1
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Zheng ZY, Yang YT, Zhou JX, Peng ZX, Ni HG. Possible Causes of Extreme Variation of Benzo[a]pyrene Acute Toxicity Test on Daphnia magna. TOXICS 2024; 12:714. [PMID: 39453134 PMCID: PMC11510787 DOI: 10.3390/toxics12100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
There are enormous differences in benzo[a]pyrene (BaP) acute toxicity tests on Daphnia magna, according to previous publications. The explanations of the reasons for this extreme variation are necessary. In this context, the acute toxicity tests of different experiment conditions (light/dark, culture medium, and solvent) were conducted on Daphnia magna with BaP as the toxicant of concern. Based on the experiments above, molecular dynamics (MD) simulations were employed to investigate the mechanisms of action. According to our results, the significant influence of light exposure on the acute toxicity test of BaP (p < 0.05) on D. magna was recorded. On the basis of the MD simulations, it was possible that BaP may not affect the normal operation of Superoxide Dismutase and Catalase directly, and it could be quickly transferred from the body through Glutathione S-transferase and Cytochromes P450. Therefore, when exposed to light, the oxidative stress process intensifies, causing damage to Daphnia magna. Apparently, the ecotoxicity tests based on inhibition for D. magna cannot adequately reflect the toxic effects of BaP.
Collapse
Affiliation(s)
| | | | | | | | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (Z.-Y.Z.); (Y.-T.Y.); (J.-X.Z.); (Z.-X.P.)
| |
Collapse
|
3
|
Dong L, Sun Y, Chu M, Xie Y, Wang P, Li B, Li Z, Xu X, Feng Y, Sun G, Wang Z, Cui C, Wang W, Yang J. Exploration of Response Mechanisms in the Gills of Pacific Oyster ( Crassostrea gigas) to Cadmium Exposure through Integrative Metabolomic and Transcriptomic Analyses. Animals (Basel) 2024; 14:2318. [PMID: 39199852 PMCID: PMC11350665 DOI: 10.3390/ani14162318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Marine mollusks, including oysters, are highly tolerant to high levels of cadmium (Cd), but the molecular mechanisms underlying their molecular response to acute Cd exposure remain unclear. In this study, the Pacific oyster Crassostrea gigas was used as a biological model, exposed to acute Cd stress for 96 h. Transcriptomic analyses of their gills were performed, and metabolomic analyses further validated these results. In our study, a total of 111 differentially expressed metabolites (DEMs) and 2108 differentially expressed genes (DEGs) were identified under acute Cd exposure. Further analyses revealed alterations in key genes and metabolic pathways associated with heavy metal stress response. Cd exposure triggered physiological and metabolic responses in oysters, including enhanced oxidative stress and disturbances in energy metabolism, and these changes revealed the biological response of oysters to acute Cd stress. Moreover, oysters could effectively enhance the tolerance and detoxification ability to acute Cd exposure through activating ABC transporters, enhancing glutathione metabolism and sulfur relay system in gill cells, and regulating energy metabolism. This study reveals the molecular mechanism of acute Cd stress in oysters and explores the molecular mechanism of high tolerance to Cd in oysters by using combined metabolomics and transcriptome analysis.
Collapse
Affiliation(s)
- Luyao Dong
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanan Sun
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
| | - Muyang Chu
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
| | - Yuxin Xie
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
| | - Pinyi Wang
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
| | - Bin Li
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| | - Zan Li
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
| | - Xiaohui Xu
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Yanwei Feng
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Guohua Sun
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Zhongping Wang
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| | - Cuiju Cui
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
| | - Weijun Wang
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
- Yantai Haiyu Marine Technology Co., Ltd., Yantai 264000, China
| | - Jianmin Yang
- School of Fisheries, Ludong University, Yantai 264025, China; (L.D.); (Z.L.)
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Yantai Kongtong Island Industrial Co., Ltd., Yantai 264000, China
| |
Collapse
|
4
|
Li K, Wang F, Liu S, Cheng X, Xu J, Liu X, Zhang L. Response and adaptation mechanisms of Apostichopus japonicus to single and combined anthropogenic stresses of polystyrene microplastics or cadmium. MARINE POLLUTION BULLETIN 2024; 204:116519. [PMID: 38850758 DOI: 10.1016/j.marpolbul.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Microplastics (MPs) have become pervasive in marine ecosystems, exerting detrimental effects on marine life. The concurrent presence and interaction of MPs and heavy metals in aquatic environments could engender more insidious toxicological impacts. This study aimed to elucidate the potential impacts and underlying mechanisms of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined stress (MPs-Cd) on sea cucumbers (Apostichopus japonicus). It focused on the growth, Cd bioaccumulation, oxidative stress responses, immunoenzymatic activities, and metabolic profiles, specifically considering PS-MPs sizes preferentially ingested by these organisms. The high-dose MPs (MH) treatment group exhibited an increase in cadmium bioavailability within the sea cucumbers. Exposure to PS-MPs or Cd triggered the activation of antioxidant defenses and immune responses. PS-MPs and Cd exhibited a synergistic effect on lysozyme (LZM) activity. A total of 149, 316, 211, 197, 215, 619, 434, and 602 differentially expressed metabolites were identified, distinguishing the low-dose MPs (ML), high-dose MPs (MH), low-dose Cd (LCd), low-dose MPs and low-dose Cd (MLLCd), high-dose MPs and low-dose Cd (MHLCd), high-dose Cd (HCd), low-dose MPs and high-dose Cd (MLHCd), high-dose MPs and high-dose Cd (MHHCd) groups, respectively. Metabolomic analyses revealed disruptions in lipid metabolism, nervous system function, signal transduction, and transport and catabolism pathways following exposure to PS-MPs, Cd, and MPs-Cd. Correlation analyses among key differentially expressed metabolites (DEMs) underscored the interregulation among these metabolic pathways. These results offer new perspectives on the distinct and synergistic toxicological impacts of microplastics and cadmium on aquatic species, highlighting the complex interplay between environmental contaminants and their effects on marine life.
