic developmental pattern. Myosin heavy chain is a structural and functional component of myosin, the key muscle protein of thick filament. Here, full length cDNA of striated myosin heavy chains in C. gigas (CgSmhc) was obtained, and the expression profiles were examined in different development stage. CgSmhc had a high expression level in trochophore and D-shaped stage during embryo-larval stage. In adult, CgSmhc was a muscle-specific gene and primarily expressed in muscle tissues. Then, activity of 5' flanking region of CgSmhc were examined through an reconstructed EGFP vector. The results indicated that 3098 bp 5'-flanking region of CgSmhc owned various conserved binding sites of myogenesis-related regulatory elements, and the 2000 bp 5'-flanking sequence was sufficient to induce the CgSmhc expression. Subsequently, the CRISPR/Cas9-mediated target disruption of CgSmhc was generated by co-injection of Cas9mRNA and CgSmhc-sgRNAs into one-cell stage embryos of C. gigas. Loss of CgSmhc had a visible effect on the sarcomeric organization of thin filaments in larval musculature, indicating that CgSmhc was required during larval myogenesis to regulate the correct assembly of sarcomere.
Collapse
Affiliation(s)
- Huijuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
5
|
Dittami SM, Arboleda E, Auguet JC, Bigalke A, Briand E, Cárdenas P, Cardini U, Decelle J, Engelen AH, Eveillard D, Gachon CMM, Griffiths SM, Harder T, Kayal E, Kazamia E, Lallier FH, Medina M, Marzinelli EM, Morganti TM, Núñez Pons L, Prado S, Pintado J, Saha M, Selosse MA, Skillings D, Stock W, Sunagawa S, Toulza E, Vorobev A, Leblanc C, Not F. A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 2021; 9:e10911. [PMID: 33665032 PMCID: PMC7916533 DOI: 10.7717/peerj.10911] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.
Collapse
Affiliation(s)
- Simon M Dittami
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Enrique Arboleda
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - Arite Bigalke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Enora Briand
- Laboratoire Phycotoxines, Ifremer, Nantes, France
| | - Paco Cárdenas
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulisse Cardini
- Integrative Marine Ecology Dept, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Johan Decelle
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, Grenoble, France
| | | | - Damien Eveillard
- Laboratoire des Sciences Numériques de Nantes (LS2N), Université de Nantes, CNRS, Nantes, France
| | - Claire M M Gachon
- Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - Sarah M Griffiths
- School of Science and the Environment, Manchester Metropolitan University, Manchester, United Kingdom
| | | | - Ehsan Kayal
- FR2424, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | | | - François H Lallier
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, United States of America
| | - Ezequiel M Marzinelli
- Ecology and Environment Research Centre, The University of Sydney, Sydney, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,Sydney Institute of Marine Science, Mosman, Australia
| | | | - Laura Núñez Pons
- Section Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Soizic Prado
- Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, Paris, France
| | - José Pintado
- Instituto de Investigaciones Marinas, CSIC, Vigo, Spain
| | - Mahasweta Saha
- Benthic Ecology, Helmholtz Center for Ocean Research, Kiel, Germany.,Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom
| | - Marc-André Selosse
- National Museum of Natural History, Département Systématique et Evolution, Paris, France.,Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Derek Skillings
- Philosophy Department, University of Pennsylvania, Philadelphia, United States of America
| | - Willem Stock
- Laboratory of Protistology & Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | - Shinichi Sunagawa
- Dept. of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH, Zürich, Switzerland
| | - Eve Toulza
- IHPE, Univ. de Montpellier, CNRS, IFREMER, UPDV, Perpignan, France
| | - Alexey Vorobev
- CEA - Institut de Biologie François Jacob, Genoscope, Evry, France
| | - Catherine Leblanc
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| | - Fabrice Not
- Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, Sorbonne Université, CNRS, Roscoff, France
| |
Collapse
|
6
|
Lechable M, Jan A, Duchene A, Uveira J, Weissbourd B, Gissat L, Collet S, Gilletta L, Chevalier S, Leclère L, Peron S, Barreau C, Lasbleiz R, Houliston E, Momose T. An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. Biol Open 2020; 9:bio051268. [PMID: 32994186 PMCID: PMC7657476 DOI: 10.1242/bio.051268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
The jellyfish species Clytia hemisphaerica (Cnidaria, Hydrozoa) has emerged as a new experimental model animal in the last decade. Favorable characteristics include a fully transparent body suitable for microscopy, daily gamete production and a relatively short life cycle. Furthermore, whole genome sequence assembly and efficient gene editing techniques using CRISPR/Cas9 have opened new possibilities for genetic studies. The quasi-immortal vegetatively-growing polyp colony stage provides a practical means to maintain mutant strains. In the context of developing Clytia as a genetic model, we report here an improved whole life cycle culture method including an aquarium tank system designed for culture of the tiny jellyfish form. We have compared different feeding regimes using Artemia larvae as food and demonstrate that the stage-dependent feeding control is the key for rapid and reliable medusa and polyp rearing. Metamorphosis of the planula larvae into a polyp colony can be induced efficiently using a new synthetic peptide. The optimized procedures detailed here make it practical to generate genetically modified Clytia strains and to maintain their whole life cycle in the laboratory.This article has an associated First Person interview with the two first authors of the paper.
