1
|
Ullah MA, Islam MS, Ferdous FB, Rana ML, Hassan J, Rahman MT. Assessment of prevalence, antibiotic resistance, and virulence profiles of biofilm-forming Enterococcus faecalis isolated from raw seafood in Bangladesh. Heliyon 2024; 10:e39294. [PMID: 39640770 PMCID: PMC11620263 DOI: 10.1016/j.heliyon.2024.e39294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Enterococcus faecalis are often resistant to different classes of antibiotics, harbor virulence determinants, and produce biofilm. The presence of E. faecalis in raw seafood exhibits serious public health significance. This study aimed to identify antibiotic resistance patterns and virulence factors in biofilm-forming E. faecalis strains extracted from seafood in Bangladesh. A total of 150 samples of raw seafood, comprising 50 shrimps, 25 crabs, and 75 fish, were collected and subjected to culturing, biochemical, and PCR assays to detect E. faecalis. The biofilm-forming abilities of the isolates were determined by Congo Red agar (CRA) plate and Crystal Violet Micro-titer Plate (CVMP) tests. Antibiotic resistance profiles were evaluated using the disk diffusion method. Virulence genes of the isolates were detected by PCR assay. The occurrence of E. faecalis was 29.3 % (44/150), which was higher in crabs and fish (36 %) than in shrimps (16 %). In CRA and CVMP tests, biofilm-forming abilities were observed in 88.64 % of the isolates, whereas 11 (25 %) and 28 (63.6 %) were strong- and intermediate-biofilm formers, respectively. All the isolates contained at least two virulence genes, including pil and ace (97.7 %), sprE (95.5 %), gelE (90.9 %), fsrB (79.6 %), agg (70.5 %), fsrA (68.2 %), and fsrC (61.4 %). All the isolates were phenotypically resistant to penicillin, followed by ampicillin and rifampicin (86.4 %), erythromycin (13.7 %), and tetracycline, vancomycin, norfloxacin, and linezolid (2.3 %). Resistant gene bla TEM was found in 61.4 % of the isolates. Moreover, the study found that E. faecalis strains with strong biofilm-forming capabilities had significantly higher levels of virulence genes and antibiotic resistance (p < 0.05) compared to those with intermediate and/or no biofilm-forming abilities. To the best of our knowledge, this research represents the first instance in Bangladesh of assessing antibiotic resistance and identifying virulence genes in biofilm-forming E. faecalis strains isolated from seafood samples. Our study revealed that seafood is a carrier of antibiotic-resistant, virulent, and biofilm-forming E. faecalis, demonstrating a potential public health threat.
Collapse
Affiliation(s)
| | | | - Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
2
|
Yu Y, Ye XQ, Liang HQ, Zhong ZX, Cheng K, Sun J, Liao XP, Liu YH. Lilium spp., as unnoticed environmental vector, spreading OptrA-carrying Enterococcus spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151540. [PMID: 34767892 DOI: 10.1016/j.scitotenv.2021.151540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Flower is an essential element in the human lifestyle but its role in disseminating antimicrobial resistance (AMR) between the environment and humans is unclear. In this study, we screened fresh flowers (Lilium spp.) collected from planting bases, market and florists in Guangzhou China aiming to investigate the prevalence of AMR genes, particularly cfr, optrA and poxtA mediating resistance to linezolid, a first-line drug for the treatment of different Gram-positive bacterial infections. We found 223 Enterococcus isolates consisting of Enterococcus faecalis, Enterococcus faecium and Enterococcus mundtii, and >50% of these isolates exhibited multiple-drug resistance. Additionally, 31 optrA-positive Enterococcus including 22 E. faecalis and 9 E. mundtii strains were recovered, however cfr and poxtA were not detected. The 22 E. faecalis strains were belonged to 7 Multilocus sequence types in which ST202 and ST376 were predominant and 9 E. mundtii strains from the same plantation bases were divided into three PFGE groups. Genetically, the majority of optrA were located on the chromosome and shared similar insertion sites and transpositions mediated by Tn554 family members. Plasmid-bearing optrA were identified in 6 E. faecalis strains where IS1216 family played key roles in horizontal transfer of optrA. These findings emphasize that the prevalence of drug resistant Enterococcus in fresh flowers is a latent danger and increases the risk of AMR dissemination to humans from the environment.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Qing Ye
