1
|
Xu G, Zhao S, He J. Underexplored Organohalide-Respiring Bacteria in Sewage Sludge Debrominating Polybrominated Diphenyl Ethers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39031078 DOI: 10.1021/acs.est.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants prevalent in the environment. Organohalide-respiring bacteria (OHRB) can attenuate PBDEs via reductive debromination, but often producing toxic end-products. Debromination of PBDEs to diphenyl ether remains a rare phenomenon and is so far specifically associated with Dehalococcoides isolated from e-waste polluted sites. The occurrence of PBDE debromination in other ecosystems and underpinning OHRB are underexplored. Here we found that debromination of PBDEs is a common trait of sewage sludge microbiota, and diphenyl ether was produced as the end-product at varying quantities (0.6-52.9% mol of the parent PBDEs) in 76 of 84 cultures established with bioreactor sludge. Diverse debromination pathways converting PBDEs to diphenyl ether, including several new routes, were identified. Although Dehalococcoides contributed to PBDE debromination, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia likely played more important roles than previously recognized. Multiple reductive dehalogenase genes (including bdeA, pcbA4, pteA, and tceA) were also prevalent and coexisted in bioreactor sludge. Collectively, these findings contribute to enhancing our comprehension of the environmental fate of PBDEs, expanding the diversity of microorganisms catalyzing PBDE debromination, and developing consortia for bioremediation application.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| |
Collapse
|
2
|
Alsharif SM, Ismaeil M, Saeed AM, El-Sayed WS. Metagenomic 16S rRNA analysis and predictive functional profiling revealed intrinsic organohalides respiration and bioremediation potential in mangrove sediment. BMC Microbiol 2024; 24:176. [PMID: 38778276 PMCID: PMC11110206 DOI: 10.1186/s12866-024-03291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mangrove sediment microbes are increasingly attracting scientific attention due to their demonstrated capacity for diverse bioremediation activities, encompassing a wide range of environmental contaminants. MATERIALS AND METHODS The microbial communities of five Avicennia marina mangrove sediment samples collected from Al Rayyis White Head, Red Sea (KSA), were characterized using Illumina amplicon sequencing of the 16S rRNA genes. RESULTS Our study investigated the microbial composition and potential for organohalide bioremediation in five mangrove sediments from the Red Sea. While Proteobacteria dominated four microbiomes, Bacteroidetes dominated the fifth. Given the environmental concerns surrounding organohalides, their bioremediation is crucial. Encouragingly, we identified phylogenetically diverse organohalide-respiring bacteria (OHRB) across all samples, including Dehalogenimonas, Dehalococcoides, Anaeromyxobacter, Desulfuromonas, Geobacter, Desulfomonile, Desulfovibrio, Shewanella and Desulfitobacterium. These bacteria are known for their ability to dechlorinate organohalides through reductive dehalogenation. PICRUSt analysis further supported this potential, predicting the presence of functional biomarkers for organohalide respiration (OHR), including reductive dehalogenases targeting tetrachloroethene (PCE) and 3-chloro-4-hydroxyphenylacetate in most sediments. Enrichment cultures studies confirmed this prediction, demonstrating PCE dechlorination by the resident microbial community. PICRUSt also revealed a dominance of anaerobic metabolic processes, suggesting the microbiome's adaptation to the oxygen-limited environment of the sediments. CONCLUSION This study provided insights into the bacterial community composition of five mangrove sediments from the Red Sea. Notably, diverse OHRB were detected across all samples, which possess the metabolic potential for organohalide bioremediation through reductive dehalogenation pathways. Furthermore, PICRUSt analysis predicted the presence of functional biomarkers for OHR in most sediments, suggesting potential intrinsic OHR activity by the enclosed microbial community.
Collapse
Affiliation(s)
- Sultan M Alsharif
- Department of Biology, College of Science, Taibah University, Al-Madinah, Kingdom of Saudi Arabia
| | - Mohamed Ismaeil
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Ali M Saeed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Wael S El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Szafranski GT, Granek EF. Contamination in mangrove ecosystems: A synthesis of literature reviews across multiple contaminant categories. MARINE POLLUTION BULLETIN 2023; 196:115595. [PMID: 37852064 DOI: 10.1016/j.marpolbul.2023.115595] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Mangrove forests are exposed to diverse ocean-sourced and land-based contaminants, yet mangrove contamination research lags. We synthesize existing data and identify major gaps in research on five classes of mangrove contaminants: trace metals, persistent organic pollutants, polycyclic aromatic hydrocarbons, microplastics, and pharmaceuticals and personal care products. Research is concentrated in Asia, neglected in Africa and the Americas; higher concentrations are correlated with waste water treatment plants, industry, and urbanized landscapes. Trace metals and polycyclic aromatic hydrocarbons, frequently at concentrations below regulatory thresholds, may bioconcentrate in fauna, whereas persistent organic pollutants were at levels potentially harmful to biota through short- or long-term exposure. Microplastics were at variable levels, yet lack regulatory and ecotoxicological thresholds. Pharmaceuticals and personal care products received minimal research despite biological activity at small concentrations. Given potential synergistic effects, multi-contaminant research, increased monitoring of multiple contaminant classes, and increased public outreach and involvement are needed.
