1
|
Islam R, Yu RMK, O'Connor WA, Lin X, Lai KP, Leusch FDL, MacFarlane GR. Intergenerational toxicity of 17α-ethinylestradiol (EE2): Effects of parental exposure on early larval development and transcriptomic profiles in the Sydney rock oyster, Saccostrea glomerata. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134876. [PMID: 38870858 DOI: 10.1016/j.jhazmat.2024.134876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
This study exposed adult Sydney rock oysters, of either sex or both, to the synthetic estrogen 17α-ethinylestradiol (EE2) at 50 ng/L for 21 days, followed by an examination of developmental endpoints and transcriptomic responses in unexposed larvae. Reduced survival was observed at 1 day post-fertilisation (dpf) in larvae from bi-parental exposure (FTMT). Motile larvae at 2 dpf were fewer from maternal (FTMC), paternal (FCMT), and FTMT exposures. Additionally, shell length at 7 dpf decreased in larvae from FTMC and FTMT parents. RNA sequencing (RNA-seq) revealed 1064 differentially expressed genes (DEGs) in 1-dpf larvae from FTMT parents, while fewer DEGs were detected in larvae from FTMC and FCMT parents, with 258 and 7, respectively. GO and KEGG analyses showed significant enrichment of DEGs in diverse terms and pathways, with limited overlap among treatment groups. IPA results indicated potential inhibition of pathways regulating energy production, larval development, transcription, and detoxification of reactive oxygen species in FTMT larvae. qRT-PCR validation confirmed significant downregulation of selected DEGs involved in these pathways and relevant biological processes, as identified in the RNA-seq dataset. Overall, our results suggest that the intergenerational toxicity of EE2 is primarily maternally transmitted, with bi-parental exposure amplifying these effects.
Collapse
Affiliation(s)
- Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Xiao Lin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, QLD 4222, Australia
| | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
2
|
Wang L, Miao J, Ding M, Zhang W, Pan L. Exploring the mechanism of nonylphenol-induced ovarian developmental delay of manila clams, Ruditapes philippinarum: Applying RNAi to toxicological analysis. CHEMOSPHERE 2024; 356:141905. [PMID: 38579946 DOI: 10.1016/j.chemosphere.2024.141905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Nonylphenol (NP) contamination in the coastal environment of China poses ecological risks to aquatic organisms. However, the endocrine disruptive impacts of NP on bivalves, particularly on ovarian development, remain poorly understood. In this study, Manila clams Ruditapes philippinarum at the developing stage of gonad were exposed to 1.0 μg/L NP for 21 days. Utilizing RNA interference (RNAi) to suppress ER gene expression, we observed a delay in ovarian development as evidenced by histological observations under both NP and NPRi (NP with ER-RNAi) treatment, with Vtg elevation exclusive to the NP group. Comprehensive analyses encompassing transcriptomics, real-time quantitative PCR, and steroid hormone measurement revealed significant alterations in aldosterone synthesis, estrogen signaling, and thyroid hormone synthesis. These pathways showed similar perturbations in both NP and NPRi groups compared to controls. Notably, the NPRi group exhibited distinct enrichment in PPAR and insulin signaling pathways, may implicating these in ER function suppression. Steroid hormone biosynthesis was notably reduced in both treatments, pointing to a profound impact on hormone synthesis. The contrast between in vivo and in vitro findings suggests that NP's detrimental effects on ovarian development may primarily involve neuroendocrine regulation of steroidogenesis. This investigation highlights the complex dynamics of NP-induced endocrine disruption in bivalves, emphasizing the pivotal role of ER and associated pathways.
Collapse
Affiliation(s)
- Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China; Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, PR China
| | - Wei Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
3
|
Yang G, Cheng K, Huang Y, Wang C. Vitamin D3 promotes fish oocyte development by directly regulating gonadal steroid hormone synthesis†. Biol Reprod 2024; 110:521-535. [PMID: 38145497 DOI: 10.1093/biolre/ioad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 12/27/2023] Open
Abstract
Vitamin D receptors and vitamin D3-metabolizing enzymes have been found to be highly expressed in the ovaries and spermatophores of fish. However, the role of vitamin D3 on fish gonadal development has rarely been reported. In this study, 2-month-old female zebrafish were fed with different concentrations of vitamin D3 diets (0, 700, 1400, and 11 200 IU/kg) to investigate the effects of vitamin D3 on ovarian development. The diet with 0 IU/kg vitamin D3 resulted in elevated interstitial spaces, follicular atresia, and reproductive toxicity in zebrafish ovaries. Supplementation with 700 and 1400 IU/kg of vitamin D3 significantly increased the oocyte maturation rate; upregulated ovarian gonadal steroid hormone synthesis capacity; and elevated plasma estradiol, testosterone, and ovarian vitellogenin levels. Furthermore, the current study identified a vitamin D response element in the cyp19a1a promoter and demonstrated that 1.25(OH)2D3-vitamin D response directly activated cyp19a1a production through activating the vitamin D response element. In conclusion, this study shows that an appropriate concentration of vitamin D3 can promote zebrafish ovarian development and affect vitellogenin synthesis through the vdr/cyp19a1a/er/vtg gene axis.
