1
|
Linek N, Yanco SW, Volkmer T, Zuñiga D, Wikelski M, Partecke J. Migratory lifestyle carries no added overall energy cost in a partial migratory songbird. Nat Ecol Evol 2024:10.1038/s41559-024-02545-y. [PMID: 39294404 DOI: 10.1038/s41559-024-02545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/22/2024] [Indexed: 09/20/2024]
Abstract
Seasonal bird migration may provide energy benefits associated with moving to areas with less physiologically challenging climates or increased food availability, but migratory movements themselves may carry high costs. However, time-dynamic energy profiles of free-living migrants-especially small-bodied songbirds-are challenging to measure. Here we quantify energy output and thermoregulatory costs in partially migratory common blackbirds using implanted heart rate and temperature loggers paired with automated radio telemetry and energetic modelling. Our results show that blackbirds save considerable energy in preparation for migration by decreasing heart rate and body temperature 28 days before departure, potentially dwarfing the energy costs of migratory flights. Yet, in warmer wintering areas, migrants do not appear to decrease total daily energy expenditure despite a substantially reduced cost of thermoregulation. These findings indicate differential metabolic programmes across different wintering strategies despite equivalent overall energy expenditure, suggesting that the maintenance of migration is associated with differences in energy allocation rather than with total energy expenditure.
Collapse
Affiliation(s)
- Nils Linek
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Scott W Yanco
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Tamara Volkmer
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Zuñiga
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Martin Wikelski
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jesko Partecke
- Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Riddell EA, Burger IJ, Tyner-Swanson TL, Biggerstaff J, Muñoz MM, Levy O, Porter CK. Parameterizing mechanistic niche models in biophysical ecology: a review of empirical approaches. J Exp Biol 2023; 226:jeb245543. [PMID: 37955347 DOI: 10.1242/jeb.245543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Mechanistic niche models are computational tools developed using biophysical principles to address grand challenges in ecology and evolution, such as the mechanisms that shape the fundamental niche and the adaptive significance of traits. Here, we review the empirical basis of mechanistic niche models in biophysical ecology, which are used to answer a broad array of questions in ecology, evolution and global change biology. We describe the experiments and observations that are frequently used to parameterize these models and how these empirical data are then incorporated into mechanistic niche models to predict performance, growth, survival and reproduction. We focus on the physiological, behavioral and morphological traits that are frequently measured and then integrated into these models. We also review the empirical approaches used to incorporate evolutionary processes, phenotypic plasticity and biotic interactions. We discuss the importance of validation experiments and observations in verifying underlying assumptions and complex processes. Despite the reliance of mechanistic niche models on biophysical theory, empirical data have and will continue to play an essential role in their development and implementation.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabella J Burger
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tamara L Tyner-Swanson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Justin Biggerstaff
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Cody K Porter
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Sentís M, Pacioni C, De Cuyper A, Janssens GP, Lens L, Strubbe D. Biophysical models accurately characterize the thermal energetics of a small invasive passerine bird. iScience 2023; 26:107743. [PMID: 37720095 PMCID: PMC10504485 DOI: 10.1016/j.isci.2023.107743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
Effective management of invasive species requires accurate predictions of their invasion potential in different environments. By considering species' physiological tolerances and requirements, biophysical mechanistic models can potentially deliver accurate predictions of where introduced species are likely to establish. Here, we evaluate biophysical model predictions of energy use by comparing them to experimentally obtained energy expenditure (EE) and thermoneutral zones (TNZs) for the common waxbill Estrilda astrild, a small-bodied avian invader. We show that biophysical models accurately predict TNZ and EE and that they perform better than traditional time-energy budget methods. Sensitivity analyses indicate that body temperature, metabolic rate, and feather characteristics were the most influential traits affecting model accuracy. This evaluation of common waxbill energetics represents a crucial step toward improved parameterization of biophysical models, eventually enabling accurate predictions of invasion risk for small (sub)tropical passerines.