Collapse
Affiliation(s)
- Geoffrey T Szafranski
- Environmental Science & Management, Portland State University, Portland, OR, United States of America
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, United States of America.
| |
Collapse
|
4
|
Jiang Y, Wang Q, Du Y, Yang D, Xu J, Yan C. Occurrence and Distribution of Tetrabromobisphenol A and Diversity of Microbial Community Structure in the Sediments of Mangrove. BIOLOGY 2023; 12:biology12050757. [PMID: 37237569 DOI: 10.3390/biology12050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The occurrence and distribution characteristics of tetrabromobisphenol A (TBBPA) and its relationship with microbial community diversity in different mangrove sediments need further investigation. The results of this study indicated levels of TBBPA in mangrove sediments from the Zhangjiang Estuary (ZJ), Jiulongjiang Estuary (JLJ), and Quanzhou Bay (QZ) in Southeast China ranging from 1.80 to 20.46, 3.47 to 40.77, and 2.37 to 19.83 ng/g dry weight (dw), respectively. Mangrove sediments from JLJ contained higher levels of TBBPA, possibly due to agricultural pollution. A correlation analysis revealed a significant correlation between total organic carbon (TOC), total nitrogen (TN), and TBBPA distribution in ZJ and JLJ mangrove sediments, but not in QZ mangrove sediments. TOC significantly affected the distribution of TBBPA in mangrove sediments, but pH had no effect. High-throughput 16S rRNA gene sequencing showed that Pseudomonadota dominated the sediment bacteria followed by Chloroflexota, Actinobacteota, Bacillota, Acidobacteriota, Bacteroidota, and Aminicenantes in mangrove sediments. Although the microbial community structure of the ZJ, JLJ, and QZ mangrove sediments was similar, the taxonomic profile of their sensitive responders differed markedly. The genus Anaerolinea was dominant in the mangrove sediments and was responsible for the in situ dissipation of TBBPA. Based on redundancy analysis, there was a correlation between TBBPA, TOC, TN, C/N, pH, and microbial community structure at the genus level. Combining TBBPA, TN, and TOC may induce variations in the microbial community of mangrove sediments.
Collapse
Affiliation(s)
- Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yunling Du
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Dong Yang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongling Yan
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Seasonal Effect on Bacterial Communities Associated with the Rhizospheres of Polhillia, Wiborgia and Wiborgiella Species in the Cape Fynbos, South Africa. Microorganisms 2022; 10:microorganisms10101992. [PMID: 36296269 PMCID: PMC9612010 DOI: 10.3390/microorganisms10101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The Cape fynbos biome in South Africa is home to highly diverse and endemic shrub legumes, which include species of Aspalathus, Polhillia, Wiborgia and Wiborgiella. These species play a significant role in improving soil fertility due to their ability to fix N2. However, information regarding their microbiome is still unknown. Using the 16S rRNA Miseq illumina sequencing, this study assessed the bacterial community structure associated with the rhizospheres of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea and Wiborgiella sessilifolia growing at different locations during the wet and dry seasons in the Cape fynbos. The results showed that the most dominant bacterial phylum was Actinobacteria during both the dry (56.2–37.2%) and wet (46.3–33.3%) seasons. Unclassified bacterial genera (19.9–27.7%) were the largest inhabitants in the rhizospheres of all five species during the two seasons. The other dominant phyla included Bacteroidetes, Acidobacteria, Proteobacteria and Firmicutes. Mycobacterium and Conexibacter genera were the biggest populations found in the rhizosphere soil of all five test species during both seasons, except for W. obcordata soil sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In this study plant species and growth season were the major drivers of microbial community structure, with W. obcordata having the greatest influence on its microbiome than the other test species. The wet season promoted greater microbial diversity than the dry season.
Collapse
|
6
|
Araújo PRM, Biondi CM, do Nascimento CWA, da Silva FBV, Ferreira TO, de Alcântara SF. Geospatial modeling and ecological and human health risk assessments of heavy metals in contaminated mangrove soils. MARINE POLLUTION BULLETIN 2022; 177:113489. [PMID: 35325795 DOI: 10.1016/j.marpolbul.2022.113489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal-contaminated wastes can threaten mangrove forests, one of the most biodiverse ecosystems in the world. The study evaluated the geospatial distribution of heavy metals concentrations in soils, the ecological and human health risks, and metal contents in soil fractions and mangrove organisms in the Botafogo estuary, Brazil, one of the most environmentally impacted estuaries in the country. The metal concentrations exceeded by up to 2.6-fold the geochemical background; 91%, 59%, 64%, 31%, and 82% of the soils were contaminated with Cr, Zn, Pb, Cu, and Ni, respectively. Adverse effects to the biota may occur due to Cr, Cu, Ni and Pb exposures. Contents of clay and organic matter were the main factors governing the distribution of metals in soil, contributing to up to 63% of the total variability. However, the geospatial modeling showed that the predictive ability of these variables varied spatially with the metal and location. The ecological and human health risks assessments indicated that the metal concentrations in soils are safe for the environment and human beings. There was a low transfer of metals from the soil to the biota, with values of sediment-biota accumulation factor (SBAF) and biological accumulation coefficients (BAC) lower than 1.0, except for Zn (SBAF = 13.1). The high Zn bioaccumulation by Crassostrea rhizophorae may be associated with the concentrations of Zn in the bioavailable fractions.
