1
|
Introducing the Amphibious Mudskipper Goby as a Unique Model to Evaluate Neuro/Endocrine Regulation of Behaviors Mediated by Buccal Sensation and Corticosteroids. Int J Mol Sci 2020; 21:ijms21186748. [PMID: 32938015 PMCID: PMC7555618 DOI: 10.3390/ijms21186748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 11/19/2022] Open
Abstract
Some fish have acquired the ability to breathe air, but these fish can no longer flush their gills effectively when out of water. Hence, they have developed characteristic means for defense against external stressors, including thirst (osmolarity/ions) and toxicity. Amphibious fish, extant air-breathing fish emerged from water, may serve as models to examine physiological responses to these stressors. Some of these fish, including mudskipper gobies such as Periophthalmodon schlosseri, Boleophthalmus boddarti and our Periophthalmus modestus, display distinct adaptational behaviors to these factors compared with fully aquatic fish. In this review, we introduce the mudskipper goby as a unique model to study the behaviors and the neuro/endocrine mechanisms of behavioral responses to the stressors. Our studies have shown that a local sensation of thirst in the buccal cavity—this being induced by dipsogenic hormones—motivates these fish to move to water through a forebrain response. The corticosteroid system, which is responsive to various stressors, also stimulates migration, possibly via the receptors in the brain. We suggest that such fish are an important model to deepen insights into the stress-related neuro/endocrine-behavioral effects.
Collapse
|
2
|
Choi BS, Park JC, Kim MS, Han J, Kim DH, Hagiwara A, Sakakura Y, Hwang UK, Lee BY, Lee JS. The reference genome of the selfing fish Kryptolebias hermaphroditus: Identification of phases I and II detoxification genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100684. [PMID: 32464543 DOI: 10.1016/j.cbd.2020.100684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/18/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023]
Abstract
The selfing fish Kryptolebias hermaphroditus has unique reproductive system for self-fertilization, making genetically homozygous offsprings. Here, we report on high density genetic map-based genome assembly for the K. hermaphroditus Panama line (PanRS). The numbers of scaffolds were 5212 and the genome was 683,992,224 bp (N50 = 27.45 Mb). The length of anchored scaffold onto 24 linkage groups was 652,231,070 bp (95.3% of genome) with 0.01% of the gap and 39.33% of GC content and complete Benchmarking Universal Single-Copy Orthologs value was 96.6%. The numbers of annotated genes were 36,756 (average gene length 1368 bp) with the GC content of 54.1%. To examine the difference between the two sister species in the genus Kryptolebias, we compared the genomes of K. hermaphroditus PanRS and Kryptolebias marmoratus PAN line on the composition of transposable elements. To demonstrate applications of genome library, phase I and II detoxification related gene families have been analyzed, and compared the syntenies containing loci of CYP and GST genes on linkage groups. This K. hermaphroditus genome information will be helpful for a better understanding on genome-wide mechanistic view of detoxification and antioxidant-related genes over evolution in the view of fish environmental ecotoxicology.