Collapse
Affiliation(s)
- Gang Yang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ke Cheng
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanqing Huang
- Department of Aquaculture Technology, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Chunfang Wang
- Department of Fishery Resources and Environment, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
André C, Duy SV, Sauvé S, Gagné F. Comparative toxicity of urban wastewater and rainfall overflow in caged freshwater mussel Elliptio complanata. Front Physiol 2023; 14:1233659. [PMID: 37637140 PMCID: PMC10449329 DOI: 10.3389/fphys.2023.1233659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023] Open
Abstract
Municipal effluents are well-recognized as disrupting sexual differentiation and reproduction in mussels. However, the contribution to this problem made by rainfall combined with sewer overflow (increased by rain due to climate change) is not well understood. The purpose of this study was to compare the neuroendocrine effects of municipal discharge and rainfall overflow on caged endemic mussel Elliptio complanata. To this end, mussels were experimentally caged and placed for 3 months at a municipal effluent dispersion plume site and at overflow sites. Data revealed that downstream surface water contained some pharmaceuticals (caffeine and carbamazepine) and accumulated significant levels of heterotrophic bacteria, but these effects were not observed at the overflow sites. The principal effects observed at the downstream site were increased soft tissue mass (and gonad index), inflammation, and Vtg proteins in male mussels as determined by a novel immunostaining methodology. The rainfall overflow sites had no effects on these markers, but were specifically associated with reduced Vtg proteins in females, dopamine (Dop), gonad lipids, and DNA strand breaks, with increased metallothioneins. In conclusion, the observed feminizing effects of municipal effluent were not additionally observed in mussels caged at rainfall overflow sites, although the latter exhibited a different pattern of toxicity.
Collapse
Affiliation(s)
- C. André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - S. V. Duy
- Chemistry Department, Montreal University, Montréal, QC, Canada
| | - S. Sauvé
- Chemistry Department, Montreal University, Montréal, QC, Canada
| | - F. Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| |
Collapse
|
5
|
Shui Y, Liu GF, Xu ZH, Zhu GY. Exploring potential proteins associated with cyclin B 3'UTR in Procambarus clarkii oocytes. Biochem Biophys Res Commun 2019; 517:458-462. [PMID: 31376940 DOI: 10.1016/j.bbrc.2019.07.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
Abstract
Cyclin B is a ubiquitous regulatory molecule and has been implicated in mitosis and meiosis in oocytes. Phenomenon that differ in the length of cyclin B 3'UTR in crustacean has attracted much attention, although molecular details are poorly understood. The study of 3'UTR-interacting proteins could yield much information in translational regulation and the mRNA localization process. Previous studies on crayfish suggested that the 3'UTR (1300 bp) probably contains the potential regulatory sequence/motifs such as CPEs and K-box et al. In present study, using pull-down assay coupled with mass spectrometry approach allowing us to explore the potential proteins associated with the 3'UTR. We finally identified four candidate proteins including Hspg 2, Vtg, eef1a and Tuba1a, which annotated as significant roles involved in cell differentiation, lipid transporter activity, and meiotic cell cycle process. The preliminary results will contribute to the advance in understanding the translational activation of cyclin B in oocyte maturation regulation in crustacean.
Collapse
Affiliation(s)
- Yan Shui
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China.
| | - Guo-Feng Liu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Zeng-Hong Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, 214081, PR China
| | - Guang-Yan Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, PR China
| |
Collapse
|
6
|
Balbi T, Ciacci C, Canesi L. Estrogenic compounds as exogenous modulators of physiological functions in molluscs: Signaling pathways and biological responses. Comp Biochem Physiol C Toxicol Pharmacol 2019; 222:135-144. [PMID: 31055067 DOI: 10.1016/j.cbpc.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
Molluscs have been widely utilized to evaluate the effects of estrogenic compounds, one of the most widespread classes of Endocrine Disrupting Chemicals-EDCs. However, knowledge on steroid signaling and metabolism in molluscs has considerably increased in the last decade: from these studies, a considerable debate emerged on the role of 'natural' steroids in physiology, in particular in reproduction, of this invertebrate group. In this work, available information on the effects and mechanisms of action of estrogens in molluscs will be reviewed, with particular emphasis on bivalves that, widespread in aquatic ecosystems, are most likely affected by exposure to estrogenic EDCs. Recent advances in steroid uptake and metabolism, and estrogen receptors-ERs in molluscs, as well as in estrogen signaling in vertebrates, will be considered. The results so far obtained with 17β-estradiol and different estrogenic compounds in the model bivalve Mytilus spp., demonstrate specific effects on immune function, development and metabolism. Transcriptomic data reveal non genomic estrogen signaling pathways in mussel tissues that are supported by new observations at the cellular level. In vitro and in vivo data show, through independent lines of evidence, that estrogens act through non-genomic signaling pathways in bivalves. In this light, regardless of whether molluscs synthesize estrogens de novo or not, and despite their ERs are not directly activated by ligand binding, estrogens can interact with multiple signaling components, leading to modulation of different physiological functions. Increasing knowledge in endocrine physiology of molluscs will provide a framework for a better evaluation and interpretation of data on the impact of estrogenic EDCs in this invertebrate group.