Collapse
Affiliation(s)
- Paula Renata Muniz Araújo
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | - Caroline Miranda Biondi
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil.
| | | | - Fernando Bruno Vieira da Silva
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Tiago Osório Ferreira
- Soil Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ/USP), Av. Pádua Dias 11, CEP 13418-900 Piracicaba, SP, Brazil.
| | - Silvia Fernanda de Alcântara
- Department of Agronomy, Federal Rural University of Pernambuco, Dom Manuel de Medeiros street, s/n - Dois Irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
7
|
Girones L, Oliva AL, Negrin VL, Marcovecchio JE, Arias AH. Persistent organic pollutants (POPs) in coastal wetlands: A review of their occurrences, toxic effects, and biogeochemical cycling. MARINE POLLUTION BULLETIN 2021; 172:112864. [PMID: 34482253 DOI: 10.1016/j.marpolbul.2021.112864] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Coastal wetlands, such as mangroves, seagrass beds, and salt marshes, are highly threatened by increasing anthropic pressures, including chemical pollution. Persistent organic pollutants (POPs) have attracted attention in these particularly vulnerable ecosystems, due to their bioaccumulative, pervasive, and ecotoxic behavior. This article reviews and summarizes available information regarding current levels, biogeochemical cycling, and effects of POPs on coastal wetlands. Sediment POP levels were compared with international quality guidelines, revealing many areas where compounds could cause damage to biota. Despite this, toxicological studies on some coastal wetland plants and microorganisms showed a high tolerance to those levels. These taxonomic groups are likely to play a key role in the cycling of the POPs, with an active role in their accumulation, immobilization, and degradation. Toxicity and biogeochemical processes varied markedly along three main axes; namely species, environmental conditions, and type of pollutant. While more focused research on newly and unintentionally produced POPs is needed, mainly in salt marshes and seagrass beds, with the information available so far, the environmental behavior, spatial distribution, and toxicity level of the studied POPs showed similar patterns across the three studied ecosystems.
Collapse
Affiliation(s)
- Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina.
| | - Ana L Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina
| | - Vanesa L Negrin
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Universidad Tecnológica Nacional (UTN)-FRBB, Bahía Blanca, Argentina; Universidad FASTA, Mar del Plata, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000 Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
8
|
de Santana Mota WJ, de Oliveira Santiago Santos G, Resende Dória A, Rubens Dos Reis Souza M, Krause LC, Salazar-Banda GR, Barrios Eguiluz KI, López JA, Hernández-Macedo ML. Enhanced HCB removal using bacteria from mangrove as post-treatment after electrochemical oxidation using a laser-prepared Ti/RuO 2-IrO 2-TiO 2 anode. CHEMOSPHERE 2021; 279:130875. [PMID: 34134435 DOI: 10.1016/j.chemosphere.2021.130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The environmental persistence of hexachlorobenzene (HCB) is a challenge that promotes studies for efficient treatment alternatives to minimize its environmental impact. Here, we evaluated the HCB removal by electrochemical, biological, and combined approaches. The electrochemical treatment of 4 μM HCB solutions was performed using a synthesized Ti/RuO2-IrO2-TiO2 anode, while the biological treatment using mangrove-isolated bacteria was at 24, 48, and 72 h. The HCB degradability was assessed by analyzing chemical oxygen demand (COD), microbial growth capacity in media supplemented with HCB as the only carbon source, gas chromatography, and ecotoxicity assay after treatments. The synthesized anode showed a high voltammetric charge and catalytic activity, favoring the HCB biodegradability. All bacterial isolates exhibited the ability to metabolize HCB, especially Bacillus sp. and Micrococcus luteus. The HCB degradation efficiency of the combined electrochemical-biological treatment was evidenced by a high COD removal percentage, the non-HCB detection by gas chromatography, and a decrease in ecotoxicity tested with lettuce seeds. The combination of electrochemical pretreatment with microorganism degradation was efficient to remove HCB, thereby opening up prospects for in situ studies of areas contaminated by this recalcitrant compound.