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Hua-Qing Liang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Xing Zhong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Ke Cheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Noroozi N, Momtaz H, Tajbakhsh E. Molecular characterization and antimicrobial resistance of
Enterococcus faecalis
isolated from seafood samples. Vet Med Sci 2022; 8:1104-1112. [PMID: 35152566 PMCID: PMC9122428 DOI: 10.1002/vms3.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Enterococcus faecalis is considered an opportunistic foodborne pathogen. The present study aimed to assess the prevalence, antimicrobial resistance, virulence characters, and molecular typing of E. faecalis strains isolated from seafood samples. Methods Two hundred and seventy‐six seafood samples were collected. E. faecalis was isolated from samples using bacterial culture. Furthermore, the disk diffusion assessed their antimicrobial resistance. Also, the distribution of virulence factors was determined using polymerase chain reaction (PCR) assay. Random amplified polymorphic DNA (RAPD) method was used for their molecular typing. Results Fifty‐six of 276 (20.2%) seafood samples were contaminated with E. faecalis. Fish harboured the highest contamination rate (30.0%). Isolates harboured the highest resistance rate towards oxacillin (100%), tetracycline (100%), erythromycin (100%), cefoxitin (89.2%), cefazolin (87.5%), trimethoprim‐sulfamethoxazole (85.7%), rifampin (69.6%), clindamycin (69.6%), and gentamicin (64.2%) antimicrobials. Efa (100%), ebpA (89.2%), ebpB (58.9%), ebpC (53.5%), and esp (51.7%) were the most commonly detected virulence factors among E. faecalis isolates. RAPD–PCR analysis showed 11 different molecular clusters considering the closeness of more than 80%. Conclusion Seafood samples were considered reservoirs of virulence and resistant E. faecalis strains. Different molecular clusters of isolates may reflect their diverse sources of contamination.
Collapse
Affiliation(s)
- Neda Noroozi
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Hassan Momtaz
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Elahe Tajbakhsh
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| |
Collapse
|
4
|
Araújo AJG, Grassotti TT, Frazzon APG. Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. BRAZ J BIOL 2020; 81:954-961. [PMID: 33053131 DOI: 10.1590/1519-6984.232503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of present study is to characterize the resistance and virulence profile of enterococci isolated from aquaculture excavated ponds and masonry tanks (6 samples) in southern Brazil. Samples were cultured in selective medium, 10 colonies were randomly selected from each sample, which were identified by MALDI-TOF and tested against 13 antimicrobials. The presence of resistance (tetL, tetM, tetS, ermB and msrC) and virulence (ace, esp, agg, cylA and gelE) genes were determined by PCR. A total of 79 enterococci were identified, and Entecococcus faecalis (44.3%) and E. casseliflavus (36.7%) were the most prevalent species isolated. Sixty-five strains (82.3%) were resistant to at least one of the antimicrobials tested, whereas 27 (34.2%) strains were multiresistant. The overall percentages of antimicrobial resistant isolates were: 58.2% to rifampicin, 40.5% to fluoroquinolones, 36.7% to erythromycin and 30.4% to tetracycline. The tetL and tetM genes were found in 57.7% of the tetracycline-resistant strains; and msrC in 31.01% of erythromycin-resistant strains. The most frequently detected virulence factors were ace and gelE genes. Although limited to a single farm, these data suggest that aquaculture may be a reservoir of resistant and virulent enterococci. This study is the first step towards enhancing our understandingof distribution, resistance and virulence profile in enterococci isolated from fish farming environments in the south Brazil.