Collapse
Affiliation(s)
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshitaka Sakakura
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Bo-Young Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Voisin AS, Kültz D, Silvestre F. Early-life exposure to the endocrine disruptor 17-α-ethinylestradiol induces delayed effects in adult brain, liver and ovotestis proteomes of a self-fertilizing fish. J Proteomics 2018; 194:112-124. [PMID: 30550985 DOI: 10.1016/j.jprot.2018.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2023]
Abstract
Early-life represents a critically sensitive window to endocrine disrupting chemicals, potentially leading to long-term repercussions on the phenotype later in life. The mechanisms underlying this phenomenon, referred to as the Developmental Origins of Health and Disease (DOHaD), are still poorly understood. To gain molecular understanding of these effects, we exposed mangrove rivulus (Kryptolebias marmoratus) for 28 days post hatching (dph) to 4 and 120 ng/L 17-α-ethinylestradiol, a model xenoestrogen. After 28 days, fish were raised for 140 days in clean water and we performed quantitative label-free proteomics on brain, liver and ovotestis of 168 dph adults. A total of 820, 888 and 420 proteins were robustly identified in the brain, liver and ovotestis, respectively. Effects of 17-α-ethinylestradiol were tissue and dose-dependent: a total of 31, 51 and 18 proteins were differentially abundant at 4 ng/L in the brain, liver and ovotestis, respectively, compared to 20, 25 and 39 proteins at 120 ng/L. Our results suggest that estrogen-responsive pathways, such as lipid metabolism, inflammation, and the innate immune system were affected months after the exposure. In addition, the potential perturbation of S-adenosylmethionine metabolism encourages future studies to investigate the role of DNA methylation in mediating the long-term effects of early-life exposures. SIGNIFICANCE: The Developmental Origins of Health and Disease (DOHaD) states that early life stages of humans and animals are sensitive to environmental stressors and can develop health issues later in life, even if the stress has ceased. Molecular mechanisms supporting DOHaD are still unclear. The mangrove rivulus is a new fish model species naturally reproducing by self-fertilization, making it possible to use isogenic lineages in which all individuals are highly homozygous. This species therefore permits to strongly reduce the confounding factor of genetic variability in order to investigate the effects of environmental stress on the phenotype. After characterizing the molecular phenotype of brain, liver and ovotestis, we obtained true proteomic reaction norms of these three organs in adults after early life stages have been exposed to the common endocrine disruptor 17-α-ethinylestradiol (EE2). Our study demonstrates long-term effects of early-life endocrine disruption at the proteomic level in diverse estrogen-responsive pathways 5 months after the exposure. The lowest tested and environmentally relevant concentration of 4 ng/L had the highest impact on the proteome in brain and liver, highlighting the potency of endocrine disruptors at low concentrations.
Collapse
Affiliation(s)
- Anne-Sophie Voisin
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium.
| | - Dietmar Kültz
- Department of Animal Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Frédéric Silvestre
- Laboratory of Evolutionary and Adaptive Physiology - Institute of Life, Earth and Environment - University of Namur, 61 Rue de Bruxelles, B5000 Namur, Belgium
| |
Collapse
|
4
|
Lee BY, Kim DH, Kim HS, Kim BM, Han J, Lee JS. Identification of 74 cytochrome P450 genes and co-localized cytochrome P450 genes of the CYP2K, CYP5A, and CYP46A subfamilies in the mangrove killifish Kryptolebias marmoratus. BMC Genomics 2018; 19:7. [PMID: 29295707 PMCID: PMC5751882 DOI: 10.1186/s12864-017-4410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mangrove killifish Kryptolebias marmoratus is the only vertebrate that reproduces by self-fertilizing and is an important model species in genetics and marine ecotoxicology. Using whole-genome and transcriptome sequences, we identified all members of the cytochrome P450 (CYP) family in this model teleost and compared them with those of other teleosts. RESULTS A total of 74 cytochrome P450 genes and one pseudogene were identified in K. marmoratus. Phylogenetic analysis indicated that the CYP genes in clan 2 were most expanded, while synteny analysis with other species showed orthologous relationships of CYP subfamilies among teleosts. In addition to the CYP2K expansions, five tandem duplicated gene copies of CYP5A were observed. These features were unique to K. marmoratus. CONCLUSIONS These results shed a light on CYP gene evolution, particularly the co-localized CYP2K, CYP5A, and CYP46A subfamilies in fish. Future studies of CYP expression could identify specific endogenous and exogenous environmental factors that triggered the evolution of tandem CYP duplication in K. marmoratus.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
5
|
Puthumana J, Kim BM, Jeong CB, Kim DH, Kang HM, Jung JH, Kim IC, Hwang UK, Lee JS. Nine co-localized cytochrome P450 genes of the CYP2N, CYP2AD, and CYP2P gene families in the mangrove killifish Kryptolebias marmoratus genome: Identification and expression in response to B[α]P, BPA, OP, and NP. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:132-140. [PMID: 28411468 DOI: 10.1016/j.aquatox.2017.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
