1
|
Lyu L, Li J, Chen Y, Mai Z, Wang L, Li Q, Zhang S. Degradation potential of alkanes by diverse oil-degrading bacteria from deep-sea sediments of Haima cold seep areas, South China Sea. Front Microbiol 2022; 13:920067. [PMID: 36338091 PMCID: PMC9626528 DOI: 10.3389/fmicb.2022.920067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Marine oil spills are a significant concern worldwide, destroying the ecological environment and threatening the survival of marine life. Various oil-degrading bacteria have been widely reported in marine environments in response to marine oil pollution. However, little information is known about culturable oil-degrading bacteria in cold seep of the deep-sea environments, which are rich in hydrocarbons. This study enriched five oil-degrading consortia from sediments collected from the Haima cold seep areas of the South China Sea. Parvibaculum, Erythrobacter, Acinetobacter, Alcanivorax, Pseudomonas, Marinobacter, Halomonas, and Idiomarina were the dominant genera. Further results of bacterial growth and degradation ability tests indicated seven efficient alkane-degrading bacteria belonging to Acinetobacter, Alcanivorax, Kangiella, Limimaricola, Marinobacter, Flavobacterium, and Paracoccus, whose degradation rates were higher in crude oil (70.3–78.0%) than that in diesel oil (62.7–66.3%). From the view of carbon chain length, alkane degradation rates were medium chains > long chains > short chains. In addition, Kangiella aquimarina F7, Acinetobacter venetianus F1, Limimaricola variabilis F8, Marinobacter nauticus J5, Flavobacterium sediminis N3, and Paracoccus sediminilitoris N6 were first identified as oil-degrading bacteria from deep-sea environments. This study will provide insight into the bacterial community structures and oil-degrading bacterial diversity in the Haima cold seep areas, South China Sea, and offer bacterial resources to oil bioremediation applications.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Lina Lyu,
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Si Zhang,
| |
Collapse
|
2
|
Laine V, Goerlandt F, Banda OV, Baldauf M, Koldenhof Y, Rytkönen J. A risk management framework for maritime Pollution Preparedness and Response: Concepts, processes and tools. MARINE POLLUTION BULLETIN 2021; 171:112724. [PMID: 34303060 DOI: 10.1016/j.marpolbul.2021.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Several risk management frameworks have been introduced in the literature for maritime Pollution Preparedness and Response (PPR). However, in light of the actual needs of the competent authorities, there is still a lack of framework that is established on a sound risk conceptual basis, addresses the different risk management decision-making contexts of organizations, and provides tools for various risk management questions of this field. To alleviate the limits of existing approaches, this paper introduces a new risk management framework for this purpose, which was developed in cooperation with the competent authorities and other maritime experts. The framework adopts the risk-informed decision-making strategy and includes three aligned components. The first component provides a unified theoretical risk concept to the framework through an interpretation of the Society for Risk Analysis risk approach. The second consists of four ISO 31000:2018 standard based processes focused on different risk management decision-making contexts of the PPR organizations. The third comprises a set of practical risk assessment tools to generate the needed information. A case study provides an example of the functionality of this framework with integrated data from the northern Baltic Sea. To conclude, a risk concept is provided for the PPR authorities and their stakeholders as well as processes for managing the risk and tools for its assessment.
Collapse
Affiliation(s)
- Valtteri Laine
- Aalto University, Department of Mechanical Engineering, Marine Technology, Otakaari 1, 02150 Espoo, Finland.