Collapse
Affiliation(s)
- Teresa Balbi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences (DIBS), University 'Carlo Bo' of Urbino, Urbino, Italy
| | - Laura Canesi
- Dept. of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genoa, Italy.
| |
Collapse
|
7
|
Agnese M, Rosati L, Prisco M, Borzacchiello L, Abagnale L, Andreuccetti P. The expression of estrogen receptors during the Mytilus galloprovincialis ovarian cycle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:367-373. [PMID: 31145556 DOI: 10.1002/jez.2272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
Abstract
The aim of this paper is to assess, by real-time polymerase chain reaction and in situ hybridization, the expression of estrogen receptors ER1 and ER2 during the ovarian cycle of Mytilus galloprovincialis. By considering four phases of the reproductive cycle, that is stasis and previtellogenic stage (Stage 0), early vitellogenesis (Stage I), vitellogenesis (Stage II), full-grown oocyte (Stage III), our investigation demonstrates that the two receptors are differently expressed during the phases investigated of the ovarian cycle: ER1 reaches the highest level at Stage III, whereas ER2 reaches the highest level at Stage II, with ER2 always present at higher levels than ER1. The stage-dependent receptor expression was recorded within oocytes, follicle cells, and adipogranular cells. No ER1 and ER2 messenger RNAs (mRNAs) were found within vesicular cells. It is to be noted that the ER1 and ER2 expression within the growing oocytes, the follicular, and adipogranular cells overlaps with that of the mRNA for vitellogenin in the same cells, strongly suggesting that in Mytilus, as in vertebrates studied so far, the vitellogenin expression is under the control of estrogens.
Collapse
Affiliation(s)
- Marisa Agnese
- Department of Biology, Federico II Naples University, Naples, Italy
| | - Luigi Rosati
- Department of Biology, Federico II Naples University, Naples, Italy.,Dipartimento di Scienze e Tecnologie, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marina Prisco
- Department of Biology, Federico II Naples University, Naples, Italy
| | | | | | | |
Collapse
|
8
|
Tran TKA, Yu RMK, Islam R, Nguyen THT, Bui TLH, Kong RYC, O'Connor WA, Leusch FDL, Andrew-Priestley M, MacFarlane GR. The utility of vitellogenin as a biomarker of estrogenic endocrine disrupting chemicals in molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:1067-1078. [PMID: 31091639 DOI: 10.1016/j.envpol.2019.02.056] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Estrogenic endocrine disrupting chemicals (EDCs) are natural hormones, synthetic compounds or industrial chemicals that mimic estrogens due to their structural similarity with estrogen's functional moieties. They typically enter aquatic environments through wastewater treatment plant effluents or runoff from intensive livestock operations. Globally, most natural and synthetic estrogens in receiving aquatic environments are in the low ng/L range, while industrial chemicals (such as bisphenol A, nonylphenol and octylphenol) are present in the μg to low mg/L range. These environmental concentrations often exceed laboratory-based predicted no effect concentrations (PNECs) and have been evidenced to cause negative reproductive impacts on resident aquatic biota. In vertebrates, such as fish, a well-established indicator of estrogen-mediated endocrine disruption is overexpression of the egg yolk protein precursor vitellogenin (Vtg) in males. Although the vertebrate Vtg has high sensitivity and specificity to estrogens, and the molecular basis of its estrogen inducibility has been well studied, there is growing ethical concern over the use of vertebrate animals for contaminant monitoring. The potential utility of the invertebrate Vtg as a biomonitor for environmental estrogens has therefore gained increasing attention. Here we review evidence providing support that the molluscan Vtg holds promise as an invertebrate biomarker for exposure to estrogens. Unlike vertebrates, estrogen signalling in invertebrates remains largely unclarified and the classical genomic pathway only partially explains estrogen-mediated activation of Vtg. In light of this, in the latter part of this review, we summarise recent progress towards understanding the molecular mechanisms underlying the activation of the molluscan Vtg gene by estrogens and present a hypothetical model of the interplay between genomic and non-genomic pathways in the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Thi Kim Anh Tran
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Richard Man Kit Yu
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rafiquel Islam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia, 7003, Bangladesh
| | - Thi Hong Tham Nguyen
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Institute for Agriculture and Resources, Vinh University, Viet Nam
| | - Thi Lien Ha Bui
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia; Division of Experimental Biology, Research Institute for Aquaculture No 2, Viet Nam