Collapse
Affiliation(s)
- Marion Lechable
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Alexandre Jan
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Axel Duchene
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Julie Uveira
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Brandon Weissbourd
- California Institute of Technology, Division of Biology and Biological Engineering, and the Howard Hughes Medical Institute, 1200 E California Blvd, Pasadena CA 91125, USA
| | - Loann Gissat
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Sophie Collet
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Laurent Gilletta
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Sophie Peron
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Carine Barreau
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Régis Lasbleiz
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| |
Collapse
|
7
|
Booth DS, King N. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. eLife 2020; 9:56193. [PMID: 32496191 PMCID: PMC7314544 DOI: 10.7554/elife.56193] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
In a previous study, we established a forward genetic screen to identify genes required for multicellular development in the choanoflagellate, Salpingoeca rosetta (Levin et al., 2014). Yet, the paucity of reverse genetic tools for choanoflagellates has hampered direct tests of gene function and impeded the establishment of choanoflagellates as a model for reconstructing the origin of their closest living relatives, the animals. Here we establish CRISPR/Cas9-mediated genome editing in S. rosetta by engineering a selectable marker to enrich for edited cells. We then use genome editing to disrupt the coding sequence of a S. rosetta C-type lectin gene, rosetteless, and thereby demonstrate its necessity for multicellular rosette development. This work advances S. rosetta as a model system in which to investigate how genes identified from genetic screens and genomic surveys function in choanoflagellates and evolved as critical regulators of animal biology.
Collapse
Affiliation(s)
- David S Booth
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
8
|
Park JC, Choi BS, Kim MS, Shi H, Zhou B, Park HG, Lee JS. The genome of the marine rotifer Brachionus koreanus sheds light on the antioxidative defense system in response to 2-ethyl-phenanthrene and piperonyl butoxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105443. [PMID: 32086058 DOI: 10.1016/j.aquatox.2020.105443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
BRACHIONUS: spp. (Rotifera: Monogononta) have been introduced as ecotoxicological model-organisms that are widely distributed in aquatic environments. Among the Brachionus spp., the monogonont rotifer Brachionus koreanus has been widely used for ecology, ecotoxicology, and evolution, thus, providing the whole genome data of B. koreanus is important for further understandings of in-depth molecular mechanisms. In this study, the completed assembly and characterization of the B. koreanus genome resulted in a total length of 85.7 Mb with 14,975 annotated genes. The final number of scaffolds was 567 with an N50 value and a GC content of 1.86 Mb and 24.35 %, respectively. Based on the fully constructed genome database, a total of 24 CYPs, 23 GSTs, two SODs, and a single CAT genes were identified and analyzed antioxidant activities (CAT, SOD, and GST), and transcriptional regulation of the entire CYPs, GSTs, SODs, and CAT in response to 2-ethyl-phenanthrene (2-ethyl-PHE) and piperonyl butoxide (PBO), to demonstrate the usefulness of the whole genome library of B. koreanus in response xenobiotic-induced oxidative stress. The assembled B. koreanus genome will provide a better understanding on the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification processes in the rotifer B. koreanus.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Huahong Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Bezares-Calderón LA, Berger J, Jékely G. Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190376. [PMID: 31884914 PMCID: PMC7017336 DOI: 10.1098/rstb.2019.0376] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sensory cells that detect mechanical forces usually have one or more specialized cilia. These mechanosensory cells underlie hearing, proprioception or gravity sensation. To date, it is unclear how cilia contribute to detecting mechanical forces and what is the relationship between mechanosensory ciliated cells in different animal groups and sensory systems. Here, we review examples of ciliated sensory cells with a focus on marine invertebrate animals. We discuss how various ciliated cells mediate mechanosensory responses during feeding, tactic responses or predator-prey interactions. We also highlight some of these systems as interesting and accessible models for future in-depth behavioural, functional and molecular studies. We envisage that embracing a broader diversity of organisms could lead to a more complete view of cilia-based mechanosensation. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