| | - Floris Goerlandt
- Dalhousie University, Department of Industrial Engineering, Halifax B3H 4R2, Nova Scotia, Canada
| | - Osiris Valdez Banda
- Aalto University, Department of Mechanical Engineering, Marine Technology, Otakaari 1, 02150 Espoo, Finland
| | - Michael Baldauf
- World Maritime University, Fiskehamnsgatan 1, SE-201 24 Malmö, Sweden
| | - Yvonne Koldenhof
- Maritime Research Institute Netherlands, Haagsteeg 2, 6780 PM, Wageningen, the Netherlands
| | - Jorma Rytkönen
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| |
Collapse
|
3
|
Oyetibo GO, Ige OO, Obinani PK, Amund OO. Ecological risk potentials of petroleum hydrocarbons and heavy metals shape the bacterial communities of marine hydrosphere at Atlantic Ocean, Atlas Cove, Nigeria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112563. [PMID: 33852998 DOI: 10.1016/j.jenvman.2021.112563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/26/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Trans-Atlantic voyage of petroleum often leads to marine pollution with petroleum hydrocarbons (PHs) and heavy metals (HMs) that defines structures of autochthonous bacteria in the hydrosphere. Bacterial taxa of marine sediments exposed to petroleum transport activities were profiled using 16S rDNA metagenomics and correlated with the geochemistry to establish their impact on the microbiome. The physico-chemistry of the marine systems revealed varied degrees of contamination with PHs and HMs exceeding recommended threshold for aquatic life. Ecological risk assessment based on organic carbon of the sediment established phenanthrene, anthracene, and pyrene posed high risks (index risk quotient >32) to marine life. The most dominant phylum of the 44 bacterial phyla in the marine-sphere was Proteobacteria with relative abundance of 45-77% in the sampling locations. Relative dominance of Proteobacteria in the sediments spanned Gammaproteobacteria (17-25%), Deltaproteobacteria (12-20%), and Alphaproteobacteria (7-14%). Whereas, more operational taxonomic units (OTUs) belonging to Epsilonproteobacteria (19 ± 2.4%) were found in estuarine sediment unlike < 0.5% relative abundances obtained from oceanic sediments. Sulfurimonas apparently dominated the bacterial genera with up to 2.16 ± 0.19% abundance in oceanic sediments. Canonical correspondence analysis revealed that PHs shaped the structure of bacterial OTUs in oceanic sediments where petroleum loading/offloading occurs unlike in some kilometres a yonder where HMs correlated with the bacteria structure. The dominant bacteria might possibly pivotal to ecophysiologies of hydrocarbon contaminated marine environment, and would be pertinent to biotechnological applications for possible bioremediation campaign.
Collapse
Affiliation(s)
- Ganiyu O Oyetibo
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria.
| | - Oluwatobi O Ige
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria
| | - Peace K Obinani
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, Faculty of Science, University of Lagos, Akoka, Yaba, Lagos State, 101017, Nigeria
| |
Collapse
|
4
|
Rowe GT, Fernando H, Elferink C, Ansari GAS, Sullivan J, Heathman T, Quigg A, Petronella Croisant S, Wade TL, Santschi PH. Polycyclic aromatic hydrocarbons (PAHs) cycling and fates in Galveston Bay, Texas, USA. PLoS One 2020; 15:e0243734. [PMID: 33370322 PMCID: PMC7769252 DOI: 10.1371/journal.pone.0243734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022] Open
Abstract
The cycling and fate of polycyclic aromatic hydrocarbons (PAHs) is not well understood in estuarine systems. It is critical now more than ever given the increased ecosystem pressures on these critical coastal habitats. A budget of PAHs and cycling has been created for Galveston Bay (Texas) in the northwestern Gulf of Mexico, an estuary surrounded by 30-50% of the US capacity of oil refineries and chemical industry. We estimate that approximately 3 to 4 mt per year of pyrogenic PAHs are introduced to Galveston Bay via gaseous exchange from the atmosphere (ca. 2 mt/year) in addition to numerous spills of petrogenic PAHs from oil and gas operations (ca. 1.0 to 1.9 mt/year). PAHs are cycled through and stored in the biota, and ca. 20 to 30% of the total (0.8 to 1.5 mt per year) are estimated to be buried in the sediments. Oysters concentrate PAHs to levels above their surroundings (water and sediments) and contain substantially greater concentrations than other fish catch (shrimp, blue crabs and fin fish). Smaller organisms (infaunal invertebrates, phytoplankton and zooplankton) might also retain a significant fraction of the total, but direct evidence for this is lacking. The amount of PAHs delivered to humans in seafood, based on reported landings, is trivially small compared to the total inputs, sediment accumulation and other possible fates (metabolic remineralization, export in tides, etc.), which remain poorly known. The generally higher concentrations in biota from Galveston Bay compared to other coastal habitats can be attributed to both intermittent spills of gas and oil and the bay's close proximity to high production of pyrogenic PAHs within the urban industrial complex of the city of Houston as well as periodic flood events that transport PAHs from land surfaces to the Bay.