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, China
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith School of Environment and Science, Griffith University, QLD, 4111, Australia
| | | | - Geoff R MacFarlane
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
9
|
Aquilino M, Sánchez-Argüello P, Novo M, Martínez-Guitarte JL. Effects on tadpole snail gene expression after exposure to vinclozolin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:568-577. [PMID: 30576892 DOI: 10.1016/j.ecoenv.2018.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/06/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The fungicide vinclozolin (Vz) is an endocrine disruptor with known anti-androgenic activity in vertebrates. However, there is a lack of information about the Vz mode of action in invertebrates, although some studies have shown that this compound can produce alterations in different species. Transcriptional activity was analyzed in the freshwater snail Physella acuta in order to elucidate putative cellular processes altered by this chemical during a response. In order to identify potential molecular biomarkers, a de novo transcriptome was generated for this species that constitutes a valuable source for future studies. This data, together with some already available data, permitted the identification of several genes related to detoxification mechanisms (Cyp2u1, Cyp3a7, Cyp4f22, GSTo1, GSTt2, and MRP1), stress response (Hsp20.4, Hsp17, Hsp16.6, and Cu,Zn-SOD), the hormonal system (Estrogen Receptor and Hsp90), apoptosis (Casp3), and copper homeostasis (ATOX1). Using quantitative Real-Time polymerase chain reaction, mRNA levels of these genes were examined in snails exposed to 20 or 200 µg/L Vz for 24 h. The results showed an overall weak response, with downregulation of Hsp20.4 and no statistically significant change for the other genes. These findings suggest that P. acuta can manage the concentrations of Vz found in the environment with no relevant activation of the pathways analyzed, although additional studies are needed for longer exposure times and including other metabolic pathways. The new genes described open the range of processes that can be studied at the molecular level in toxicity tests.
Collapse
Affiliation(s)
- Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | - Paloma Sánchez-Argüello
- Laboratory for Ecotoxicology, Department of the Environment, INIA, Crta A Coruña km 7, 28040 Madrid, Spain
| | - Marta Novo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain; Biodiversity, Ecology and Evolution, Biological Sciences, Complutense University of Madrid, José Antonio Nóvais sn, Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|
10
|
Ma F, Han X, An L, Lei K, Qi H, LeBlanc GA. Freshwater snail Parafossarulus striatulus estrogen receptor: Characteristics and expression profiles under lab and field exposure. CHEMOSPHERE 2019; 220:611-619. [PMID: 30597369 DOI: 10.1016/j.chemosphere.2018.12.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The modes of action by which putative endocrine disrupting chemicals (EDCs) elicit toxicity in mollusks remains unclear due to our limited understanding of the molluscan endocrine system. We identified and partially characterised the estrogen receptor (ER) of the mollusk Parafossarulus striatulus. The full-length cDNA of the ER of P. striatulus (psER) was isolated and found to have an ORF of 1386 bp which corresponded to 461 amino acids. Phylogenetic analysis revealed that psER is an orthologue of ER of other mollusks. Moreover, the DNA-binding domain, ligand-binding domain, P-box, D-box, and AF2 domain were also identified in psER. Exposure of females and males to 17β-estradiol (E2, 100 ng/L) for 24 h and 72 h did not alter psER transcription, but exposure to 17α-methyltestosterone (MT, 100 μg/L) for 72 h significantly decreased ER transcription in females only (p < 0.05). psER transcription was surveyed in males and females seeded in different regions in Taihu Lake, China. psER transcription were elevated among females and males maintained at site ML. This elevation was statistically significant (p < 0.05) among male snails as compared to snails held at the more pristine site of SZ. This was different to the results from lab, implying that some unknown chemicals or other environmental factors in field could affect psER transcription level in snails. Furthermore, females and males held at site ML also exhibited a significant elevation in vitellogenin transcription as compared to snails held at site SZ, suggesting that vitellogenin production may be directly regulated by psER or co-regulated with psER in this species.
Collapse
Affiliation(s)
- Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xuemei Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lihui An
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hongli Qi
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin, 300384, China
| | - Gerald A LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|