Collapse
Affiliation(s)
- Kehan Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- Binzhou Ocean Development Research Institute, Binzhou 256600, China
| | - Xiaochen Cheng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jialei Xu
- Zhongke Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| | - Xiao Liu
- Zhongke Tonghe (Shandong) Ocean Technology Co., Ltd., Dongying 257200, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Liu X, Zhang H, Zhang W, Jia Q, Chen X, Chen H. Comparative transcriptome analysis between two different cadmium-accumulating genotypes of soybean (Glycine max) in response to cadmium stress. BMC Genom Data 2024; 25:43. [PMID: 38710997 DOI: 10.1186/s12863-024-01226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cadmium (Cd) is extremely toxic and non-essential for plants. Different soybean varieties differ greatly in their Cd accumulation ability, but little is known about the underlying molecular mechanisms. RESULTS Here, we performed transcriptomic analysis using Illumina pair-end sequencing on root tissues from two soybean varieties (su8, high-Cd-accumulating (HAS) and su7, low Cd-accumulating (LAS)) grown with 0 or 50 μM CdSO4. A total of 18.76 million clean reads from the soybean root samples were obtained after quality assessment and data filtering. After Cd treatment, 739 differentially expressed genes (DEGs; 265 up and 474 down) were found in HAS; however, only 259 DEGs (88 up and 171 down) were found in LAS, and 64 genes were same between the two varieties. Pathway enrichment analysis suggested that after cadmium treatment, the DEGs between LAS and HAS were mainly enriched in glutathione metabolism and plant-pathogen interaction pathways. KEGG analysis showed that phenylalanine metabolism responding to cadmium stress in LAS, while ABC transporters responding to cadmium stress in HAS. Besides we found more differential expressed heavy metal transporters such as ABC transporters and zinc transporters in HAS than LAS, and there were more transcription factors differently expressed in HAS than LAS after cadmium treatment in two soybean varieties, eg. bHLH transcription factor, WRKY transcription factor and ZIP transcription factor. CONCLUSIONS Findings from this study will shed new insights on the underlying molecular mechanisms behind the Cd accumulation in soybean.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qianru Jia
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
6
|
Hourtané O, Gonzalez P, Feurtet-Mazel A, Kochoni E, Fortin C. Potential cellular targets of platinum in the freshwater microalgae Chlamydomonas reinhardtii and Nitzschia palea revealed by transcriptomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:281-295. [PMID: 38478139 DOI: 10.1007/s10646-024-02746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Platinum group element levels have increased in natural aquatic environments in the last few decades, in particular as a consequence of the use of automobile catalytic converters on a global scale. Concentrations of Pt over tens of μg L-1 have been observed in rivers and effluents. This raises questions regarding its possible impacts on aquatic ecosystems, as Pt natural background concentrations are extremely low to undetectable. Primary producers, such as microalgae, are of great ecological importance, as they are at the base of the food web. The purpose of this work was to better understand the impact of Pt on a cellular level for freshwater unicellular algae. Two species with different characteristics, a green alga C. reinhardtii and a diatom N. palea, were studied. The bioaccumulation of Pt as well as its effect on growth were quantified. Moreover, the induction or repression factors of 16 specific genes were determined and allowed for the determination of possible intracellular effects and pathways of Pt. Both species seemed to be experiencing copper deficiency as suggested by inductions of genes linked to copper transporters. This is an indication that Pt might be internalized through the Cu(I) metabolic pathway. Moreover, Pt could possibly be excreted using an efflux pump. Other highlights include a concentration-dependent negative impact of Pt on mitochondrial metabolism for C. reinhardtii which is not observed for N. palea. These findings allowed for a better understanding of some of the possible impacts of Pt on freshwater primary producers, and also lay the foundations for the investigation of pathways for Pt entry at the base of the aquatic food web.