10
|
Huang J, You W, Xu Z, Yan Q, Shi C, Tang B, Luo X, Li G, Ke C. An Effective Microinjection Method and TALEN-Mediated Genome Editing in Pacific Abalone. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:441-447. [PMID: 31119501 DOI: 10.1007/s10126-019-09901-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Pacific abalone, Haliotis discus hannai, is an economically important marine mollusk species and an important model animal for studies on ecological, fertilization and developmental biology. While embryonic injection and genome editing have been wildly used in gene function study and trait improvement in many species, they have not been developed in abalones. In this study, we reported an effective method to inject exogenous materials in H. discus hannai unfertilized eggs. The injected eggs could be fertilized at a ratio of 52.6% ± 5.9% and hatch at a ratio of 14.6% ± 1.6%. On the base of this, we further developed an efficient genome editing approach in this species with the transcription activator-like effector nuclease (TALEN) technique. Two TALEN pairs targeting the coding sequence of the abalone nodal gene were assembled and tested. While one of the TALEN pairs showed no detectable mutation efficacy, the other one generated mutations in 50% of the targeted loci. The mutation includes small insertions and deletions and base pair replacements like that reported in other species when the TALEN method was applied. Overall, this is the first study to demonstrate site-specific genome editing in abalone. This work can serve as a reference for future studies focusing on the functional genomics in mollusks.
Collapse
Affiliation(s)
- Jianfang Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiwei Xu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiuning Yan
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Chenggang Shi
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Bin Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guang Li
- State Key Laboratory of the Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
11
|
Neal S, de Jong DM, Seaver EC. CRISPR/CAS9 mutagenesis of a single r-opsin gene blocks phototaxis in a marine larva. Proc Biol Sci 2019; 286:20182491. [PMID: 31161907 PMCID: PMC6571462 DOI: 10.1098/rspb.2018.2491] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
Many marine animals depend upon a larval phase of their life cycle to locate suitable habitat, and larvae use light detection to influence swimming behaviour and dispersal. Light detection is mediated by the opsin genes, which encode light-sensitive transmembrane proteins. Previous studies suggest that r-opsins in the eyes mediate locomotory behaviour in marine protostomes, but few have provided direct evidence through gene mutagenesis. Larvae of the marine annelid Capitella teleta have simple eyespots and are positively phototactic, although the molecular components that mediate this behaviour are unknown. Here, we characterize the spatio-temporal expression of the rhabdomeric opsin genes in C. teleta and show that a single rhabdomeric opsin gene, Ct-r-opsin1, is expressed in the larval photoreceptor cells. To investigate its function, Ct-r-opsin1 was disrupted using CRISPR/CAS9 mutagenesis. Polymerase chain reaction amplification and DNA sequencing demonstrated efficient editing of the Ct-r-opsin1 locus. In addition, the pattern of Ct-r-opsin1 expression in photoreceptor cells was altered. Notably, there was a significant decrease in larval phototaxis, although the eyespot photoreceptor cell and associated pigment cell formed normally and persisted in Ct-r-opsin1-mutant animals. The loss of phototaxis owing to mutations in Ct-r-opsin1 is similar to that observed when the entire photoreceptor and pigment cell are deleted, demonstrating that a single r-opsin gene is sufficient to mediate phototaxis in C. teleta. These results establish the feasibility of gene editing in animals like C. teleta, and extend previous work on the development, evolution and function of the C. teleta visual system . Our study represents one example of disruption of animal behaviour by gene editing through CRISPR/CAS9 mutagenesis, and has broad implications for performing genome editing studies in a wide variety of other understudied animals.