Collapse
Affiliation(s)
- A J G Araújo
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil
| | - T T Grassotti
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil
| | - A P G Frazzon
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil.,Univerisidade Federal do Rio Grande do Sul - UFRGS, Instituto de Ciências Básicas da Saúde - ICBS, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brasil
| |
Collapse
|
5
|
Nowakiewicz A, Zięba P, Gnat S, Trościańczyk A, Osińska M, Łagowski D, Kosior-Korzecka U, Puzio I. A significant number of multi-drug resistant Enterococcus faecalis in wildlife animals; long-term consequences and new or known reservoirs of resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135830. [PMID: 31818604 DOI: 10.1016/j.scitotenv.2019.135830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
As the last link in the food chain in a complex ecosystem covering at least three different environmental spheres, species of wildlife carnivorous mammals constitute a group accumulating potential pathogens and factors resulting from human activity, including the emergence of drug resistance. Therefore, the aim of this study was to evaluate the level and range of resistance in commensal E. faecalis isolated from wildlife carnivorous mammals and genetic relationships in terms of the source of these strains as well as resistance and virulence genes. Differentiation between strains was performed based on ADSRRS-fingerprinting method. The results showed that almost half of the tested animals (48%) were carriers of at least one multidrug resistant E. faecalis strain. Moreover, 44% of MDR-positive animals showed two or three strains differing in both the genotype and the resistance phenotype. A significant percentage of strains were resistant to high-level aminoglycosides (from 20% to even 57.5%). The resistance and virulence gene profiles showed a rich panel of genes closely related to isolates from nosocomial infection and from livestock animals. The presence of the same genotypes in different hosts reflects not only a possible transfer of genes between E. faecalis strains but also exchange of strains between animals. The obtained results reflect a very high level of contamination of animals that are not subjected to targeted antibiotic therapy, which may suggest the degree of pollution of the environment. Wildlife animals and their environment can be a link closing the circulation cycle of genes and even epidemiologically important strains; therefore, there is a high risk that this pool will never run out and will be maintained at a high level.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Aleksandra Trościańczyk
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033 Lublin, Poland
| | - Urszula Kosior-Korzecka
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Pathophysiology, Akademicka 12, 20-033 Lublin, Poland
| | - Iwona Puzio
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Animal Physiology, Akademicka 12, 20-033 Lublin, Poland
| |
Collapse
|
6
|
Adeniji OO, Sibanda T, Okoh AI. Recreational water quality status of the Kidd's Beach as determined by its physicochemical and bacteriological quality parameters. Heliyon 2019; 5:e01893. [PMID: 31294097 PMCID: PMC6595171 DOI: 10.1016/j.heliyon.2019.e01893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022] Open
Abstract
Coastal water resources are habitually exposed to indiscriminate anthropogenic pollution. However, due to their negative consequences to the public health, recreational waters require continuous monitoring for disease-causing organisms as a way of preventing ailments associated with swimming. As a result, the present study assessed the physicochemical parameters and microbial loads of water samples collected from six different sampling points on Kidd's Beach using standard analytical procedures. Generated data were analysed with One-way ANOVA and spearman correlation (at 95%). The physicochemical qualities varied as follows: pH (7.21–8.23), temperature (18.46–27.63 °C), turbidity (0–25.67 NTU), electrical conductivity (22723–62067 μS/cm), total dissolved solids (7662–31037 mg/L), and salinity (8.95–41.84 PSU). All these measured parameters were significantly different (P < 0.05) with respect to the sampling sites. Presumptive Enterococcus counts ranged from 64 – 168 CFU/100 mL of water samples. Out of 409 presumptive Enterococcus isolates obtained from the culture-based method, 67 were confirmed to be Enterococcus by PCR-techniques. From the 67 confirmed isolates, 19(E. faecalis) and 40(E. feacium) while 8(other species that were non-targeted). Findings from this study shown that Kidd's Beach water samples contain some pathogenic bacteria that pose high risk to the public health and make it to be unfit for recreational use when compared to DWAF and US EPA guidelines. Therefore, effort should be made to strictly control all activities contributing to the level of pollution in the marine environment.