Collapse
Affiliation(s)
- Wanessa Jeane de Santana Mota
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Gessica de Oliveira Santiago Santos
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Aline Resende Dória
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Michel Rubens Dos Reis Souza
- Materials Synthesis and Chromatography Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Laiza Canielas Krause
- Materials Synthesis and Chromatography Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Giancarlo Richard Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil.
| | - Jorge A López
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - María Lucila Hernández-Macedo
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| |
Collapse
|
9
|
Pan Y, Leung PY, Li YY, Chen J, Kong RYC, Tam NFY. Enhancement effect of nanoscale zero-valent iron addition on microbial degradation of BDE-209 in contaminated mangrove sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146702. [PMID: 33798877 DOI: 10.1016/j.scitotenv.2021.146702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Chemical and biological methods have been employed to remedy polybrominated diphenyl ether contamination, but the removal of decabromodiphenyl ether (BDE-209) by either method still has limitations. The present study aims to evaluate the combined effect of nanoscale zero-valent iron (nZVI) (from 0.1 to 10%) reduction and microbial debromination on BDE-209 removal in mangrove sediments under an anaerobic condition. During the 12-months incubation, nZVI significantly enhanced BDE-209 removal, with 17.03% to 41.99% reduction in sterilized sediments. The reduction was even higher in non-sterilized sediments with living indigenous microorganisms, achieving 15.80%, 33.50%, 55.83% and 66.95% removal of BDE-209 at 0 (control without nZVI), 0.1%, 1% and 10% nZVI, respectively. In control sterilized sediments, no debromination was found, and debromination occurred according to spiked levels of nZVI, with BDE-153 being the dominant congener. The concentrations of debrominated congeners in non-sterilized sediments also increased with nZVI levels, but were significantly higher than the respective sterilized sediment. The relative proportions of different debrominated congeners in non-sterilized sediments depended on nZVI levels, with BDE-99 being the dominant congener in low nZVI amended sediments but shifted to BDE-153 under high nZVI. Higher concentrations of ferrous iron (Fe2+) were detected in both sterilized and non-sterilized sediments spiked with more nZVI, and their concentrations significantly correlated with BDE-209 removal. Growth of total bacteria in sediments with 1% and 10% nZVI was inhibited within first two months, but their numbers resumed to that in the control at the end of 12 months. The present study demonstrates the synergy between chemical and microbiological methods, and a combination of nZVI and indigenous microorganisms could be an efficient and feasible mean to remedy BDE-209 in contaminated sediments.
Collapse
Affiliation(s)
- Ying Pan
- School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Pui-Ying Leung
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yuan-Yue Li
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - R Y C Kong
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR, China; Department of Science, The Open University of Hong Kong, Homantin, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
10
|
Wang G, Jiang N, Liu Y, Wang X, Liu Y, Jiao D, Wang H. Competitive microbial degradation among PBDE congeners in anaerobic wetland sediments: Implication by multiple-line evidences including compound-specific stable isotope analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125233. [PMID: 33513555 DOI: 10.1016/j.jhazmat.2021.125233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/29/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widespread contaminants in the environment. Microbial reductive debromination is one of the important attenuation processes for PBDEs in the anaerobic sediments. This study first investigated the interaction between BDE-47 and BDE-153 during the microbial degradation in wetland sediments by the multiple-line approaches including biodegradation kinetics, microbial community structures and stable isotope composition. BDE-47 and BDE-153 biodegradation fitted pseudo-zero-order kinetics, with the higher degradation rates in single than combined exposure, indicating the mutual inhibition in co-exposure condition. BDE-47 and BDE-153 shared the common dehalogenators (genus Dehalococcoides and Acinetobacter) with enrichment in combined exposure, indicating the potential competition in dehalogenating bacteria during biodegradation. Microbial degradation could lead to the isotopic fractionation of BDE-47 and BDE-153, with the smaller changes in δ13C in combined than single exposure. The apparent kinetic isotope effect of carbon (AKIEC) was different between BDE-47 and BDE-153 in single exposure, whilst identical in combined exposure, indicating the similar degradation mechanism for BDE-47 and BDE-153 in co-exposure condition. These results revealed that the competition on microbial degradation occurred among PBDEs in co-exposure condition, which was important for the comprehensive risk assessment of simultaneous exposure to multiple PBDE congeners in the environment.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Na Jiang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian 116026, China
| | - Xu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dian Jiao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
11
|
Farzana S, Cheung SG, Kong RYC, Wong YS, Tam NFY. Enhanced remediation of BDE-209 in contaminated mangrove sediment by planting and aquaculture effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142094. [PMID: 32911149 DOI: 10.1016/j.scitotenv.2020.142094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Toxic and persistent flame retardant (BDE-209) and aquaculture effluent (AE) are ubiquitous in coastal environments, but how their co-existence influences their fate is not yet investigated. This study investigated AE effects on remediation and uptake of BDE-209 by Kandelia obovata (Ko) and Avicennia marina (Am), true and dominant mangrove species. After 12-months, a significant removal of BDE-209 was achieved in planted mangrove sediment and the removal was significantly enhanced by AE addition, possibly due to the enhancement of nitrogen (N) and phosphorous (P) content in sediment. Residual percentages of parent BDE-209 in Ko and Am planted sediments without AE were 61.4% and 70.9%, respectively, but decreased to 46.9% and 48.0% with AE addition after 12-months. A similar trend was found in unplanted sediment, with 86.5% and 65.3% of BDE-209 retained in sediments without and with AE addition, respectively. The results demonstrated that AE addition not only increased the debromination of BDE-209 in all treated sediments with the production of debrominated congeners (de-PBDEs) like di- to nona-BDEs in unplanted and planted sediments, but also enhanced the take up of BDE-209 in Ko root, and de-PBDEs in both Ko and Am, thus enhancing the phytoremediation of BDE-209 in contaminated sediments.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - R Y C Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuk Shan Wong
- School of Science and Technology, The Open University of Hong Kong, Homantin, Kowloon, Hong Kong, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; School of Science and Technology, The Open University of Hong Kong, Homantin, Kowloon, Hong Kong, China.