Collapse
Affiliation(s)
- O Hourtané
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| | - P Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - A Feurtet-Mazel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - E Kochoni
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - C Fortin
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
7
|
Qiu L, Chen X, Zhu L, Yao R, Qi P. ChIP-seq identifies McSLC35E2 as a novel target gene of McNrf2 in Mytilus coruscus, highlighting its role in the regulation of oxidative stress response in marine mollusks. Front Physiol 2023; 14:1282900. [PMID: 37869713 PMCID: PMC10587546 DOI: 10.3389/fphys.2023.1282900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) plays a crucial role in the oxidative regulatory process, which could trigger hundreds of antioxidant elements to confront xenobiotics. In the previous study, we identified Nrf2 from the marine mussel Mytilus coruscus, and the findings demonstrated that McNrf2 effectively protected the mussels against oxidative stress induced by benzopyrene (Bap). In order to delve deeper into the underlying mechanism, we utilized Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) technology to systematically identify potential novel target genes of McNrf2. A total of 3,465 potential target genes were screened, of which 219 owned binding sites located within the promoter region. During subsequent experimental verification, it was found that McSLC35E2, a candidate target gene of McNrf2, exhibited negative regulation by McNrf2, as confirmed through dual luciferase and qRT-PCR detection. Further, the enzyme activity tests demonstrated that McNrf2 could counteract Bap induced oxidative stress by inhibiting McSLC35E2. The current study provides valuable insights into the application of ChIP-seq technology in the research of marine mollusks, advancing our understanding of the key role of Nrf2 in antioxidant defense mechanisms, and highlighting the significance of SLC35E2 in the highly sophisticated regulation of oxidative stress response in marine invertebrates.
Collapse
Affiliation(s)
| | | | | | | | - Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
8
|
Zhang X, Zhao Y, Zheng W, Nan B, Fu J, Qiao Y, Zufall RA, Gao F, Yan Y. Genome-wide identification of ATP-binding cassette transporter B subfamily, focusing on its structure, evolution and rearrangement in ciliates. Open Biol 2023; 13:230111. [PMID: 37788709 PMCID: PMC10547551 DOI: 10.1098/rsob.230111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
ATP-binding cassette subfamily B (ABCB) has been implicated in various essential functions such as multidrug resistance, auxin transport and heavy metal tolerance in animals and plants. However, the functions, the genomic distribution and the evolutionary history have not been characterized systematically in lower eukaryotes. As a lineage of highly specialized unicellular eukaryotes, ciliates have extremely diverse genomic features including nuclear dimorphism. To further understand the genomic structure and evolutionary history of this gene family, we investigated the ABCB gene subfamily in 11 ciliates. The results demonstrate that there is evidence of substantial gene duplication, which has occurred by different mechanisms in different species. These gene duplicates show consistent purifying selection, suggesting functional constraint, in all but one species, where positive selection may be acting to generate novel function. We also compare the gene structures in the micronuclear and macronuclear genomes and find no gene scrambling during genome rearrangement, despite the abundance of such scrambling in two of our focal species. These results lay the foundation for future analyses of the function of these genes and the mechanisms responsible for their evolution across diverse eukaryotic lineages.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yan Zhao
- College of Life Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| | - Weibo Zheng
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, People's Republic of China
| | - Bei Nan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Jinyu Fu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Yu Qiao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| | - Rebecca A. Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Feng Gao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Ying Yan
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Key Laboratory of Evolution & Marine Biodiversity (OUC), Ministry of Education, Qingdao 266003, People's Republic of China
| |
Collapse
|
9
|
Li C, Fu Y, Tian Y, Zang Z, Gentekaki E, Wang Z, Warren A, Li L. Comparative transcriptome and antioxidant biomarker response reveal molecular mechanisms to cope with zinc ion exposure in the unicellular eukaryote Paramecium. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131364. [PMID: 37080029 DOI: 10.1016/j.jhazmat.2023.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The development of industry has resulted in excessive environmental zinc exposure which has caused various health problems in a wide range of organisms including humans. The mechanisms by which aquatic microorganisms respond to environmental zinc stress are still poorly understood. Paramecium, a well-known ciliated protozoan and a popular cell model in heavy metal stress response studies, was chosen as the test unicellular eukaryotic organism in the present research. In this work, Paramecium cf. multimicronucleatum cells were exposed in different levels of zinc ion (0.1 and 1.0 mg/L) for different periods of exposure (1 and 4 days), and then analyzed population growth, transcriptomic profiles and physiological changes in antioxidant enzymes to explore the toxicity and detoxification mechanisms during the zinc stress response. Results demonstrated that long-term zinc exposure could have restrained population growth in ciliates, however, the response mechanism to zinc exposure in ciliates is likely to show a dosage-dependent and time-dependent manner. The differentially expressed genes (DEGs) were identified the characters by high-throughput sequencing, which remarkably enriched in the phagosome, indicating that the phagosome pathway might mediate the uptake of zinc, while the pathways of ABC transporters and Na+/K+-transporting ATPase contributed to the efflux transport of excessive zinc ions and the maintenance of osmotic balance, respectively. The accumulation of zinc ions triggered a series of adverse effects, including damage to DNA and proteins, disturbance of mitochondrial function, and oxidative stress. In addition, we found that gene expression changed significantly for metal ion binding, energy metabolism, and oxidation-reduction processes. RT-qPCR of ten genes involved in important biological functions further validated the results of the transcriptome analysis. We also continuously monitored changes in activity of four antioxidant enzymes (SOD, CAT, POD and GSH-PX), all of which peaked on day 4 in cells subjected to zinc stress. Collectively, our results indicate that excessive environmental zinc exposure initially causes damage to cellular structure and function and then initiates detoxification mechanisms to maintain homeostasis in P. cf. multimicronucleatum cells.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yingxuan Tian
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Eleni Gentekaki
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China.