Collapse
Affiliation(s)
- Gilbert T. Rowe
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Harshica Fernando
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas, United States of America
| | - Cornelis Elferink
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - G. A. Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John Sullivan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Heathman
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | | | - Terry L. Wade
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
| | - Peter H. Santschi
- Department of Oceanography, Texas A&M University, College Station, Texas, United States of America
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tabri K, Heinvee M, Laanearu J, Kollo M, Goerlandt F. An online platform for rapid oil outflow assessment from grounded tankers for pollution response. MARINE POLLUTION BULLETIN 2018; 135:963-976. [PMID: 30301122 DOI: 10.1016/j.marpolbul.2018.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The risk of oil spills is an ongoing societal concern. Whereas several decision support systems exist for predicting the fate and drift of spilled oil, there is a lack of accurate models for assessing the amount of oil spilled and its temporal evolution. In order to close this gap, this paper presents an online platform for the fast assessment of tanker grounding accidents in terms of structural damage and time-dependent amount of spilled cargo oil. The simulation platform consists of the definition of accidental scenarios; the assessment of the grounding damage and the prediction of the time-dependent oil spill size. The performance of this integrated online simulation environment is exemplified through illustrative case studies representing two plausible accidental grounding scenarios in the Gulf of Finland: one resulting in oil spill of about 50 t, while in the other the inner hull remained intact and no spill occurred.
Collapse
Affiliation(s)
- Kristjan Tabri
- Tallinn University of Technology, School of Engineering, Tallinn, Estonia.
| | - Martin Heinvee
- Tallinn University of Technology, School of Engineering, Tallinn, Estonia
| | - Janek Laanearu
- Tallinn University of Technology, School of Engineering, Tallinn, Estonia
| | - Monika Kollo
- Tallinn University of Technology, School of Engineering, Tallinn, Estonia
| | - Floris Goerlandt
- Dalhousie University, Department of Industrial Engineering, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
6
|
Dell'Anno F, Sansone C, Ianora A, Dell'Anno A. Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. MARINE ENVIRONMENTAL RESEARCH 2018; 137:196-205. [PMID: 29615275 DOI: 10.1016/j.marenvres.2018.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/12/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
The contamination of marine sediments is widespread in coastal regions of the world and represents a major concern for the potential detrimental consequences on ecosystems' health and provision of goods and services for human wellbeing. Thus, there is an urgent need to find sustainable and eco-compatible solutions for the remediation of contaminated sediments. Bioremediation is a low cost and environmental-friendly strategy with a high potential for the remediation of contaminated marine sediments. Here we review the potential application of biosurfactants produced by microbial taxa for the remediation of contaminated marine sediments and we discuss future research needs to develop efficient and eco-sustainable biosurfactant-based strategies for the recovery of contaminated marine sediments, in view of large-scale applications.
Collapse
Affiliation(s)
- F Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - C Sansone
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - A Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
7
|
Williams AK, Bacosa HP, Quigg A. The impact of dissolved inorganic nitrogen and phosphorous on responses of microbial plankton to the Texas City "Y" oil spill in Galveston Bay, Texas (USA). MARINE POLLUTION BULLETIN 2017; 121:32-44. [PMID: 28545863 DOI: 10.1016/j.marpolbul.2017.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/26/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Ongoing bioremediation research seeks to promote naturally occurring microbial polycyclic aromatic hydrocarbon (PAH) degradation during and after oil spill events. However, complex relationships among functionally different microbial groups, nutrients and PAHs remain unconstrained. We conducted a surface water survey and corresponding nutrient amendment bioassays following the Texas City "Y" oil spill in Galveston Bay, Texas. Resident microbial groups, defined as either heterotrophic or autotrophic were enumerated by flow cytometry. Heterotrophic abundance was increased by oil regardless of nutrient concentrations. Contrastingly, autotrophic abundance was inhibited by oil, but this reaction was less severe when nutrient concentrations were higher. Several PAH compounds were reduced in nutrient amended treatments relative to controls suggesting nutrient enhanced microbial PAH processing. These findings provide a first-look at nutrient limitation during microbial oil processing in Galveston Bay, an important step in understanding if nutrient additions would be a useful bioremediation strategy in this and other estuarine systems.