| |
Collapse
|
12
|
Pan Y, Chen J, Zhou H, Cheung SG, Tam NFY. Degradation of BDE-47 in mangrove sediments with amendment of extra carbon sources. MARINE POLLUTION BULLETIN 2020; 153:110972. [PMID: 32056850 DOI: 10.1016/j.marpolbul.2020.110972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely detected in coastal wetlands but their remediation is still difficult. In this study, different carbon sources, namely formate, acetate, pyruvate, lactate, succinate, methanol and ethanol, were added to mangrove sediments contaminated with BDE-47, a common PBDE congener, to enhance its degradation. After 2-month incubation, all carbon addition significantly enhanced degradation percentages. The residual BDE-47 percentage significantly correlated with the abundance of total bacteria and Dehalococcoides spp. The addition of methanol, acetate and succinate also achieved significantly higher degradation rates and shorter half-lives than sediments without carbon amendment at the end of 5-month incubation, although degradation percentages were comparable between sediments with and without extra carbon. The degradation pathway based on the profiles of degradation products was also similar among treatments. The results indicated the stimulatory effect of extra carbon sources on BDE-47 degradation in contaminated sediments was carbon- and time-specific.
Collapse
Affiliation(s)
- Ying Pan
- College of Oceanography, Hohai University, Xikang Road, Nanjing 210098, PR China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road, Nanjing 210098, PR China
| | - Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Nanhai Avenue, 518060, PR China
| | - S G Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Zhou H, Tam NFY, Cheung SG, Wei P, Li S, Wu Q. Contamination of polybrominated diphenyl ethers (PBDEs) in watershed sediments and plants adjacent to e-waste sites. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120788. [PMID: 31254788 DOI: 10.1016/j.jhazmat.2019.120788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are one of the persistent toxic organic pollutants in watersheds near electrical and electronic waste (e-waste) sites (EWS). Spatial redistribution, translocation and bioaccumulation of PBDEs in natural sediment-plant ecosystems, however, are still unclear. The contamination and distribution of PBDEs in core sediments and wetland plants from two EWS and two mangrove forest sites (MFS) were investigated. The eight PBDE congeners were all detected in plant tissue and sediment samples, indicating PBDE contamination was common and severe, and their spatial variations were significant. Although sediments from EWS had higher PBDE concentrations than those in MFS, with an extremely high value of 36392 ± 5992 ng g-1 dw, mangroves could be the sink of PBDEs, as high concentrations (327 ± 48 ng g-1 dw) were also detected in mangrove sediments. The historical usage of PBDEs was reflected by their distribution in mangrove sediment core but not so in e-waste sediment core. PBDEs were taken up and accumulated in six wetland plants, with more accumulation in mangrove plants. These results demonstrated that PBDEs were not only contaminated in sediments adjacent to e-waste sites but also plant tissues. PBDEs could enter other environments via plant littering and/or herbivorous processes that must not be neglected.
Collapse
Affiliation(s)
- Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Nora F Y Tam
- Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China.
| | - S G Cheung
- Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Pingping Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China; Futian-CityU Mangrove Research & Development Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qihang Wu
- Collaborative Innovation Center of Water Quality Safety and Protection in Pearl River Delta, Guangzhou University, Guangzhou, China
| |
Collapse
|
14
|
Pan Y, Chen J, Zhou H, Cheung SG, Tam NFY. Degradation of BDE-47 in mangrove sediments under alternating anaerobic-aerobic conditions. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120709. [PMID: 31203118 DOI: 10.1016/j.jhazmat.2019.05.102] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) resistant to degradation have significant environmental impacts. Anaerobic reductive debromination and aerobic oxidation of PBDEs by microorganisms are main removal mechanisms during natural attenuation, but previous studies often focused on the process under either aerobic or anaerobic condition leading to unsatisfactory removal. The present study aims to remove PBDEs by employing alternating anaerobic-aerobic condition, which is common in inter-tidal mangrove sediments, and elucidate the degradation pathways. During 40-week experiment, BDE-47 reduced with an accumulation of tri-BDEs and di-BDEs as debromination products in all sediments. However, the removal percentages of BDE-47 and the concentrations of debromination congeners varied among flushing regimes. Sediments under less frequent flushing regime (longer duration of aerobic period) had significantly lower concentration and proportion of debromination products, especially BDE-17, than that under more frequent regime (longer anaerobic period). BDE-17 then went through aerobic degradation pathway, as evidenced by the accumulation of its hydroxylation form. Microbial analyses further revealed that less frequent regime favored accumulation of biphenyl dioxygenase gene for aerobic degradation, while more frequent tidal regime promoted growth of dehalogenating bacteria for reductive debromination. This study first time demonstrated that PBDEs in contaminated sediments could be removed under alternating anaerobic-aerobic conditions.
