1
|
Leung RKL, Chui APY, Liu X, Lee HW, Leung MML, Wang Y, Hu M, Kwok KWH, Wu RSS, Jin L, Kong HK, Fang JKH. Bioaccumulation of pollutants in the green-lipped mussel Perna viridis: Assessing pollution abatement in Victoria Harbour and its adjacent aquaculture area, Hong Kong, and the minimal human health risks from mussel consumption. MARINE POLLUTION BULLETIN 2024; 201:116086. [PMID: 38387219 DOI: 10.1016/j.marpolbul.2024.116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The green-lipped mussel Perna viridis was utilised for pollution biomonitoring in Victoria Harbour and its adjacent aquaculture area in Hong Kong. P. viridis was collected from a reference site and redeployed at five study sites for five weeks during the dry and wet seasons of 2019. Our study found various polycyclic aromatic hydrocarbons (PAHs) and heavy metals in the mussel tissue, while polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were not detected. P. viridis at the reference site generally displayed lower levels of pollutants. Comparing with previous research in the 1980s and 2000s, we observed substantial reduction in the tissue levels of PAHs, PCBs, OCPs and heavy metals in P. viridis. The human health risks associated with consuming these mussels were determined to be insignificant. Our findings imply that the Harbour Area Treatment Scheme has been effective in improving the water quality in Victoria Harbour and its adjacent aquaculture area.
Collapse
Affiliation(s)
- Ryan Kar-Long Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Apple Pui Yi Chui
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Xiaoshou Liu
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| | - Hang-Wai Lee
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Matthew Ming-Lok Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Kevin Wing Hin Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Ling Jin
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Hang-Kin Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| | - James Kar-Hei Fang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| |
Collapse
|
2
|
Zhang H, Yuan L, Xue J, Wu H. Polycyclic aromatic hydrocarbons in surface water and sediment from Shanghai port, China: spatial distribution, source apportionment, and potential risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7973-7986. [PMID: 36048385 DOI: 10.1007/s11356-022-22706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The spatial distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) were systematically investigated in Shanghai port, one of the most important hubs in international trade. The 16 priority PAHs in surface water and sediment were determined. Total concentrations of 16 PAHs (Σ16PAHs) ranged from 140.6 to 647.4 ng/L in surface water and from 12.7 to 573.2 ng/g (dry weight, dw) in sediment, respectively. The 2-ring and 3-ring PAHs with low molecular weight were main components in water, while the 3-ring and 4-ring PAHs were abundant in sediment. Flu was the main component of the Σ16PAHs in water and sediment. According to the source apportionment, the PAHs in water mostly originated from combustion of fossil fuels and petroleum and petroleum combustion were the main contributors to the PAHs in sediment. The results obtained from potential risk assessment indicate that the PAHs in surface water present a moderate ecological risk, whereas the PAHs in sediment show low ecological risk indicating a less possibility of toxic pollution.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Lin Yuan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Junzeng Xue
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China
| | - Huixian Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- Centre for Research On the Ecological Security of Ports and Shipping, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Ambient background estimation of PAHs in urban soils: A case study in Macau, China. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, Leong KH, Tu Y, Zhou L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments. ENVIRONMENTAL RESEARCH 2022; 205:112423. [PMID: 34838568 DOI: 10.1016/j.envres.2021.112423] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The rapid economic and population growth in coastal areas is causing increasingly serious polycyclic aromatic hydrocarbons (PAHs) pollution in these regions. This review compared the PAHs pollution characteristics of different coastal areas, including industrial zones, commercial ports, touristic cities, aquacultural & agricultural areas, oil & gas exploitation areas and megacities. Currently there are various treatment methods to remediate soils and sediments contaminated with PAHs. However, it is necessary to provide a comprehensive overview of all the available remediation technologies up to date, so appropriate technologies can be selected to remediate PAHs pollution. In view of that, we analyzed the characteristics of the remediation mechanism, summarized the remediation methods for soil or sediments in coastal areas, which were physical repair, chemical oxidation, bioremediation and integrated approaches. Besides, this review also reported the development of new multi-functional green and sustainable systems, namely, micro-nano bubble (MNB), biochar, reversible surfactants and peracetic acid. While physical repair, expensive but efficient, was regarded as a suitable method for the PAHs remediation in coastal areas because of land shortage, integrated approaches would produce better results. The ultimate aim of the review was to ensure the successful restructuring of PAHs contaminated soil and sediments in coastal areas. Due to the environment heterogeneity, PAHs pollution in coastal areas remains as a daunting challenge. Therefore, new and suitable technologies are still needed to address the environmental issue.
Collapse
Affiliation(s)
- Chaomeng Dai
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yueming Han
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Yanping Duan
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai, 200234, China.
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, Tianjin, 300072, PR China
| | - Rongbing Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Shuguang Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Kah Hon Leong
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Perak, Malaysia
| | - Yaojen Tu
- Institute of Urban Studies, School of Environmental and Geographical Sciences, Shanghai Normal University, 100 Guilin Rd., Shanghai, 200234, PR China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai, 200234, China
| | - Lang Zhou
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton St., Stop C1786, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Zhang X, Li D, Wang X, Li X, Cheng J, Zheng B. Exploration of polycyclic aromatic hydrocarbon distribution in the sediments of marine environment by hydrodynamic simulation model. MARINE POLLUTION BULLETIN 2021; 171:112697. [PMID: 34265550 DOI: 10.1016/j.marpolbul.2021.112697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
A two-dimensional hydrodynamic model that couples hydrology and water quality processes was developed to simulate the concentrations of PAH in water phase and sedimentation rates of PAHs in marine environment. The kinetic processes of the model included atmospheric exchange, transportation, deposition, etc. Taking Liaodong Bay as an example, the pollution level, spatial distribution of PAHs in sediments were analyzed and the transport, transformation and sedimentation processes of PAHs were simulated. The results show that PAHs concentrations in sediments are at a "moderate risk" level, and the distribution has a conspicuous spatial variation. According to the results of simulation, the PAHs in sediments are easily accumulated with weak hydrodynamic conditions. Thus, hydrodynamic is one of the important factors affecting the spatial distribution characteristics of PAHs in the sediments. The PAHs numerical calculation model established in this paper and its evaluation results have important research value for PAHs pollution prevention and control.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Dan Li
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xing Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- Data Science Institute, School of Mathematics Shandong University, Shandong 250100, China.