Collapse
Affiliation(s)
- Alicia K Williams
- Texas A&M University at Galveston, Department of Marine Biology, 200 Seawolf Parkway, Galveston, TX 77554, USA; Texas A&M University, Department of Oceanography, 797 Lamar Street, College Station, TX 77840, USA.
| | - Hernando P Bacosa
- Texas A&M University at Galveston, Department of Marine Biology, 200 Seawolf Parkway, Galveston, TX 77554, USA; The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA
| | - Antonietta Quigg
- Texas A&M University at Galveston, Department of Marine Biology, 200 Seawolf Parkway, Galveston, TX 77554, USA; Texas A&M University, Department of Oceanography, 797 Lamar Street, College Station, TX 77840, USA
| |
Collapse
|
8
|
Helle I, Ahtiainen H, Luoma E, Hänninen M, Kuikka S. A probabilistic approach for a cost-benefit analysis of oil spill management under uncertainty: A Bayesian network model for the Gulf of Finland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 158:122-32. [PMID: 25983196 DOI: 10.1016/j.jenvman.2015.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 05/23/2023]
Abstract
Large-scale oil accidents can inflict substantial costs to the society, as they typically result in expensive oil combating and waste treatment operations and have negative impacts on recreational and environmental values. Cost-benefit analysis (CBA) offers a way to assess the economic efficiency of management measures capable of mitigating the adverse effects. However, the irregular occurrence of spills combined with uncertainties related to the possible effects makes the analysis a challenging task. We develop a probabilistic modeling approach for a CBA of oil spill management and apply it in the Gulf of Finland, the Baltic Sea. The model has a causal structure, and it covers a large number of factors relevant to the realistic description of oil spills, as well as the costs of oil combating operations at open sea, shoreline clean-up, and waste treatment activities. Further, to describe the effects on environmental benefits, we use data from a contingent valuation survey. The results encourage seeking for cost-effective preventive measures, and emphasize the importance of the inclusion of the costs related to waste treatment and environmental values in the analysis. Although the model is developed for a specific area, the methodology is applicable also to other areas facing the risk of oil spills as well as to other fields that need to cope with the challenging combination of low probabilities, high losses and major uncertainties.
Collapse
Affiliation(s)
- Inari Helle
- Fisheries and Environmental Management Group (FEM), Department of Environmental Sciences, P.O. Box 65, FI-00014, University of Helsinki, Finland.
| | - Heini Ahtiainen
- Natural Resources Institute Finland (Luke), Economics and Society, Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Emilia Luoma
- Fisheries and Environmental Management Group (FEM), Department of Environmental Sciences, P.O. Box 65, FI-00014, University of Helsinki, Finland
| | - Maria Hänninen
- Aalto University, Department of Applied Mechanics, Research Group on Maritime Risk and Safety, P.O. Box 12200, FI-00076, Aalto, Finland
| | - Sakari Kuikka
- Fisheries and Environmental Management Group (FEM), Department of Environmental Sciences, P.O. Box 65, FI-00014, University of Helsinki, Finland
| |
Collapse
|
9
|
Antoniou E, Fodelianakis S, Korkakaki E, Kalogerakis N. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front Microbiol 2015; 6:274. [PMID: 25904907 PMCID: PMC4387541 DOI: 10.3389/fmicb.2015.00274] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/19/2015] [Indexed: 12/01/2022] Open
Abstract
Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.
Collapse
Affiliation(s)
| | | | | | - Nicolas Kalogerakis
- Biochemical Engineering and Environmental Biotechnology Laboratory, School of Environmental Engineering, Technical University of CreteChania, Greece
| |
Collapse
|
10
|
Cirer-Costa JC. Tourism and its hypersensitivity to oil spills. MARINE POLLUTION BULLETIN 2015; 91:65-72. [PMID: 25561004 DOI: 10.1016/j.marpolbul.2014.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
The sinking of the Don Pedro merchant ship in 2007 near the island of Ibiza is a good example of the extreme sensitivity of the tourism sector to oil spills. Despite the limited scale of the spill (only some 20 tonnes), its minimal ecological impact, and the rapid deployment of personnel and equipment to contain it, the accident nonetheless caused significant economic damage to the island's tourism sector. This particular case demonstrates the importance of the beach as a factor of production in the holiday tourism sector, and the capacity of even small amounts of oil to render it unusable and cause heavy losses to holiday firms.
Collapse
Affiliation(s)
- Joan Carles Cirer-Costa
- Escuela universitaria de turismo de Ibiza, C./Murcia, 1 3° C, 07800 Eivissa (Illes Balears), Spain.
| |
Collapse
|