| |
Collapse
|
10
|
Wang S, Sun Z, Ren C, Li F, Xu Y, Wu H, Ji C. Time- and dose-dependent detoxification and reproductive endocrine disruption induced by tetrabromobisphenol A (TBBPA) in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105839. [PMID: 36481715 DOI: 10.1016/j.marenvres.2022.105839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
As a typical brominated flame retardant (BFR), tetrabromobisphenol A (TBBPA) has been frequently detected in both biotic and abiotic matrices in marine environment. Our previous study found that genes related to metabolism phase I/II/III as well as steroid metabolism in Mytilus galloprovincialis were significantly altered by TBBPA treatment. However, the time- and dose-dependent response profiles of these genes to TBBPA exposure were rarely reported. In this study, the time- and dose-dependent effects of TBBPA on detoxification and reproductive endocrine disruption in M. galloprovincialis were explored by evaluating the responses of related gene expressions, enzymatic activities and gametogenesis to different concentrations of TBBPA (0.6, 3, 15, 75 and 375 μg/L) for different durations (14, 21 and 28 days). The results showed that the TBBPA accumulation increased linearly with the increases of exposure time and dose. Cytochrome P450 family 3 (CYP3A1-like) cooperated with CYP4Y1 for phase I biotransformation of TBBPA in mussels. The dose-response curves of phase II/III genes (glutathione-S-transferase (GST), P-glycoprotein (ABCB), and multidrug resistance protein (ABCC)) showed similar response profiles to TBBPA exposure. The common induction of phase I/II/III (CYPs, GST, ABCB and ABCC) suggested TBBPA detoxification regulation in mussels probably occurred in a step-wise manner. Concurrently, direct sulfation mediated by sulfotransferases (SULTs) on TBBPA was also the vital metabolic mechanism for TBBPA detoxification, which was supported by the coincidence between up-regulation of SULT1B1 and TBBPA accumulation. The significant promotion of steroid sulfatase (STS) might result from TBBPA-sulfate catalyzed by SULT1B1 due to its chemical similarity to estrone-sulfate. Furthermore, the promotion of gametogenesis was consistent with the induction of STS, suggesting that STS might interrupt steroids hydrolysis process and was responsible for reproductive endocrine disruption in M. galloprovincialis. This study provides a better understanding of the detoxification and endocrine-disrupting mechanisms of TBBPA.
Collapse
Affiliation(s)
- Shuang Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Zuodeng Sun
- Shandong Fisheries Development and Resource Conservation Center, Ji'nan, 250013, PR China
| | - Chuanbo Ren
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai, 264006, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China.
| |
Collapse
|
11
|
Tang CH, Buskey EJ. Impaired grazing of marine protozoa in sub-lethal exposure to the water accommodated fraction of crude oil and dispersant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120414. [PMID: 36244498 DOI: 10.1016/j.envpol.2022.120414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Despite the advances in safety technology and the improved implementation of precautionary measures, crude oil pollution has been occurring in the oceans globally. The water accommodated fraction (WAF) of crude oil and chemical dispersant are hypothesized to cause sub-lethal adverse effects on marine protists that are pivotal consumers of primary production. Exposure experiments were conducted to investigate the effects of crude oil and dispersant pollutants on the growth and grazing, separately, of protozoa species in cultures. In exposure to 0-30 μL L-1 of chemically enhanced WAF (CEWAF), the heterotrophic dinoflagellate Protoperidinium sp. and the ciliate Metacylis sp. showed slower positive population growth or negative population growth even at low concentrations. The dose-response model showed that Protoperidinium sp. and Metacylis sp. were highly susceptible to the CEWAF toxicity (median inhibition concentrations (IC50) at 1.1 and 5.9 μL L-1, respectively) while one algal species Ditylum brightwellii was relatively tolerant to the toxicity (IC50 at 168.7 μL L-1). With suppressed growth and impaired grazing of the protozoan species at high CEWAF concentrations, accumulation of their algal prey in culture containers was observed, as reflected by higher final:initial prey ratios at high CEWAF concentrations. Additionally, exposure experiments to the treatments of WAF, dispersant alone (Disp), and CEWAF of the same concentration revealed that the heterotrophic dinoflagellate Oxyrrhis marina had reduced bulk grazing impact towards its algal prey population in all three treatments when compared to the control treatment (i.e., grazing mortality of prey at 1.05 d-1). Similarly, Protoperidinium sp. and Metacylis sp. had reduced per capita prey ingestion rates in exposure to WAF and CEWAF when compared to the control treatments. This study provides experimental evidence for the potential link between impaired grazing activities and the formation of algal blooms in sub-lethal exposure to crude oil pollutants.