Collapse
Affiliation(s)
- Ying Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, PR China; College of Oceanography, Hohai University, Xikang Road, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road, Nanjing 210098, PR China
| | - Haichao Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Nanhai Avenue, Shenzhen 518060, PR China
| | - S G Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, PR China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, PR China.
| |
Collapse
|
15
|
Farzana S, Zhou H, Cheung SG, Tam NFY. Could mangrove plants tolerate and remove BDE-209 in contaminated sediments upon long-term exposure? JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120731. [PMID: 31202074 DOI: 10.1016/j.jhazmat.2019.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/17/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) such as BDE-209, the commonest congener, are known to be toxic. A 24-months study using mangrove mesocosms with mixed mangrove species, namely Avicennia marina (Am), Aegiceras corniculatum (Ac) and Kandelia obovata (Ko), or without any plant was conducted to examine toxicity, removal, translocation and uptake of BDE-209. At month 24, BDE-209 stimulated the production of root superoxide radical (O2-*), and leaf and root malondialdehyde (MDA) of Ko, enhanced leaf O2-* of Ac, but did not affect the production of O2-* and MDA in Am. These findings indicated that the tolerance to BDE-209 was species-specific, with Am being the most tolerant and Ko the most sensitive species. In leaf and root, BDE-209 stimulated peroxidase (POD) activity in both Ac and Ko, and superoxide dismutase (SOD) in Am. After 24-months, more than 60% and 40% of BDE-209 in contaminated sediments were removed in planted and unplanted groups, respectively, with more PBDEs in upper than bottom sediment layers. This study demonstrates that planting tolerant species such as Avicennia marina with high uptake could remedy PBDEs in contaminated sediments.
Collapse
Affiliation(s)
- Shazia Farzana
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Haichao Zhou
- Marine Research Centre, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nora Fung Yee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
16
|
Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:750-757. [PMID: 30933772 DOI: 10.1016/j.envpol.2019.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Mangroves are highly productive tropical ecosystems influenced by seasonal and daily salinity changes, often exposed to sewage contamination, oil spills and heavy metals, among others. There is limited knowledge of the influence of salinity on the ability of microorganisms to degrade xenobiotic compounds. The aim of this study were to determine the salinity influence on the degradation of xenobiotic compounds in a semi-arid mangrove in La Guajira-Colombia and establish the more abundant genes and degradation pathways. In this study, rhizospheric soil of Avicennia germinans was collected in three points with contrasting salinity (4H, 2 M and 3 L). Total DNA extraction was performed and shotgun sequenced using the Illumina HiSeq technology. We annotated 507,343 reads associated with 21 pathways and detected 193 genes associated with the degradation of xenobiotics using orthologous genes from the KEGG Orthology (KO) database, of which 16 pathways and 113 genes were influenced by salinity. The highest abundances were found in high salinity. The degradation of benzoate showed the highest abundance, followed by the metabolism of the drugs and the degradation of chloroalkane and chloroalkene. The majority of genes were associated with phase I degradation of xenobiotics. The most abundant genes were acetyl-CoA C-acetyltransferase (atoB), catalase-peroxidase (katG) and GMP synthase (glutamine-hydrolysing) (guaA). In conclusion, the metagenomic analysis detected all the degradation pathways of xenobiotics of KEGG and 59% of the genes associated with these pathways were influenced by salinity.
Collapse
Affiliation(s)
- Andrea Muñoz-García
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | - Orson Mestanza
- Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Juan Pablo Isaza
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| | | | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
17
|
Li Y, Zheng L, Zhang Y, Liu H, Jing H. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Sci Rep 2019; 9:5739. [PMID: 30952929 PMCID: PMC6450915 DOI: 10.1038/s41598-019-42260-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023] Open
Abstract
Mangrove forests are widespread along the subtropical and tropical coasts. They provide a habitat for a wide variety of plants, animals and microorganisms, and act as a buffer zone between the ocean and land. Along with other coastal environments, mangrove ecosystems are under increasing pressure from human activities, such as excessive input of nutrients and toxic pollutants. Despite efforts to understand the diversity of microbes in mangrove sediments, their metabolic capability in pristine and contaminated mangrove sediments remains largely unknown. By using metagenomic approach, we investigated the metabolic capacity of microorganisms in contaminated (CMS) and pristine (PMS) mangrove sediments at subtropical and tropical coastal sites. When comparing the CMS with PMS, we found that the former had a reduced diazotroph abundance and nitrogen fixing capability, but an enhanced metabolism that is related to the generation of microbial greenhouse gases via increased methanogenesis and sulfate reduction. In addition, a high concentration of heavy metals (mainly Zn, Cd, and Pb) and abundance of metal/antibiotic resistance encoding genes were found in CMS. Together, these data provide evidence that contamination in mangrove sediment can markedly change microbial community and metabolism; however, no significant differences in gene distribution were found between the subtropical and tropical mangrove sediments. In summary, contamination in mangrove sediments might weaken the microbial metabolisms that enable the mangrove ecosystems to act as a buffer zone for terrestrial nutrients deposition, and induce bioremediation processes accompanied with an increase in greenhouse gas emission.