The CYP2 genes are the largest and most diverse cytochrome P450 (CYP) subfamily in vertebrates. We have identified nine co-localized CYP2 genes (∼55kb) in a new cluster in the genome of the highly resilient ecotoxicological fish model Kryptolebias marmoratus. Molecular characterization, temporal and tissue-specific expression pattern, and response to xenobiotics of these genes were examined. The CYP2 gene clusters were characterized and designated CYP2N22-23, CYP2AD12, and CYP2P16-20. Gene synteny analysis confirmed that the cluster in K. marmoratus is similar to that found in other teleost fishes, including zebrafish. A gene duplication event with diverged catalytic function was observed in CYP2AD12. Moreover, a high level of divergence in expression was observed among the co-localized genes. Phylogeny of the cluster suggested an orthologous relationship with similar genes in zebrafish and Japanese medaka. Gene expression analysis showed that CYP2P19 and CYP2N20 were consecutively expressed throughout embryonic development, whereas CYP2P18 was expressed in all adult tissues, suggesting that members of each CYP2 gene family have different physiological roles even though they are located in the same cluster. Among endocrine-disrupting chemicals (EDCs), benzo[α]pyrene (B[α]P) induced expression of CYP2N23, bisphenol A (BPA) induced CYP2P18 and CYP2P19, and 4-octylphenol (OP) induced CYP2AD12, but there was no significant response to 4-nonylphenol (NP), implying differential catalytic roles of the enzyme. In this paper, we identify and characterize a CYP2 gene cluster in the mangrove killifish K. marmoratus with differing catalytic roles toward EDCs. Our findings provide insights on the roles of nine co-localized CYP2 genes and their catalytic functions for better understanding of chemical-biological interactions in fish.
Collapse
Affiliation(s)
- Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jee-Hyun Jung
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Kang HM, Lee YH, Kim BM, Kim IC, Jeong CB, Lee JS. Adverse effects of BDE-47 on in vivo developmental parameters, thyroid hormones, and expression of hypothalamus-pituitary-thyroid (HPT) axis genes in larvae of the self-fertilizing fish Kryptolebias marmoratus. CHEMOSPHERE 2017; 176:39-46. [PMID: 28254713 DOI: 10.1016/j.chemosphere.2017.02.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
2,2',4,4'-tetrabromodiphenylether (BDE-47) is known to have the potential to disrupt the thyroid endocrine system in fishes due to its structural similarity to the thyroid hormones triiodothyronine (T3) and thyroxine (T4). However, the effects of BDE-47 on thyroid function in fishes remain unclear. In this study, abnormal development (e.g. deformity, hemorrhaging) and an imbalance in thyroid hormone (TH) homeostasis was shown in the early developmental stages of the mangrove killifish Kryptolebias marmoratus in response to BDE-47 exposure. To examine the thyroid endocrinal effect of BDE-47 exposure in mangrove killifish K. marmoratus larvae, transcript levels of genes involved in TH homeostasis and hypothalamus-pituitary-thyroid (HPT) axis-related genes were measured. The expression of thyroid hormone metabolism-related genes (e.g. deiodinases, UGT1ab) and HPT axis-related genes was up-regulated and there were significant changes in TH levels (P < 0.05) in response to BDE-47 exposure. This study provides insights into the regulation of TH homeostasis at the transcriptional level and provides a better understanding on the potential impacts of BDE-47 on the thyroid endocrine system of fishes.
Collapse
Affiliation(s)
- Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Kelley JL, Yee MC, Brown AP, Richardson RR, Tatarenkov A, Lee CC, Harkins TT, Bustamante CD, Earley RL. The Genome of the Self-Fertilizing Mangrove Rivulus Fish, Kryptolebias marmoratus: A Model for Studying Phenotypic Plasticity and Adaptations to Extreme Environments. Genome Biol Evol 2016; 8:2145-54. [PMID: 27324916 PMCID: PMC4987111 DOI: 10.1093/gbe/evw145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The mangrove rivulus (Kryptolebias marmoratus) is one of two preferentially self-fertilizing hermaphroditic vertebrates. This mode of reproduction makes mangrove rivulus an important model for evolutionary and biomedical studies because long periods of self-fertilization result in naturally homozygous genotypes that can produce isogenic lineages without significant limitations associated with inbreeding depression. Over 400 isogenic lineages currently held in laboratories across the globe show considerable among-lineage variation in physiology, behavior, and life history traits that is maintained under common garden conditions. Temperature mediates the development of primary males and also sex change between hermaphrodites and secondary males, which makes the system ideal for the study of sex determination and sexual plasticity. Mangrove rivulus also exhibit remarkable adaptations to living in extreme environments, and the system has great promise to shed light on the evolution of terrestrial locomotion, aerial respiration, and broad tolerances to hypoxia, salinity, temperature, and environmental pollutants. Genome assembly of the mangrove rivulus allows the study of genes and gene families associated with the traits described above. Here we present a de novo assembled reference genome for the mangrove rivulus, with an approximately 900 Mb genome, including 27,328 annotated, predicted, protein-coding genes. Moreover, we are able to place more than 50% of the assembled genome onto a recently published linkage map. The genome provides an important addition to the linkage map and transcriptomic tools recently developed for this species that together provide critical resources for epigenetic, transcriptomic, and proteomic analyses. Moreover, the genome will serve as the foundation for addressing key questions in behavior, physiology, toxicology, and evolutionary biology.