Collapse
Affiliation(s)
- Marina Sentís
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Cesare Pacioni
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Annelies De Cuyper
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Geert P.J. Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| | - Diederik Strubbe
- Terrestrial Ecology Unit, Department of Biology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Strubbe D, Jiménez L, Barbosa AM, Davis AJS, Lens L, Rahbek C. Mechanistic models project bird invasions with accuracy. Nat Commun 2023; 14:2520. [PMID: 37130835 PMCID: PMC10154326 DOI: 10.1038/s41467-023-38329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
Invasive species pose a major threat to biodiversity and inflict massive economic costs. Effective management of bio-invasions depends on reliable predictions of areas at risk of invasion, as they allow early invader detection and rapid responses. Yet, considerable uncertainty remains as to how to predict best potential invasive distribution ranges. Using a set of mainly (sub)tropical birds introduced to Europe, we show that the true extent of the geographical area at risk of invasion can accurately be determined by using ecophysiological mechanistic models that quantify species' fundamental thermal niches. Potential invasive ranges are primarily constrained by functional traits related to body allometry and body temperature, metabolic rates, and feather insulation. Given their capacity to identify tolerable climates outside of contemporary realized species niches, mechanistic predictions are well suited for informing effective policy and management aimed at preventing the escalating impacts of invasive species.
Collapse
Affiliation(s)
- Diederik Strubbe
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium.
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark.
| | - Laura Jiménez
- School of Life Sciences, University of Hawai'i at Mānoa, 2538 McCarthy Mall, Honolulu, HI, 96822, USA
- Centro de Modelamiento Matemático (CNRS IRL2807), Universidad de Chile, Santiago, Chile
| | - A Márcia Barbosa
- CICGE-Centro de Investigação em Ciências Geo-Espaciais, Alameda do Monte da Virgem, 4430-146, Vila Nova de Gaia, Portugal
| | - Amy J S Davis
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
- Ecology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Gent, Belgium
| | - Carsten Rahbek
- Center for Macroecology, Evolution, and Climate (CMEC), GLOBE Institute, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
5
|
West BM, Wildhaber ML, Aagaard KJ, Thogmartin WE, Moore AP, Hooper MJ. Migration and energetics model predicts delayed migration and likely starvation in oiled waterbirds. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Murphy E, Jessopp M, Darby J. Light to intermediate oil sheens increase Manx shearwater feather permeability. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220488. [PMID: 36249329 PMCID: PMC9533009 DOI: 10.1098/rsos.220488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Oil pollution has profound negative impacts on the marine environment, with seabirds particularly vulnerable to oiling, due to the amount of time spent on the sea surface foraging or resting. Exposure to oil can affect feather structure and influence waterproofing, buoyancy and thermoregulation. We investigated the effects of surface crude oil on the feather structure of Manx shearwaters (Puffinus puffinus), a seabird species that spends a high proportion of time on the water surface. Sampled body contour feathers were exposed to varying thicknesses of surface crude oil before assessing their resistance to water permeation, increase in mass and clumping of feather barbules. Surface oil as thin as 0.1 µm was enough to increase feather permeability, while greatest impacts on permeability were caused by exposure to dark colour surface sheens 3 µm in thickness. Increases in feather mass of up to 1000% were noted in heavy oiling scenarios due to contact with thicker oil slicks, which may significantly affect wing loading and energetic expenditure.