Collapse
Affiliation(s)
- Oluwaseun O Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| | - Timothy Sibanda
- Department of Biological Sciences, University of Namibia, Private Bag 13301, 340 Mandume Ndemufayo Ave, Pioneers Park, Windhoek, Namibia
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Private Bag X1314, Alice, 5700, Eastern Cape, South Africa
| |
Collapse
|
7
|
Praveena SM, Shamira SS, Ismail SNS, Aris AZ. Fecal indicator bacteria in tropical beach sand: Baseline findings from Port Dickson coastline, Strait of Malacca (Malaysia). MARINE POLLUTION BULLETIN 2016; 110:609-612. [PMID: 27289286 DOI: 10.1016/j.marpolbul.2016.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
This pilot study aims to assess Escherichia coli (E. coli) contamination and its perceived health risks among beachgoers in ten tropical beach sands along Port Dickson coastline (Malaysia). This study also aims to determine the relationship between perceived health symptoms and tropical beach sand exposure behavior. The concentration of E. coli in tropical beach sand ranged from 60cfu/100g to 4113cfu/100g. E. coli contamination was the highest at Tanjung Gemuk (4113±30cfu/100g) and the lowest at Tanjung Tuan (60±15cfu/100g); the high level of contamination could be due to the location of the former at the sewage outlet of nearby hotels. Skin symptoms were the most predominant among the health symptoms indicated by beachgoers. Exposure duration was significantly correlated with the perceived health symptoms among beachgoers in the beaches studied.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Siti Shafiqa Shamira
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Sharifah Norkhadijah Syed Ismail
- Department of Environmental and Occupational Health, Faculty Of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Prichula J, Pereira RI, Wachholz GR, Cardoso LA, Tolfo NCC, Santestevan NA, Medeiros AW, Tavares M, Frazzon J, d'Azevedo PA, Frazzon APG. Resistance to antimicrobial agents among enterococci isolated from fecal samples of wild marine species in the southern coast of Brazil. MARINE POLLUTION BULLETIN 2016; 105:51-57. [PMID: 26952995 DOI: 10.1016/j.marpolbul.2016.02.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to evaluate species distribution, antimicrobial resistance profiles, and presence of resistance genes in enterococci isolated from fecal samples of wild marine species, including seabirds (n=12), sea turtles (n=8), and mammals (n=3) found alive or dead in southern coast of Brazil. Enterococci were classified based on phenotypic and genotypic characteristics, tested for antibiotic susceptibility, and the presence of tet(S), tet(M), tet(L), mrsC, and erm(B) genes by PCR. Enterococcus faecalis and Enterococcus faecium were the most common species. Single (37.09%), double (25.80%), and multiple (16.12%) antibiotic resistance patterns were observed. Resistance to rifampicin occurred most frequently. The msrC, tet(M), and/or tet(L) genes were detected in 60.15%, 73.07%, and 23.07% of the resistant strains, respectively. In conclusion, the presence of antibiotic resistant strains in these species could be related to food web interactions and aquatic pollutants or linked to environmental resistome.
Collapse
Affiliation(s)
- Janira Prichula
- Microbiology, Immunology and Parasitology Department, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite 500, room 158, 90050-170, Porto Alegre, RS, Brazil; Gram-positive Coccus Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite 245, room 204, 90050-170, Porto Alegre, RS, Brazil
| | - Rebeca Inhoque Pereira
- Microbiology, Immunology and Parasitology Department, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite 500, room 158, 90050-170, Porto Alegre, RS, Brazil; Gram-positive Coccus Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite 245, room 204, 90050-170, Porto Alegre, RS, Brazil
| | - Guilherme Raffo Wachholz
- Gram-positive Coccus Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite 245, room 204, 90050-170, Porto Alegre, RS, Brazil
| | - Leonardo Almansa Cardoso
- Microbiology, Immunology and Parasitology Department, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite 500, room 158, 90050-170, Porto Alegre, RS, Brazil
| | - Neidimar Cezar Correa Tolfo
- Gram-positive Coccus Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite 245, room 204, 90050-170, Porto Alegre, RS, Brazil
| | - Naiara Aguiar Santestevan
- Microbiology, Immunology and Parasitology Department, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite 500, room 158, 90050-170, Porto Alegre, RS, Brazil
| | - Aline Weber Medeiros
- Microbiology, Immunology and Parasitology Department, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite 500, room 158, 90050-170, Porto Alegre, RS, Brazil
