1
|
Ng CSL, Chan YKS, Nguyen NTH, Kikuzawa YP, Sam SQ, Toh TC, Mock AYJ, Chou LM, Huang D. Coral community composition and carbonate production in an urbanized seascape. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105322. [PMID: 33857701 DOI: 10.1016/j.marenvres.2021.105322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Coastal urbanization causes environmental modifications that directly and indirectly influence the distribution and functioning of coral reefs. However, the capacity of urban infrastructure to support corals and vertically accrete is less understood. Here, we investigated if coral communities on reefs and seawalls in Singapore are distinct, and examined the environmental variables influencing coral carbonate production. Surveys at 22 sites yielded 134 coral species, with richness significantly higher on reefs. Coral cover and Shannon index did not differ between habitat types. Community composition was distinct between habitat types, with seawalls supporting a higher proportion of massive and thick-plating species. 'Distance from mainland' was the single most important variable influencing normalized carbonate production rates (a function of species-specific linear extension rate and skeletal bulk density and site coral cover), which were higher further from the mainland where human activity and development pressures were greater. Our results indicate that environmental filtering strongly shapes coral communities and may influence ecosystem functioning in Singapore's urbanized reef system. The findings will guide the management of reefs on increasingly urbanized coastlines.
Collapse
Affiliation(s)
- Chin Soon Lionel Ng
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore.
| | - Yong Kit Samuel Chan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Nhung Thi Hong Nguyen
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Yuichi Preslie Kikuzawa
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Shu Qin Sam
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Tai Chong Toh
- Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore; College of Alice and Peter Tan, National University of Singapore, 8 College Avenue East, 138615, Singapore
| | - Aidan Yong Jie Mock
- Yale-NUS College, Environmental Studies, National University of Singapore, 16 College Avenue West, 138527, Singapore
| | - Loke Ming Chou
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore; Tropical Marine Science Institute, National University of Singapore, 14 Kent Ridge Road, 119223, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| |
Collapse
|
3
|
Bauman AG, Dunshea G, Feary DA, Hoey AS. Prickly business: abundance of sea urchins on breakwaters and coral reefs in Dubai. MARINE POLLUTION BULLETIN 2016; 105:459-465. [PMID: 26563547 DOI: 10.1016/j.marpolbul.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Echinometra mathaei is a common echinoid on tropical reefs and where abundant plays an important role in the control of algal communities. Despite high prevalence of E. mathaei on southern Persian/Arabian Gulf reefs, their abundance and distribution is poorly known. Spatial and temporal patterns in population abundance were examined at 12 sites between breakwater and natural reef habitats in Dubai (UAE) every 3 months from 2008 to 2010. Within the breakwater habitat, densities were greatest at shallow wave-exposed sites, and reduced with both decreasing wave-exposure and increasing depth. Interestingly, E. mathaei were significantly more abundant on exposed breakwaters than natural reef sites, presumably due to differences in habitat structure and benthic cover. Population abundances differed seasonally, with peak abundances during summer (July-September) and lower abundances in winter (December-February). Seasonal fluctuations are likely the result of peak annual recruitment pulses coupled with increased fish predation from summer to winter.
Collapse
Affiliation(s)
- Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Science, National University of Singapore, 117543, Singapore.
| | - Glenn Dunshea
- Ecological Marine Services, Bundaberg, Queensland 4670, Australia
| | - David A Feary
- Ecology and Evolution Group, School of Life Sciences, University of Nottingham, NG7 2RD, United Kingdom
| | - Andrew S Hoey
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|