Collapse
Affiliation(s)
| | | | - E. C. Seaver
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, 32080USA
| |
Collapse
|
12
|
Yu H, Li H, Li Q, Xu R, Yue C, Du S. Targeted Gene Disruption in Pacific Oyster Based on CRISPR/Cas9 Ribonucleoprotein Complexes. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:301-309. [PMID: 30810831 DOI: 10.1007/s10126-019-09885-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The Pacific oyster (Crassostrea gigas) is a representative bivalve mollusc that is widely cultured in the world. In recent years, it has become an important model species for ecological, evolutionary, and developmental studies because of its ability to survive in extreme environmental conditions as a sessile filter feeder and its classical mosaic pattern of development. Although the complete genome sequence of C. gigas is available and omics data have been rapidly generated for the past few years, the genetic tools for gene functional studies have thus far been limited to RNA interference technology. In this study, we developed a gene editing system for C. gigas based on CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 ribonucleoprotein complexes. Two candidate genes, myostatin (MSTN) and Twist, were selected as targets. After microinjecting CRISPR/Cas9 ribonucleoprotein complexes into fertilized eggs, CRISPR-induced indel mutations were detected in the target genes. The CRISPR/Cas9-induced mutations were predominantly small indel mutations ranging in size from 1 to 24 bp in these two target genes. These results demonstrate that CRISPR/Cas9 can be successfully used as an effective targeted gene editing system in C. gigas. The method reported here provides a powerful tool for gene functional studies in oysters and other marine bivalves, and potentially as a new technology for genetic engineering to improve oyster traits for aquaculture.
Collapse
Affiliation(s)
- Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Huijuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Rui Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chenyang Yue
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21202, USA
| |
Collapse
|
13
|
Takemura T, Imamura S, Kobayashi Y, Tanaka K. Construction of a Selectable Marker Recycling System and the Use in Epitope Tagging of Multiple Nuclear Genes in the Unicellular Red Alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2018; 59:2308-2316. [PMID: 30099537 DOI: 10.1093/pcp/pcy156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The nuclear genome of the unicellular red alga Cyanidioschyzon merolae can be modified by homologous recombination with exogenously introduced DNA. However, it is presently difficult to modify multiple chromosome loci because of the limited number of available positive selectable markers. In this study, we constructed a modified URA5.3 gene (URA5.3T), which can be repeatedly used for nuclear genome transformation, as well as two plasmid vectors for 3× FLAG- or 3× Myc-epitope tagging of nuclear-encoded proteins using URA5.3T. In the URA5.3T marker, the promoter region and open reading frame were located between directly repeated URA5.3 terminator sequences, and the URA5.3 gene can be eliminated by 5-fluoroorotic acid selection through homologous recombination. To demonstrate the utility of the constructed system, a 3× FLAG-tag and 3× Myc-tag were introduced at the C-termini of two of the six Rab proteins in C. merolae, CmRab18 and CmRab7, respectively, and the differential expression levels were successfully monitored by immunoblot analysis using these epitope tags. The URA5.3T marker's introduction and elimination cycle can be repeated. Thus, we have constructed a marker recycling system for C. merolae nuclear transformation. A novel procedure to obtain a high plating efficiency of C. merolae cells on solid gellan gum plates is also presented.
Collapse
Affiliation(s)
- Tokiaki Takemura
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Yuki Kobayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Science, Tokyo Institute of Technology, Nagatsuta, Yokohama, Japan
| |
Collapse
|
14
|
Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet JP. High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion. Sci Rep 2018; 8:11734. [PMID: 30082705 PMCID: PMC6078951 DOI: 10.1038/s41598-018-30188-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Targeted mutagenesis using CRISPR/Cas9 technology has been shown to be a powerful approach to examine gene function in diverse metazoan species. One common drawback is that mixed genotypes, and thus variable phenotypes, arise in the F0 generation because incorrect DNA repair produces different mutations amongst cells of the developing embryo. We report here an effective method for gene knockout (KO) in the hydrozoan Clytia hemisphaerica, by injection into the egg of Cas9/sgRNA ribonucleoprotein complex (RNP). Expected phenotypes were observed in the F0 generation when targeting endogenous GFP genes, which abolished fluorescence in embryos, or CheRfx123 (that codes for a conserved master transcriptional regulator for ciliogenesis) which caused sperm motility defects. When high concentrations of Cas9 RNP were used, the mutations in target genes at F0 polyp or jellyfish stages were not random but consisted predominantly of one or two specific deletions between pairs of short microhomologies flanking the cleavage site. Such microhomology-mediated (MM) deletion is most likely caused by microhomology-mediated end-joining (MMEJ), which may be favoured in early stage embryos. This finding makes it very easy to isolate uniform, largely non-mosaic mutants with predictable genotypes in the F0 generation in Clytia, allowing rapid and reliable phenotype assessment.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV) 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, France.