Collapse
Affiliation(s)
- Yingdong Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Liping Zheng
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
18
|
Sun H, Ma R, Nan Y, Feng R. Insight into effects of citric acid on adsorption of phthalic acid esters (PAEs) in mangrove sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:353-360. [PMID: 30458402 DOI: 10.1016/j.ecoenv.2018.11.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The adsorption of phthalate esters (PAEs) in mangrove sediment greatly influences their availability to aquatic organisms, however, the adsorption processes of PAEs in mangrove sediment, as well as the effects of root exudates, are poorly understood. In this study, dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP) was used as model PAEs to determine the effects and mechanism of citric acid on the adsorption kinetics and isotherms of PAEs in the mangrove sediments. The adsorption kinetics followed pseudo-second order model, describing the characteristics of heterogeneous chemisorption of PAEs in mangrove sediments. The adsorption isotherms of DMP and DEP followed Freundlich model, implying the characteristics of surface multilayer heterogeneous adsorption; while the Henry model better described the adsorption isotherms of DBP, suggesting that hydrophobic partition accounted for DBP adsorption in the mangrove sediments. Inter-chemical variability was observed in adsorption capacity (qe) with the sequence of DBP > DEP > DMP. Surface polarity index ((C-O + COOH + C˭O)%) of particulate organic matter (POM) regulated the adsorption capacity of DMP and DEP in mangrove sediments, while different POM content among mangrove sediments explained the difference in the sorption strength for DBP. The presence of citric acid enhanced the qe of the three PAEs by 6.4-12.6%. These findings are of great significance to reveal that the root exudates play a crucial role in the PAEs adsorption in mangrove sediments, and provide valuable information for availability of PAEs in mangrove ecosystem.
Collapse
Affiliation(s)
- Haifeng Sun
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Ruiyao Ma
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Yanli Nan
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Ruijie Feng
- College of Environment and Resource, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
19
|
Behera P, Mohapatra M, Kim JY, Adhya TK, Pattnaik AK, Rastogi G. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3893-3908. [PMID: 30547343 DOI: 10.1007/s11356-018-3927-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Bacterial communities of mangrove sediments are well appreciated for their role in nutrient cycling. However, spatiotemporal variability in these communities over large geographical scale remains understudied. We investigated sediment bacterial communities and their metabolic potential in an intertidal mangrove forest of India, Bhitarkanika, using high-throughput sequencing of 16S rRNA genes and community-level physiological profiling. Bulk surface sediments from five different locations representing riverine and bay sites were collected over three seasons. Seasonality largely explained the variation in the structural and metabolic patterns of the sediment bacterial communities. Freshwater Actinobacteria were more abundant in monsoon, whereas γ-Proteobacteria demonstrated higher abundance in summer. Distinct differences in the bacterial community composition were noted between riverine and bay sites. For example, salt-loving marine bacteria affiliated to Oceanospirillales were more prominent in the bay sites than the riverine sites. L-asparagine, N-acetyl-D-glucosamine, and D-mannitol were the preferentially utilized carbon sources by bacterial communities. Bacterial community composition was largely governed by salinity and organic carbon content of the sediments. Modeling analysis revealed that the abundance of δ-Proteobacteria increased with salinity, whereas β-Proteobacteria displayed an opposite trend. Metabolic mapping of taxonomic data predicted biogeochemical functions such as xylan and chitin degradation, ammonia oxidation, nitrite reduction, and sulfate reduction in the bacterial communities suggesting their role in carbon, nitrogen, and sulfur cycling in mangrove sediments. This study has provided valuable clues about spatiotemporal heterogeneity in the structural and metabolic patterns of bacterial communities and their environmental determinants in a tropical mangrove forest.