Collapse
Affiliation(s)
- Chi Hung Tang
- Marine Science Institute, The University of Texas at Austin, Texas, USA; School of Science and Technology, Hong Kong Metropolitan University, Hong Kong S.A.R., China.
| | - Edward J Buskey
- Marine Science Institute, The University of Texas at Austin, Texas, USA
| |
Collapse
|
12
|
Ge J, Huang Y, Lv M, Zhang C, Talukder M, Li J, Li J. Cadmium induced Fak -mediated anoikis activation in kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway. J Inorg Biochem 2021; 227:111682. [PMID: 34902763 DOI: 10.1016/j.jinorgbio.2021.111682] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - MeiWei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - JinYang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - JinLong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Kim M, Jee SC, Kim KS, Kim HS, Yu KN, Sung JS. Quercetin and Isorhamnetin Attenuate Benzo[a]pyrene-Induced Toxicity by Modulating Detoxification Enzymes through the AhR and NRF2 Signaling Pathways. Antioxidants (Basel) 2021; 10:antiox10050787. [PMID: 34065697 PMCID: PMC8156367 DOI: 10.3390/antiox10050787] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Benzo[a]pyrene, classified as a Group 1 carcinogen, is metabolized to B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), causing DNA mutations and eventually cancer. Quercetin is a dietary flavonoid abundant in fruits and vegetables. After quercetin intake, quercetin's metabolites isorhamnetin and miquelianin are more highly concentrated than quercetin in the human plasma. In this study, we investigated the molecular mechanisms associated with the cytoprotective effect of quercetin and its metabolites against benzo[a]pyrene from a detoxification perspective. Quercetin and its metabolite isorhamnetin reduced benzo[a]pyrene-induced cytotoxicity, whereas the metabolite miquelianin did not mitigate benzo[a]pyrene-induced cytotoxicity. Moreover, quercetin and isorhamnetin reduced intracellular levels of BPDE-DNA adducts. The formation and elimination of BPDE is mediated by the xenobiotic detoxification process. Quercetin and isorhamnetin increased the gene and protein expression levels of phase I, II, and III enzymes involved in xenobiotic detoxification. Furthermore, quercetin and isorhamnetin induced the translocation of aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2), which regulate the expression level of phase enzymes. Our results suggest that quercetin and isorhamnetin promote the metabolism, detoxification, and elimination of B[a]P, thereby increasing anti-genotoxic effects and protecting against B[a]P-induced cytotoxicity.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Korea; (M.K.); (S.-C.J.); (K.-N.Y.)
| | - Seung-Cheol Jee
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Korea; (M.K.); (S.-C.J.); (K.-N.Y.)
| | - Kyeong-Seok Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University-Suwon, Suwon 16419, Gyeonggi-do, Korea; (K.-S.K.); (H.-S.K.)
| | - Hyung-Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University-Suwon, Suwon 16419, Gyeonggi-do, Korea; (K.-S.K.); (H.-S.K.)
| | - Kyoung-Nae Yu
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Korea; (M.K.); (S.-C.J.); (K.-N.Y.)
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang 10326, Gyeonggi-do, Korea; (M.K.); (S.-C.J.); (K.-N.Y.)
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|
14
|
Qi P, Tang Z. The Nrf2 molecule trigger antioxidant defense against acute benzo(a)pyrene exposure in the thick shell mussel Mytilus coruscus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105554. [PMID: 32653664 DOI: 10.1016/j.aquatox.2020.105554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The NF-E2-related factor 2 (Nrf2), an ubiquitous, evolutionarily conserved transcription factor, acts as a major sensor of oxidative stress in cells. In the present study, a Nrf2 homolog was newly identified in the thick shell mussel Mytilus coruscus. Accordingly, its functional role in antioxidant defense in response to acute benzo(a)pyrene (Bap) exposure was assessed. The newly identified McNrf2 affiliated to traditional Nrf2 family through Blast, multiple alignment and phylogenetic analysis. After acute exposure to Bap, antioxidants including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathine reductase (GR) were significantly induced in gills and digestive glands at both mRNA and enzymatic levels, and the expression of McNrf2 mRNA was also up-regulated. The analysis of correlating the expression of McNrf2 and the mRNA levels of these antioxidant genes showed positive ties, indicating that Nrf2 was needed for protracted induction of such genes. Further, the recombinant McNrf2 was produced through pET-32a prokaryotic system. After 50 μg/L Bap exposure, ROS generation and LPO level in gills of Nrf2 over-expressed mussels significantly decreased compared to Nrf2 wild-type mussels, as well as reduced ROS production in digestive glands. Collectively, these results show that Nrf2 pathway can provide protection from oxidative stress triggered by Bap in the thick shell mussel.