| | - Anne De Cian
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| | - Kogiku Shiba
- Shimoda Marine Research Centre, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Centre, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Carine Giovannangeli
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle 43 rue Cuvier, 75005, Paris, France
| |
Collapse
|
15
|
Cleves PA, Strader ME, Bay LK, Pringle JR, Matz MV. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc Natl Acad Sci U S A 2018; 115:5235-5240. [PMID: 29695630 PMCID: PMC5960312 DOI: 10.1073/pnas.1722151115] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Reef-building corals are critically important species that are threatened by anthropogenic stresses including climate change. In attempts to understand corals' responses to stress and other aspects of their biology, numerous genomic and transcriptomic studies have been performed, generating a variety of hypotheses about the roles of particular genes and molecular pathways. However, it has not generally been possible to test these hypotheses rigorously because of the lack of genetic tools for corals. Here, we demonstrate efficient genome editing using the CRISPR/Cas9 system in the coral Acropora millepora We targeted the genes encoding fibroblast growth factor 1a (FGF1a), green fluorescent protein (GFP), and red fluorescent protein (RFP). After microinjecting CRISPR/Cas9 ribonucleoprotein complexes into fertilized eggs, we detected induced mutations in the targeted genes using changes in restriction-fragment length, Sanger sequencing, and high-throughput Illumina sequencing. We observed mutations in ∼50% of individuals screened, and the proportions of wild-type and various mutant gene copies in these individuals indicated that mutation induction continued for at least several cell cycles after injection. Although multiple paralogous genes encoding green fluorescent proteins are present in A. millepora, appropriate design of the guide RNA allowed us to induce mutations simultaneously in more than one paralog. Because A. millepora larvae can be induced to settle and begin colony formation in the laboratory, CRISPR/Cas9-based gene editing should allow rigorous tests of gene function in both larval and adult corals.
Collapse
Affiliation(s)
- Phillip A Cleves
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Marie E Strader
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - John R Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305;
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712;
| |
Collapse
|
16
|
Kudo A, Awasaki T, Ishikawa Y, Matsuo T. piggyBac- and phiC31 integrase-mediated transgenesis in Drosophila prolongata. Genes Genet Syst 2018; 92:277-285. [PMID: 29151455 DOI: 10.1266/ggs.17-00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The development of transgenesis systems in non-model organisms provides a powerful tool for molecular analysis and contributes to the understanding of phenomena that are not observed in model organisms. Drosophila prolongata is a fruit fly that has unique morphology and behavior not found in other Drosophila species including D. melanogaster. In this study, we developed a phiC31 integrase-mediated transgenesis system for D. prolongata. First, using piggyBac-mediated transgenesis, 37 homozygous attP strains were established. These strains were further transformed with the nosP-Cas9 vector, which was originally designed for phiC31-mediated transgenesis in D. melanogaster. The transformation rate varied from 0% to 3.4%. Nine strains with a high transformation rate of above 2.0% were established, which will serve as host strains in future transformation experiments in D. prolongata. Our results demonstrate that genetic tools developed for D. melanogaster are applicable to D. prolongata with minimal modifications.