Collapse
Affiliation(s)
- E. Murphy
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - M. Jessopp
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - J. Darby
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Ruberg EJ, King MD, Elliott JE, Tomy GT, Idowu I, Vermette ML, Williams TD. Effects of diluted bitumen exposure on the survival, physiology, and behaviour of zebra finches (Taeniopygia guttata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113071. [PMID: 34915220 DOI: 10.1016/j.ecoenv.2021.113071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Diluted bitumen (dilbit) is an unconventional crude petroleum increasingly being extracted and transported to market by pipeline and tanker. Despite the transport of dilbit through terrestrial, aquatic, and coastal habitat important to diverse bird fauna, toxicity data are currently only available for fish and invertebrates. We used the zebra finch (Taeniopygia guttata) as a tractable, avian model system to investigate exposure effects of lightly weathered Cold Lake blend dilbit on survival, tissue residue, and a range of physiological and behavioural endpoints. Birds were exposed via oral gavage over 14-days with dosages of 0, 2, 4, 6, 8, 10, or 12 mL dilbit/kg bw/day. We identified an LD50 of 9.4 mL/kg/d dilbit, with complete mortality at 12 mL/kg/d. Mortality was associated with mass loss, external oiling, decreased pectoral and heart mass, and increased liver mass. Hepatic ethoxyresorufin-O-deethylase activity (EROD) was elevated in all dilbit-dosed birds compared with controls but there was limited evidence of sublethal effects of dilbit on physiological endpoints at doses < 10 mL/kg/d (hematocrit, hemoglobin, total antioxidants, and reactive oxygen metabolites). Dilbit exposure affected behavior, with more dilbit-treated birds foraging away from the feeder, more birds sleeping or idle at low dilbit doses, and fewer birds huddling together at high dilbit doses. Naphthalene, dibenzothiophene, and their alkylated congeners in particular (e.g. C2-napthalene and C2-dibenzothiophene) accumulated in the liver at greater concentrations in dilbit-treated birds compared to controls. Although directly comparable studies in the zebra finch are limited, our mortality data suggest that dilbit is more toxic than the well-studied MC252 conventional light crude oil with this exposure regime. A lack of overt sublethal effects at lower doses, but effects on body mass and composition, behaviour, high mortality, and elevated PAC residue at doses ≥ 10 mL/kg/d suggest a threshold effect.
Collapse
Affiliation(s)
- Elizabeth J Ruberg
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Melissa L Vermette
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
8
|
McFarland R, Barrett L, Fuller A, Hetem RS, Porter WP, Young C, Henzi SP. Infrared thermography cannot be used to approximate core body temperature in wild primates. Am J Primatol 2020; 82:e23204. [PMID: 33043502 DOI: 10.1002/ajp.23204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022]
Abstract
Understanding the physiological processes that underpin primate performance is key if we are to assess how a primate might respond when navigating new and changing environments. Given the connection between a mammal's ability to thermoregulate and the changing demands of its thermal environment, increasing attention is being devoted to the study of thermoregulatory processes as a means to assess primate performance. Infrared thermography can be used to record the body surface temperatures of free-ranging animals. However, some uncertainty remains as to how these measurements can be used to approximate core body temperature. Here, we use data collected from wild vervet monkeys (Chlorocebus pygerythrus) to examine the relationship between infrared body surface temperature, core body (intra-abdominal) temperature, and local climate, to determine to what extent surface temperatures reflect core body temperature. While we report a positive association between surface and core body temperature-a finding that has previously been used to justify the use of surface temperature measurements as a proxy for core temperature regulation-when we controlled for the effect of the local climate in our analyses, this relationship was no longer observed. That is, body surface temperatures were solely predicted by local climate, and not core body temperatures, suggesting that surface temperatures tell us more about the environment a primate is in, and less about the thermal status of its body core in that environment. Despite the advantages of a noninvasive means to detect and record animal temperatures, infrared thermography alone cannot be used to approximate core body temperature in wild primates.