Collapse
Affiliation(s)
- Pengzhi Qi
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China; School of Life Science, Nantong Universtiy, Nantong, 226019, China.
| | - Zurong Tang
- National Engineering Research Center of Marine Facilities Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China; Reference Laboratory for the Test of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
15
|
Darwish WS, Chiba H, El-Ghareeb WR, Elhelaly AE, Hui SP. Determination of polycyclic aromatic hydrocarbon content in heat-treated meat retailed in Egypt: Health risk assessment, benzo[a]pyrene induced mutagenicity and oxidative stress in human colon (CaCo-2) cells and protection using rosmarinic and ascorbic acids. Food Chem 2019; 290:114-124. [PMID: 31000027 DOI: 10.1016/j.foodchem.2019.03.127] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/01/2019] [Accepted: 03/24/2019] [Indexed: 02/03/2023]
Abstract
This study was undertaken to estimate the concentrations of the formed polycyclic aromatic hydrocarbons (PAHs) in heat-treated (boiled, pan-fried and grilled) meats collected from Egypt. Dietary intakes and cancer risks of PAHs among Egyptian adults were calculated. Benzo[a]pyrene (B[a]P)-induced mutagenicity and oxidative stress in human colon (CaCo-2) cell line and mechanisms behind such effects were also investigated. Finally, protection trials using rosmarinic (RMA) and ascorbic acids (ASA) were carried out. The results indicated formation of PAHs at high levels in the heat-treated meats. Calculated incremental life time cancer risk among Egyptian adults were 7.05179E-07, 7.00604 E-06 and 1.86069 E-05 due to ingestion of boiled, pan-fried and grilled meats, respectively. B[a]P-exposed CaCo-2 cells had high abilities for mutagenicity (490.05 ± 21.37 His + revertants) and production of reactive oxygen species. RMA and ASA protected CaCo-2 cells via reduction of B[a]P-induced mutagenicity and oxidative stress and upregulation of phase II detoxification enzymes and xenobiotic transporters.
Collapse
Affiliation(s)
- Wageh Sobhy Darwish
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 060-0812, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi 4-2-1-15, Higashi Ku, Sapporo 007-0894, Japan
| | - Waleed Rizk El-Ghareeb
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Saudi Arabia
| | - Abdelazim Elsayed Elhelaly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; Center for Emerging Infectious Diseases, School of Medicine, Gifu University, Gifu 501-1193, Japan
| | - Shu-Ping Hui
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo 060-0812, Japan.
| |
Collapse
|
16
|
Darwish WS, Chiba H, Elhelaly AE, Hui SP. Estimation of cadmium content in Egyptian foodstuffs: health risk assessment, biological responses of human HepG2 cells to food-relevant concentrations of cadmium, and protection trials using rosmarinic and ascorbic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15443-15457. [PMID: 30941714 DOI: 10.1007/s11356-019-04852-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that can get entry into human body via ingestion of contaminated foods causing multiple organ damage. This study aimed at monitoring Cd residues in 20 foodstuffs of animal origin that are commonly consumed in Egypt. Health risk assessment was conducted via calculation of Cd dietary intakes and non-carcinogenic target hazard quotient. An in vitro approach was performed to investigate the constitutive effects of Cd on human hepatoma (HepG2) cells under food-relevant concentrations. Trials to reduce Cd-induced adverse effects on HepG2 cells were done using rosmarinic (RMA) and ascorbic acids (ASA). The achieved results indicated contamination of the tested foodstuffs with Cd at high levels with potential human health hazards. Cd at food-relevant concentrations caused significant cytotoxicity to HepG2 cells. This may be attributed to induction of oxidative stress and inflammation, as indicated by the overexpression of stress and inflammatory markers. At the same time, Cd downregulated xenobiotic transporters and upregulated the proliferation factors. Co-exposure of HepG2 cells to Cd and micronutrients such as RMA and ASA led to recovery of cells from the oxidative damage, and subsequently cell viability was strongly improved. RMA and ASA ameliorated the biological responses of HepG2 cells to Cd exposure.
Collapse
Affiliation(s)
- Wageh Sobhy Darwish
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi 4-2-1-15, Higashi Ku, Sapporo, 007-0894, Japan
| | - Abdelazim Elsayed Elhelaly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
- Center for Emerging Infectious Diseases, School of Medicine, Gifu University, Gifu, 501-1193, Japan
| | - Shu-Ping Hui
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan.