| | - Jiayi Cheng
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Wang F, Dong W, Zhao Z, Wang H, Chen G, Zhao Y, Huang J, Zhou T, Zhang S, Xu Y, Wang F. Spatial and vertical distribution, composition profiles, sources, and ecological risk assessment of polycyclic aromatic hydrocarbon residues in the sediments of an urban tributary: A case study of the Songgang River, Shenzhen, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115360. [PMID: 32836015 DOI: 10.1016/j.envpol.2020.115360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
In this study, the Songgang River (SR) was selected as a typical tributary that is heavily polluted by rapid urbanization and industrialization. The polycyclic aromatic hydrocarbon (PAH) distribution at five representative sampling sites from different urban functional areas was studied. The chemical and physical properties and spatial and vertical distribution of PAHs in sediments were investigated. PAH source identification and the ecological risks of the sediments were evaluated. The results suggested that the industrial zone and dense residential and commercial areas were the most contaminated areas of the SR, as the chemical and physical properties of total organic carbon content in sediments was the highest at the dense residential and commercial areas (0.1-4.5%); however, the acid volatile sulfide, total nitrogen, and total phosphorus contents were the highest in the industrial zone, with ranges of 700.0-1618.4 mg/kg dw, 22.4-3543.9 mg/kg dw, and 82.3-4550.7 mg/kg dw, respectively. The spatial distribution of residual PAHs in the sediment cores showed a wide variation among different urban functional areas, and the vertical characterization (0-300 cm) depicted a significant decreasing trend with depth and with an abrupt increase at 180 cm. The concentration of ∑16 PAHs ranged from 208.7 to 7709.8 ng/g dw, with the highest concentrations obtained in the industrial zone. The low molecular weight-PAHs (153-6720 ng/g dw) were predominant in the sediments. Furthermore, there were combined sources (biomass burning: 40.3%; fossil fuel combustion: 25.5%; mixed source: 21.5%; oil pollution: 12.7%) and a long term accumulation effect, with anthropogenic activities and industrial pollution as the major contributing sources. The concentrations of Nap, Acy, Ace, Flu, and Ant exceeded the lower limit of the sediment quality criteria, and higher toxic equivalent concentration values of the total carcinogenic PAHs were observed nearby the midstream of the SR, which may cause adverse biological effects and implies a need for regular monitoring.
Collapse
Affiliation(s)
- Feng Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China.
| | - Guanhan Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| | - Yue Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Jie Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Ting Zhou
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Shunli Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Yunan Xu
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Feifei Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen, 518055, PR China
| |
Collapse
|
7
|
Idowu O, Tran TKA, Baker P, Farrel H, Zammit A, Semple KT, O'Connor W, Thavamani P. Bioavailability of polycyclic aromatic compounds (PACs) to the Sydney rock oyster (Saccostrea glomerata) from sediment matrices of an economically important Australian estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139574. [PMID: 32497880 DOI: 10.1016/j.scitotenv.2020.139574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Improving risk assessment and remediation rests on better understanding of contaminant bioavailability. Despite their strong toxicological attributes, little is known about the partitioning behaviour and bioavailability of polar polycyclic aromatic hydrocarbons (PAHs) in aquatic environments. The present study provides an insight into the bioavailable fractions of polar PAHs and their parent analogues in the tissues of the Sydney rock oyster, Saccostrea glomerata, a model aquatic bio-indicator organism. The concentration and distribution patterns of parent and polar PAHs including oxygenated PAHs (oxyPAHs), nitrated PAHs (NPAHs) and heterocyclic PAHs (HPAHs) were determined in water, sediment and oysters from an ecologically and economically important estuary of New South Wales, Australia. Total concentrations of PAHs, oxyPAHs, NPAHs and HPAHs were higher in sediments compared to oyster tissue and water. For most polar PAHs, total concentrations for water, sediment and oyster samples were <1 μg/g (μg/l for water) while parent PAH concentrations were several orders of magnitude higher. Computed biota-sediment accumulation factors (BSAFs) on lipid-normalized oyster concentrations revealed that while ∑oxyPAHs and ∑HPAHs exhibited low accumulation from sediment to oyster tissues (BSAF <1), ∑PAHs and ∑NPAH were found to be accumulated at high levels (BSAF >1). BSAF individual computation showed that bioaccumulation of nine investigated HPAHs in oyster tissues were relatively low and only 2-EAQ (oxyPAH) and 1N-NAP (NPAH) showed high levels of accumulation in oyster tissues, similar to parent PAHs. To the best of our knowledge, this is the first known study on the bioavailability of polar and non-polar PAHs in an Australian aquatic environment. The outcome of this study might be a useful indicator of the potential risks of polar PAHs to humans and other living organisms.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Phil Baker
- NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 2430, Australia
| | - Hazel Farrel
- NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 2430, Australia
| | - Anthony Zammit
- NSW Department of Primary Industries, Biosecurity and Food Safety, Taree, NSW 2430, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, NSW 2316, Australia
| | - Palanisami Thavamani
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|