Collapse
Affiliation(s)
- Richard McFarland
- Department of Anthropology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Louise Barrett
- Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.,Department of Psychology, University of Lethbridge, Lethbridge, Canada
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Robyn S Hetem
- Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa.,School of Animal, Plant and Environmental Sciences, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Warren P Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher Young
- Applied Behavioural Ecology & Ecosystems Research Unit, University of South Africa, Pretoria, South Africa.,Endocrine Research Laboratory, Mammal Research Institute, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, South Africa
| | - S Peter Henzi
- Department of Psychology, University of Lethbridge, Lethbridge, Canada.,Applied Behavioural Ecology & Ecosystems Research Unit, University of South Africa, Pretoria, South Africa
| |
Collapse
|
9
|
Horak KE, Barrett NL, Ellis JW, Campbell EM, Dannemiller NG, Shriner SA. Effects of Deepwater Horizon oil on feather structure and thermoregulation in gulls: Does rehabilitation work? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137380. [PMID: 32325625 DOI: 10.1016/j.scitotenv.2020.137380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
Impacts of large-scale oil spills on avian species are far-reaching. While media attention often focuses on lethal impacts, sub-lethal effects and the impacts of rehabilitation receive less attention. The objective of our study was to characterize effects of moderate external oiling and subsequent rehabilitation on feather structure and thermoregulation in gulls. We captured 30 wild ring-billed gulls (Larus delawarensis) and randomly assigned each individual to an experimental group: 1) controls, 2) rehabilitated birds (externally oiled, rehabilitated by washing), or 3) oiled birds (externally oiled, not rehabilitated). We externally oiled birds with weathered MC252 Deepwater Horizon oil (water for controls) and collected feathers and thermography imagery (FLIR) approximately weekly for four weeks to investigate feather structure (quantified using a barbule clumping index) and thermoregulatory ability (characterized by internal body temperature and external surface temperature). Post-oiling feather clumping was significantly higher in oiled and rehabilitated birds compared to controls, but steadily declined over time in both groups. However, feather microstructure in rehabilitated birds was indistinguishable from controls within three weeks of washing whereas the feathers of oiled birds were still significantly clumped a month post oiling. Internal body temperatures didn't differ in any of the groups, suggesting birds maintain thermoregulatory homeostasis in spite of moderate external oiling. External temperatures for rehabilitated birds didn't differ from controls within a week of rehabilitation. Overall, rehabilitation procedures were effective and washed birds were in better condition compared to non-rehabilitated, oiled birds. This study provides evidence that the benefits of rehabilitation for moderately oiled birds likely outweigh the costs with regard to feather structure and thermoregulation. While feather preening and time were insufficient to reestablish baseline fine scale feather structure in moderately oiled birds, the significant clumping reduction over time may indicate that rehabilitation of lightly oiled birds may not be necessary and deserves further study.
Collapse
Affiliation(s)
- Katherine E Horak
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA.
| | - Nicole L Barrett
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA
| | - Jeremy W Ellis
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA
| | - Emma M Campbell
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA
| | - Nicholas G Dannemiller
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA; Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80523, USA
| | - Susan A Shriner
- National Wildlife Research Center, Animal Plant Health Inspection Service, US Department of Agriculture, 4101 LaPorte Avenue, Fort Collins, CO 80521, USA
| |
Collapse
|
10
|
Dorr BS, Mathewson PD, Hanson-Dorr KC, Healy KA, Horak KE, Porter W. Landscape scale thermoregulatory costs from sublethal exposure to Deep Water Horizon oil in the double-crested cormorant. MARINE POLLUTION BULLETIN 2020; 152:110915. [PMID: 32479288 DOI: 10.1016/j.marpolbul.2020.110915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
Toxic effects of heavy oiling to wildlife are well known from oil spills, although sublethal oil exposure effects are poorly understood. We used Niche Mapper™, to compute spatially and temporally specific energetic and behavioral impacts of repeated sublethal oil exposure to double-crested cormorants (Phalacrocorax auritus). During winter (October-March) cormorants exposed to 13 g, 39 g, and 65-78 g of oil, had on average a 31%, 59%, and 76% predicted increase in total resting energetic requirements (RMR) compared to unoiled birds, respectively. Increased RMR resulted in a mean (±SD) predicted increase in time spent foraging of 36 (±13) min·d-1. During the breeding season (April-September), cormorants had on average a 29%, 57% and 73% increase in total RMR and the mean predicted increase in time spent foraging was 131 (±49) min·d-1. Thermoregulatory effects of sublethal oil exposure may cause greater impacts to bird populations than is currently understood.