Collapse
Affiliation(s)
- Joanna L Kelley
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | - Muh-Ching Yee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California
| | - Anthony P Brown
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington
| | | | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California
| | | | | | | | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama
| |
Collapse
|
8
|
Abstract
The mangrove killifish Kryptolebias marmoratus, and its close relative Kryptolebias hermaphroditus, are the only vertebrate species known to reproduce by self-fertilization due to functional ovotestis development. To improve our understanding of their genomes, we constructed a genetic map. First, a single F1 fish was made by artificial fertilization between K. marmoratus and K. hermaphroditus strains. F2 progeny were then obtained by self-fertilization of the F1 fish. We used RAD-seq to query genomic DNAs from the two parental strains, the F1 individual and 49 F2 progeny. Results identified 9904 polymorphic RAD-tags (DNA markers) that mapped to 24 linkage groups, corresponding to the haploid chromosome number of these species. The total length of the map was 1248 cM, indicating that about one recombination occurred for each of the 24 homologous chromosome pairs in each meiosis. Markers were not evenly distributed along the chromosomes: in all chromosomes, many markers (> 8% of the total markers for each chromosome) mapped to chromosome tips. Centromeres suppress recombination, and this uneven distribution is probably due to the species’ acrocentric chromosomes. Mapped marker sequences were compared to genomic sequences of medaka and platyfish, the next most closely related species with sequenced genomes that are anchored to genetic maps. Results showed that each mangrove killifish chromosome corresponds to a single chromosome of both platyfish and medaka, suggesting strong conservation of chromosomes over 100 million years of evolution. Our genetic map provides a framework for the K. marmoratus/K. hermaphroditus genome sequence and an important resource for understanding the biology of hermaphroditism.
Collapse
|
9
|
Kim BM, Lee BY, Lee JH, Rhee JS, Lee JS. Conservation of Hox gene clusters in the self-fertilizing fish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae). JOURNAL OF FISH BIOLOGY 2016; 88:1249-1256. [PMID: 26822496 DOI: 10.1111/jfb.12898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In this study, whole Hox gene clusters in the self-fertilizing mangrove killifish Kryptolebias marmoratus (Cyprinodontiformes; Rivulidae), a unique hermaphroditic vertebrate in which both sex organs are functional at the same time, were identified from whole genome and transcriptome sequences. The aim was to increase the understanding of the evolutionary status of conservation of this Hox gene cluster across fish species.
Collapse
Affiliation(s)
- B-M Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - B-Y Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - J-H Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - J-S Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, South Korea
| | - J-S Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
10
|
AlMomin S, Kumar V, Al-Amad S, Al-Hussaini M, Dashti T, Al-Enezi K, Akbar A. Draft genome sequence of the silver pomfret fish, Pampus argenteus. Genome 2015; 59:51-8. [PMID: 26692342 DOI: 10.1139/gen-2015-0056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silver pomfret, Pampus argenteus, is a fish species from coastal waters. Despite its high commercial value, this edible fish has not been sequenced. Hence, its genetic and genomic studies have been limited. We report the first draft genome sequence of the silver pomfret obtained using a Next Generation Sequencing (NGS) technology. We assembled 38.7 Gb of nucleotides into scaffolds of 350 Mb with N50 of about 1.5 kb, using high quality paired end reads. These scaffolds represent 63.7% of the estimated silver pomfret genome length. The newly sequenced and assembled genome has 11.06% repetitive DNA regions, and this percentage is comparable to that of the tilapia genome. The genome analysis predicted 16 322 genes. About 91% of these genes showed homology with known proteins. Many gene clusters were annotated to protein and fatty-acid metabolism pathways that may be important in the context of the meat texture and immune system developmental processes. The reference genome can pave the way for the identification of many other genomic features that could improve breeding and population-management strategies, and it can also help characterize the genetic diversity of P. argenteus.