| |
Collapse
|
17
|
Han J, Park JC, Kang HM, Byeon E, Yoon DS, Lee MC, Sayed AEDH, Hwang UK, Lee JS. Adverse effects, expression of defense-related genes, and oxidative stress-induced MAPK pathway in the benzo[α]pyrene-exposed rotifer Brachionus rotundiformis. AQUATIC TOXICOLOGY 2019; 210:188-195. [PMID: 30870665 DOI: 10.1016/j.aquatox.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/07/2023]
Abstract
To examine the adverse effects of the benzo[α]pyrene (B[α]P), the monogonont rotifer Brachionus rotundiformis was exposed to various concentration of B[α]P (0 [control], 1, 10, and 100 μg/L) and measured life cycle parameters (e.g., mortality, fecundity [cumulated number of offspring], and lifespan), reactive oxygen species (ROS), antioxidant enzymatic activity of glutathione S-transferase (GST). In addition, defense-related transcripts (e.g., glutathione S-transferases [GSTs], ATP binding cassette [ABCs] transporters) and Western blot analysis of mitogen-activated protein kinase (MAPK) signaling pathway were investigated in B[α]P-exposed rotifer. In this study, the total intracellular ROS level and GST activity were significantly increased (P < 0.05), while fecundity and lifespan were also significantly (P < 0.05) reduced in a concentration dependent manner in B[α]P-exposed B. rotundiformis. In addition, transcriptional regulation of GSTs and ABC transporters were significantly upregulated and downregulated (P < 0.05), respectively, suggesting that B[α]P can induce oxidative stress leading to induction of antioxidant system and detoxification mechanism. In addition to detoxification-related genes, B[α]P-exposed B. rotundiformis showed the increased levels of the p-JNK and p-p38, suggesting that B[α]P can activate MAPK signaling pathway in B. rotundiformis.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 46083, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
18
|
Tian J, Hu J, Liu G, Yin H, Chen M, Miao P, Bai P, Yin J. Altered Gene expression of ABC transporters, nuclear receptors and oxidative stress signaling in zebrafish embryos exposed to CdTe quantum dots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:588-599. [PMID: 30384064 DOI: 10.1016/j.envpol.2018.10.092] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Adenosine triphosphate-binding cassette (ABC) transporters, including P-glycoprotein (Pgp) and multi-resistance associated proteins (Mrps), have been considered important participants in the self-protection of zebrafish embryos against environmental pollutants, but their possible involvement in the efflux and detoxification of quantum dots (QDs), as well as their regulation mechanism are currently unclear. In this work, gene expression alterations of ABC transporters, nuclear receptors, and oxidative stress signaling in zebrafish embryos after the treatment of mercaptopropionic acid (MPA)CdTe QDs and MPA-CdSCdTe QDs were investigated. It was observed that both QDs caused concentration-dependent delayed hatching effects and the subsequent induction of transporters like mrp1&2 in zebrafish embryos, indicating the protective role of corresponding proteins against CdTe QDs. Accompanying these alterations, expressions of nuclear receptors including the pregnane X receptor (pxr), aryl hydrocarbon receptor (ahr) 1b, and peroxisome proliferator-activated receptor (ppar)-β were induced by QDs in a concentration- and time-dependent manner. Moreover, elevated oxidative stress, reflected by the reduction of glutathione (GSH) level and superoxide dismutase (SOD) activities, as well as the dramatic induction of nuclear factor E2 related factor (nrf) 2, was also found. More importantly, alterations of pxr and nrf2 were more pronounced than that of mrps, and these receptors exhibited an excellent correlation with delayed hatching rate in the same embryos (R2 > 0.8). Results from this analysis demonstrated that the induction of mrp1 and mrp2 could be important components for the detoxification of QDs in zebrafish embryos. These transporters could be modulated by nuclear receptors and oxidative stress signaling. In addition, up-regulation of pxr and nrf2 could be developed as toxic biomarkers of CdTe QDs.
Collapse
Affiliation(s)
- Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; Academy for Engineering & Technology, Fudan University, Shanghai 200433, PR China
| | - Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Mingli Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Peng Miao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Pengli Bai
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China.
| |
Collapse
|
19
|
Wang C, Bourland WA, Mu W, Pan X. Transcriptome analysis on chlorpyrifos detoxification in Uronema marinum (Ciliophora, Oligohymenophorea). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33402-33414. [PMID: 30264342 DOI: 10.1007/s11356-018-3195-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPF) pollution has drawn widespread concerns in aquatic environments due to its risks to ecologic system, however, the response mechanisms of ciliates to CPF pollution were poorly studied. In our current work, the degradation of CPF by ciliates and the morphological changes of ciliates after CPF exposure were investigated. In addition, the transcriptomic profiles of the ciliate Uronema marinum, with and without exposure with CPF, were detected using digital gene expression technologies. De novo transcriptome assembly 166,829,634 reads produced from three groups (untreated, CPF treatment at 12 h and 24 h) by whole transcriptome sequencing (RNA-Seq). Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways were analyzed in all unigenes and different expression genes to identify their biological functions and processes. Furthermore, the results indicated that genes related to the stress response, cytoskeleton and cell structure proteins, and antioxidant systems might play an important role in the resistance mechanism of ciliates. The enzyme activities of SOD and GST after CPF stress were also analyzed, and the result showed the good antioxidant capacity of SOD and GST in ciliates inferred from the increase of the activities of the two enzymes. The ciliate Uronema marinum showed a resistance response to chlorpyrifos stress at the transcriptomic level in the present work, which indicates that ciliates can be considered as a potential bioremediation agent.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - William A Bourland