Collapse
Affiliation(s)
- Brian S Dorr
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, P.O. Box 6099, Mississippi State, MS 39762, USA.
| | - Paul D Mathewson
- Department of Integrative Biology, University of Wisconsin-Madison, 250 North Mills Street, Madison, WI 53706, USA
| | - Katie C Hanson-Dorr
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, P.O. Box 6099, Mississippi State, MS 39762, USA
| | - Katherine A Healy
- U.S. Fish and Wildlife Service, Natural Resource Damage Assessment Regional Field Office, 341 Greeno Road North, Suite A, Fairhope, AL 36532, USA
| | - Katherine E Horak
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Ave., Fort Collins, CO 80521, USA
| | - Warren Porter
- Department of Integrative Biology, University of Wisconsin-Madison, 250 North Mills Street, Madison, WI 53706, USA
| |
Collapse
|
11
|
Experimental study of micro-habitat selection by ixodid ticks feeding on avian hosts. Int J Parasitol 2019; 49:1005-1014. [PMID: 31734336 DOI: 10.1016/j.ijpara.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/18/2023]
Abstract
Mechanisms of on-host habitat selection of parasites are important to the understanding of host-parasite interactions and evolution. To this end, it is important to separate the factors driving parasite micro-habitat selection from those resulting from host anti-parasite behaviour. We experimentally investigated whether tick infestation patterns on songbirds are the result of an active choice by the ticks themselves, or the outcome of songbird grooming behaviour. Attachment patterns of three ixodid tick species with different ecologies and host specificities were studied on avian hosts. Ixodes arboricola, Ixodes ricinus and Ixodes frontalis were put on the head, belly and back of adult great tits (Parus major) and adult domestic canaries (Serinus canaria domestica) which were either restricted or not in their grooming capabilities. Without exception, ticks were eventually found on a bird's head. When we gave ticks full opportunities to attach on other body parts - in the absence of host grooming - they showed lower attachment success. Moreover, ticks moved from these other body parts to the host's head when given the opportunity. This study provides evidence that the commonly observed pattern of ticks feeding on songbirds' heads is the result of an adaptive behavioural strategy. Experimental data on a novel host species, the domestic canary, and a consistent number of published field observations, strongly support this hypothesis. We address some proximate and ultimate causes that may explain parasite preference for this body part in songbirds. The link found between parasite micro-habitat preference and host anti-parasite behaviour provides further insight into the mechanisms driving ectoparasite aggregation, which is important for the population dynamics of hosts, ectoparasites and the micro-pathogens for which they are vectors.
Collapse
|
12
|
Dorr BS, Hanson-Dorr KC, Assadi-Porter FM, Selen ES, Healy KA, Horak KE. Effects of Repeated Sublethal External Exposure to Deep Water Horizon Oil on the Avian Metabolome. Sci Rep 2019; 9:371. [PMID: 30674908 PMCID: PMC6344488 DOI: 10.1038/s41598-018-36688-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022] Open
Abstract
We assessed adverse effects of external sublethal exposure of Deepwater Horizon, Mississippi Canyon 252 oil on plasma and liver metabolome profiles of the double-crested cormorant (Phalacrocorax auritus), a large (1.5 to 3.0 kg) diving waterbird common in the Gulf of Mexico. Metabolomics analysis of avian plasma showed significant negative effects on avian metabolic profiles, in some cases after only two external exposures (26 g cumulative) to oil. We observed significant (p < 0.05) changes in intermediate metabolites of energy metabolism and fatty acid and amino acid metabolic pathways in cormorants after repeated exposure to oil. Exposure to oil increased several metabolites (glycine, betaine, serine and methionine) that are essential to the one-carbon metabolism pathway. Lipid metabolism was affected, causing an increase in production of ketone bodies, suggesting lipids were used as an alternative energy source for energy production in oil exposed birds. In addition, metabolites associated with hepatic bile acid metabolism were affected by oil exposure which was correlated with changes observed in bile acids in exposed birds. These changes at the most basic level of phenotypic expression caused by sublethal exposure to oil can have effects that would be detrimental to reproduction, migration, and survival in avian species.
Collapse
Affiliation(s)
- Brian S Dorr
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, MS State, MS, 39762, USA.
| | - Katie C Hanson-Dorr
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, MS State, MS, 39762, USA
| | - Fariba M Assadi-Porter
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ebru Selin Selen
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Katherine A Healy
- US Fish and Wildlife Service, Deepwater Horizon Natural Resource Damage Assessment and Restoration Office, Fairhope, AL, 36532, USA
| | - Katherine E Horak
- US Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, 80521, USA
| |
Collapse
|