Collapse
Affiliation(s)
- Sabah AlMomin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Vinod Kumar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Sami Al-Amad
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Mohsen Al-Hussaini
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Talal Dashti
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Khaznah Al-Enezi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Abrar Akbar
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait.,Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
11
|
Kim BM, Mirbahai L, Mally A, Kevin Chipman J, Rhee JS, Lee JS. Correlation between the DNA methyltransferase (Dnmt) gene family and genome-wide 5-methylcytosine (5mC) in rotifer, copepod, and fish. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0333-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Mesak F, Tatarenkov A, Earley RL, Avise JC. Hundreds of SNPs vs. dozens of SSRs: which dataset better characterizes natural clonal lineages in a self-fertilizing fish? Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00074] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Rhee JS, Kim BM, Lee BY, Hwang UK, Lee YS, Lee JS. Cloning of circadian rhythmic pathway genes and perturbation of oscillation patterns in endocrine disrupting chemicals (EDCs)-exposed mangrove killifish Kryptolebias marmoratus. Comp Biochem Physiol C Toxicol Pharmacol 2014; 164:11-20. [PMID: 24726801 DOI: 10.1016/j.cbpc.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 11/24/2022]
Abstract
To investigate the effect of endocrine disrupting chemicals (EDCs) on the circadian rhythm pathway, we cloned clock and circadian rhythmic pathway-associated genes (e.g. Per2, Cry1, Cry2, and BMAL1) in the self-fertilizing mangrove killifish Kryptolebias marmoratus. The promoter region of Km-clock had 1 aryl hydrocarbon receptor element (AhRE, GTGCGTGACA) and 8 estrogen receptor (ER) half-sites, indicating that the AhRE and ER half sites would likely be associated with regulation of clock protein activity during EDCs-induced cellular stress. The Km-clock protein domains (bHLH, PAS1, PAS2) were highly conserved in five additional fish species (zebrafish, Japanese medaka, Southern platyfish, Nile tilapia, and spotted green pufferfish), suggesting that the fish clock protein may play an important role in controlling endogenous circadian rhythms. The promoter regions of Km-BMAL1, -Cry1, -Cry2, and -Per2 were found to contain several xenobiotic response elements (XREs), indicating that EDCs may be able to alter the expression of these genes. To analyze the endogenous circadian rhythm in K. marmoratus, we measured expression of Km-clock and other circadian rhythmic genes (e.g. Per2, Cry1, Cry2, and BMAL1) in different tissues, and found ubiquitous expression, although there were different patterns of transcript amplification during different developmental stages. In an estrogen (E2)-exposed group, Km-clock expression was down-regulated, however, a hydroxytamoxifen (TMX, nonsteroid estrogen antagonist)-exposed group showed an upregulated pattern of Km-clock expression, suggesting that the expression of Km-clock is closely associated with exposure to EDCs. In response to the exposure of bisphenol A (BPA) and 4-tert-octyphenol (OP), Km-clock expression was down-regulated in the pituitary/brain, muscle, and skin in both gender types (hermaphrodite and secondary male). In juvenile K. marmoratus liver tissue, expression of Km-clock and other circadian rhythmic pathway-associated genes showed a regular oscillation pattern over a period of approximately 24h during a 12L:12D cycle. However, the circadian rhythm of BPA-exposed juvenile K. marmoratus liver tissue was perturbed over a 12L:12D period. This study will aid in our understanding of how EDCs perturb endogenous circadian rhythms, particularly in BPA-exposed fish liver tissue.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Bo-Young Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 400-420, South Korea
| | - Yong Sung Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|