- Department of Biological Sciences, Boise State University, Boise, ID, 83725-1515, USA
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
20
|
Wang C, Pan X, Fan Y, Chen Y, Mu W. The oxidative stress response of oxytetracycline in the ciliate Pseudocohnilembus persalinus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:35-42. [PMID: 28881225 DOI: 10.1016/j.etap.2017.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 05/12/2023]
Abstract
Oxytetracycline (OTC) is commonly employed in fish farms to prevent bacterial infections in China, and because of their widely and intensive use, the potential harmful effects on organisms in aquatic environment are of great concern. Ciliates play an important role in aquatic food webs as secondary producers, and Pseudocohnilembus persalinus, is one kind of them which are easily found in fish farms, surviving in polluted water. Therefore, using P. persalinus as experimental models, this study investigated the effects of oxytetracycline (OTC) on the growth, antioxidant system and morphological damage in pollution-resistant ciliates species. Our results showed that the 96-h EC50 values for OTC of P. persalinus was 21.38mgL-1. The increased level of SOD and GSH during 96h OTC stress was related to an adaptive response under oxidative stress induced in ciliates. Additionally, sod1, sod2 and sod3 exhibited a significant increased expression level compared to control group at 24h treatment, indicating a promoting of dense system in ciliates at this exposure time. However, only sod1 and sod2 showed raised expression level at 48h stress, showing the different sensitive of gene isoforms to some extent. With OTC treatment, damage of regular wrinkles, shrunk, twisted on the cell surface, even forming cyst of scuticociliatid ciliate cells were firstly observed by SEM (scanning electron microscope) in this study. Overall, physiological, molecular and morphological information on the toxicological studies of ciliates and more information on possibility of ciliates as indicators of contamination were provided in this study.
Collapse
Affiliation(s)
- Chongnv Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xuming Pan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying Chen
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Weijie Mu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
21
|
Kim BM, Rhee JS, Choi IY, Lee YM. Transcriptional profiling of antioxidant defense system and heat shock protein (Hsp) families in the cadmium- and copper-exposed marine ciliate Euplotes crassu. Genes Genomics 2017; 40:85-98. [PMID: 29892903 DOI: 10.1007/s13258-017-0611-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
To understand the transcriptional response of antioxidant defense system and heat shock protein (Hsp) families of the marine ciliate Euplotes crassus, we analyzed the transcriptome profile using RNA-seq technology after exposure to cadmium (Cd) and copper (Cu). De novo sequence assembly produced 61,240 unigenes with 21,330 BLAST hits and showed high sequence orthology with transcriptomes of other ciliates. Gene annotation and gene ontology (GO) comparison revealed that E. crassus expressed highly diversified but conserved stress-responsive gene families of the antioxidant defense system and Hsps. After waterborne exposure to 250 μg/L of Cd and 25 μg/L of Cu, transcriptional responses of the gene families were significantly modulated, suggesting that even the unicellular E. crassus has a conserved molecular defense mechanism, such as modulating mRNA expression, for homeostasis. These transcriptional responses make E. crassus a potential model for understanding the molecular response of single cell ciliates to heavy metal contamination.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
22
|
Yim B, Kim H, Kim J, Kim H, Won EJ, Lee YM. Identification and molecular characterization of cytochrome P450 (CYP450) family genes in the marine ciliate Euplotes crassus: The effect of benzo[a]pyrene and beta-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:71-80. [PMID: 28341215 DOI: 10.1016/j.cbpc.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Marine ciliate Euplotes crassus, a single-cell eukaryote, and has been considered as a model organism for monitoring of environmental pollutions in sediments. Cytochrome P450 (CYP450) monooxygenase are phase I enzyme involved in detoxification of environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, little information on CYP450 family genes in ciliate is available. In the present study, acute toxicity of PAH, benzo[a]pyrene (B[a]P) and PAH-like model compound, beta-naphthoflavone (β-NF), was investigated; full-length cDNA sequences and genomic structure of five CYP450 genes (CYP5680A1, CYP5681A1, CYP5681B1, CYP5682A1, and CYP5683A1) were analyzed; and finally their activities and transcriptional changes were measured after exposure to PAHs for 48h. According to the results, B[a]P exposure showed a negative effect on E. crassus survival, whereas β-NF exposure showed no significant effect. The 8h-LC50 value of B[a]P was determined to be 2.449μM (95%-C.L., 7.726-3.619μM). Five genes belonging to the CYP450 family had conserved domains and clustered with those of ciliate group, as revealed in phylogenetic analysis. CYP activity did not change after exposure to B[a]P, whereas it was slightly, but significantly, induced after exposure to β-NF. The mRNA expression of five CYP450 genes was significantly modulated in a concentration- and time-dependent manner after exposure to both the chemicals. Our findings suggest that CYP450 genes in E. crassus may be involved in detoxification of B[a]P and β-NF. This study would give a better understanding about the mode of action of B[a]P and β-NF in marine ciliates at the molecular level.
Collapse
Affiliation(s)
- Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science & Technology, Ansan 15627, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|