Collapse
Affiliation(s)
- Pratiksha Behera
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Madhusmita Mohapatra
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Ji Yoon Kim
- Department of Integrated Biological Science, Pusan National University, Geumjeong-gu, Busan, 46241, South Korea
| | - Tapan K Adhya
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Ajit K Pattnaik
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India
| | - Gurdeep Rastogi
- Wetland Research and Training Centre, Chilika Development Authority, Balugaon, Odisha, 752030, India.
| |
Collapse
|
20
|
Chen J, Wang PF, Wang C, Miao HC, Wang X. How wastewater with different nutrient levels influences microbial degradation of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic sediments. CHEMOSPHERE 2018; 211:128-138. [PMID: 30071424 DOI: 10.1016/j.chemosphere.2018.07.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
While wastewater and polybrominated diphenyl ethers (PBDEs) are commonly both discharged into aquatic ecosystems, little information is known about how wastewaters with different nutrient levels impact on microbial degradation of PBDEs. In this study, we used an anaerobic microcosm experiment to examine how the removal rates of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) from contaminated sediment varied when exposed to three wastewaters with different nutrient properties, namely livestock wastewater (LS), municipal sewage (MS), and shrimp pond wastewater (SP), and to determine the microbial controls on removal processes. We found that BDE-47 degraded relatively rapidly in MS, which had low carbon and nitrogen concentrations, but degraded much more slowly in LS and SP, which had relatively high nutrient concentrations. The variations in BDE-47 removal in different wastewater were related to iron reduction rates and the abundances of organohalide-respiring bacteria (OHRB). The community compositions of both total bacteria and OHRB from the family Dehalococcoidaceae differed significantly among the wastewater treatments. Compared with other treatments, some bacterial groups with PBDE degradation abilities were more abundant in MS where the PBDE-degradation efficiencies were higher. Our results should help support evaluations of the bioremediation potential of sites that are contaminated with both halogenated organic compounds and nutrient-rich wastewater.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Pei-Fang Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Hai-Chao Miao
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| |
Collapse
|
21
|
Chen J, Wang C, Pan Y, Farzana SS, Tam NFY. Biochar accelerates microbial reductive debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:177-186. [PMID: 28777963 DOI: 10.1016/j.jhazmat.2017.07.063] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
A common congener of polybrominated diphenyl ethers, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a prevalent, persistent and toxic pollutant. It could be removed by reduction debromination by microorganisms but the rate is often slow. The study hypothesized that spent mushroom substrate derived biochar amendment could accelerate the microbial reductive debromination of BDE-47 in anaerobic mangrove sediment slurries and evaluated the mechanisms behind. At the end of 20-week experiment, percentages of residual BDE-47 in slurries amended with biochar were significantly lower but debromination products were higher than those without biochar. Such stimulatory effect on debromination was dosage-dependent, and debromination was coupled with iron (Fe) reduction. Biochar amendment significantly enhanced the Fe(II):Fe(III) ratio, Fe(III) reduction rate and the abundance of iron-reducing bacteria in genus Geobacter, thus promoting bacterial iron-reducing process. The abundances of dehalogenating bacteria in genera Dehalobacter, Dehalococcoides, Dehalogenimonas and Desulfitobacterium were also stimulated by biochar. Biochar as an electron shuttle might increase electron transfer from iron-reducing and dehalogenating bacteria to PBDEs for their reductive debromination. More, biochar shifted microbial community composition in sediment, particularly the enrichment of potential PBDE-degrading bacteria including organohalide-respiring and sulfate-reducing bacteria, which in turn facilitated the reductive debromination of BDE-47 in anaerobic mangrove sediment slurries.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, China; Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Chao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing, China
| | - Ying Pan
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Shazia Shyla Farzana
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- Department of Biology and Chemistry, State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
22
|
Ding C, Rogers MJ, Yang KL, He J. Loss of the ssrA genome island led to partial debromination in the PBDE respiring Dehalococcoides mccartyi strain GY50. Environ Microbiol 2017; 19:2906-2915. [PMID: 28618081 DOI: 10.1111/1462-2920.13817] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/30/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs), chemicals commonly used as flame-retardants in consumer products, are emerging persistent organic pollutants that are ubiquitous in the environment. In this study, we report a PBDE-respiring isolate - Dehalococcoides mccartyi strain GY50, which debrominates the most toxic tetra- and penta-BDE congeners (∼1.4 µM) to diphenyl ether within 12 days with hydrogen as the electron donor. The complete genome sequence revealed 26 reductive dehalogenase homologous genes (rdhAs), among which three genes (pbrA1, pbrA2 and pbrA3) were highly expressed during PBDE debromination. After 10 transfers of GY50 with trichloroethene or 2,4,6-trichlorophenol as the electron acceptor instead of PBDEs, the ssrA-specific genome island (ssrA-GI) containing pbrA1 and pbrA2 was deleted from the genome of strain GY50, leading to two variants (strain GY52 with trichloroethene, strain GY55 with 2,4,6-trichlorophenol) with identically impaired debromination capabilities (debromination of penta-/tetra-BDEs ceased at di-BDE 15). Through analysis of Illumina paired-end sequencing data, we identified read pairs that probably came from variants that contain ssrA-GI deletions, indicating their possible presence in the original strain GY50 culture. The two variant strains provide real-time examples on rapid evolution of organohalide-respiring organisms. As PBDE-respiring organisms, GY50-like strains may serve as key players in detoxifying PBDEs in contaminated environments.
Collapse
Affiliation(s)
- Chang Ding
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|