Collapse
Affiliation(s)
- Ayumi Kudo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | | | - Yukio Ishikawa
- Department of Agricultural and Environmental Biology, The University of Tokyo
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo
| |
Collapse
|
17
|
Quiroga Artigas G, Lapébie P, Leclère L, Takeda N, Deguchi R, Jékely G, Momose T, Houliston E. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. eLife 2018; 7. [PMID: 29303477 PMCID: PMC5756024 DOI: 10.7554/elife.29555] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/08/2017] [Indexed: 01/06/2023] Open
Abstract
Across the animal kingdom, environmental light cues are widely involved in regulating gamete release, but the molecular and cellular bases of the photoresponsive mechanisms are poorly understood. In hydrozoan jellyfish, spawning is triggered by dark-light or light-dark transitions acting on the gonad, and is mediated by oocyte maturation-inducing neuropeptide hormones (MIHs) released from the ectoderm. We determined in Clytia hemisphaerica that blue-cyan light triggers spawning in isolated gonads. A candidate opsin (Opsin9) was found co-expressed with MIH within specialised ectodermal cells. Opsin9 knockout jellyfish generated by CRISPR/Cas9 failed to undergo oocyte maturation and spawning, a phenotype reversible by synthetic MIH. Gamete maturation and release in Clytia is thus regulated by gonadal photosensory-neurosecretory cells that secrete MIH in response to light via Opsin9. Similar cells in ancestral eumetazoans may have allowed tissue-level photo-regulation of diverse behaviours, a feature elaborated in cnidarians in parallel with expansion of the opsin gene family. Many animals living in the sea reproduce by releasing sperm and egg cells at the same time into the surrounding water. Animals often use changes in ambient light at dawn and dusk as reliable daily cues to coordinate this spawning behavior between individuals. For example, jellyfish of the species Clytia hemisphaerica, which can easily be raised in the laboratory, spawn exactly two hours after the light comes on. Researchers recently discovered that spawning in Clytia and other related jellyfish species is coordinated by a hormone called ‘oocyte maturation-inducing hormone’, or MIH for short. This hormone is produced by a cell layer that surrounds the immature eggs and sperm within each reproductive organ, and is secreted in response to light cues. It then diffuses both inside and outside of the jellyfish, and triggers the production of mature eggs and sperm, followed by their release into the ocean. However, until now it was not known which cells and molecules are responsible for detecting light to initiate the secretion of MIH. Quiroga Artigas et al. – including some of the researchers involved in the MIH work – now discovered that a single specialised cell type in the reproductive organs of Clytia responds to light and secretes MIH. These cells contain a light-sensitive protein called Opsin9, which is closely related to the opsin proteins in the human eye well known for their role in vision. When Opsin9 was experimentally mutated, Clytia cells could not secrete MIH in response to light, and the jellyfish failed to spawn. This opsin protein is thus necessary to detect light in order to trigger spawning in jellyfish. A next step will be to examine and compare whether other proteins of the opsin family and hormones related to MIH also regulate spawning in other marine animals. This could have practical benefits for raising marine animals in aquariums and as food resources, and in initiatives to protect the environment. More widely, these findings could help unravel how sexual reproduction has evolved within the animal kingdom.
Collapse
Affiliation(s)
- Gonzalo Quiroga Artigas
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Pascal Lapébie
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Noriyo Takeda
- Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Aomori, Japan
| | - Ryusaku Deguchi
- Department of Biology, Miyagi University of Education, Sendai, Japan
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany.,Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Tsuyoshi Momose
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Villefranche-sur-mer, France
| |
Collapse
|
18
|
Berenbrink M, Verde C, Cossins AR. Marine Genomics Special issue "Genome-powered perspectives in integrative physiology and evolutionary biology". Mar Genomics 2017; 30:1-2. [PMID: 27988070 DOI: 10.1016/j.margen.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michael Berenbrink
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | - Andrew R Cossins
- Centre for Genome Research Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
19
|
Darling JA, Galil BS, Carvalho GR, Rius M, Viard F, Piraino S. Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. MARINE POLICY 2017; 85:56-64. [PMID: 29681680 PMCID: PMC5909192 DOI: 10.1016/j.marpol.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.
Collapse
Affiliation(s)
- John A. Darling
- National Exposure Research Laboratory, United States Environmental
Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711,
USA
- Corresponding author.
(J.A. Darling)
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Israel National Center for
Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre, University of
Southampton, UK
- Centre for Ecological Genomics and Wildlife Conservation, University
of Johannesburg, South Africa
| | - Frédérique Viard
- Sorbonne Université, Université Paris 06, CNRS, UMR
7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff,
France
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali,
Università del Salento, Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Roma, Italy
| |
Collapse
|