| | - Maurício Tavares
- Center for Coastal Studies, Limnology and Marine (CECLIMAR), Institute of Biosciences, UFRGS. Av. Tramandaí, 976, 95625-000, Imbé, RS, Brazil
| | - Jeverson Frazzon
- Food Science Institute, UFRGS, Av. Bento Gonçalves 9500 - Campus do Vale - Prédio 443.212, 91501-970, Porto Alegre, RS, Brazil
| | - Pedro Alves d'Azevedo
- Gram-positive Coccus Laboratory, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite 245, room 204, 90050-170, Porto Alegre, RS, Brazil
| | - Ana Paula Guedes Frazzon
- Microbiology, Immunology and Parasitology Department, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite 500, room 158, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Enayati M, Sadeghi J, Nahaei M, Aghazadeh M, Pourshafie M, Talebi M. Virulence and antimicrobial resistance of Enterococcus faecium
isolated from water samples. Lett Appl Microbiol 2015; 61:339-45. [DOI: 10.1111/lam.12474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/20/2015] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. Enayati
- Department of Medical Microbiology; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - J. Sadeghi
- Department of Microbiology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - M.R. Nahaei
- Department of Medical Microbiology; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - M. Aghazadeh
- Department of Medical Microbiology; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - M.R. Pourshafie
- Department of Microbiology; Pasteur Institute of Iran; Tehran Iran
| | - M. Talebi
- Department of Microbiology; School of Medicine; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|
10
|
Papadimitriou-Olivgeris M, Filippidou S, Drougka E, Fligou F, Kolonitsiou F, Dodou V, Marangos M, Anastassiou ED, Vantarakis A, Spiliopoulou I. Biofilm synthesis and presence of virulence factors among enterococci isolated from patients and water samples. J Med Microbiol 2015; 64:1270-1276. [PMID: 26242895 DOI: 10.1099/jmm.0.000151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The goal of this study was to compare biofilm synthesis among enterococci recovered from clinical samples (infection or colonization) of patients as well as environmental samples in order to determine possible virulence factors and clonal relationship. During a two-year period, clinical samples (blood, catheter tips, bronchial secretions, wounds, peritoneal fluid, urine) and rectal swabs collected from hospitalized patients as well as environmental water samples were tested for the presence of Enterococcus faecalis and Enterococcus faecium. Antibiotic susceptibility testing was performed by the disc diffusion method and Etest. Strains were tested for the presence of vanA, vanB, esp, ace and asp genes by PCR. Clones were identified by PFGE (SmaI). From infected patients, 48 strains were identified: 24 Enterococcus faecium (10 vanA-positive, 14 vancomycin-susceptible) and 24 Enterococcus faecalis (one vanA-positive, 23 vancomycin-susceptible). Among 143 colonizing isolates, 134 were Enterococcus faecium (58 vanA-positive, 11 vanB-positive, 65 vancomycin-susceptible) and nine Enterococcus faecalis (three vanA-positive, two vanB-positive, four vancomycin-susceptible). Among 167 environmental water samples, 51 Enterococcus faecalis and 19 Enterococcus faecium isolates, all glycopeptide-susceptible, were recovered. In total, 64 strains produced biofilm, whereas 34 were esp-positive, 64 asp-positive and 54 ace-positive. Biofilm production was associated with the presence of esp (P < 0.001) and ace genes (P = 0.021), being higher in infecting (P < 0.001) and water (P 0.005) isolates as compared with colonizing ones. Clones of environmental water-strains were different than the patients' clones. The differences found in the incidence of antibiotic resistance, virulence factors and clones suggest that hospital and water enterococci are of different origin.
Collapse
Affiliation(s)
| | - Sevasti Filippidou
- Environmental Microbiology Unit, Department of Public Health, School of Medicine, University of Patras, Patras, Greece
| | - Eleanna Drougka
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Fotini Fligou
- Department of Anaesthesiology and Intensive Care Medicine, School of Medicine, University of Patras, Patras, Greece
| | - Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Dodou
- Intensive Care Unit, General Hospital 'Saint Andrew', Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, School of Medicine, University of Patras, Patras, Greece
| | | | - Apostolos Vantarakis
- Environmental Microbiology Unit, Department of Public Health, School of Medicine, University of Patras, Patras, Greece
| | - Iris Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|