1
|
Wang Q, Li Q, Ouyang F, Ke B, Jiang S, Liu J, Yan J, Li B, Tan W, He D. Molecular epidemiology and antimicrobial resistance of Vibrio parahaemolyticus isolates from the Pearl River Delta region, China. Int J Food Microbiol 2024; 429:111025. [PMID: 39693858 DOI: 10.1016/j.ijfoodmicro.2024.111025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Pearl River Delta (PRD) region in southern China is a densely populated area and a hotspot for Vibrio parahaemolyticus infections. However, systematic research on this pathogen, particularly comparing clinical and environmental strains, remains limited. This study analyzed the molecular epidemiology and antimicrobial resistance of 200 V. parahaemolyticus isolates from 12 cities in the PRD region from 2022 to 2023. The results indicated that the most prevalent serotypes were O3:K6 (39.5 %) and O10:K4 (27.5 %), predominantly found in clinical isolates. Most clinical isolates exhibited the characteristics of toxRS/new+, tdh+, and trh-, along with the sequence type 3 (ST3), while environmental isolates did not possess these genetic markers. Antimicrobial susceptibility testing showed that although clinically recommended antibiotics remain effective, some isolates have exhibited resistance, with environmental isolates displaying higher rates of antimicrobial resistance than clinical isolates. Moreover, a total of 26 antibiotic resistance genes (ARGs) associated with 10 antibiotic categories were identified, showing variations in distribution patterns among isolates from different sources. Phylogenetic analysis indicated that clinical isolates formed a distinct lineage, contrasting with the greater diversity observed in environmental isolates. Whole-genome analysis further revealed significant differences in pathogenicity-related genes between the two groups, with genes associated with biofilm formation and antimicrobial resistance being more commonly found in environmental isolates. These findings underscore the genetic variability and distinct patterns of antimicrobial resistance between clinical and environmental V. parahaemolyticus strains, highlighting the need for ongoing surveillance and targeted interventions to effectively address foodborne illnesses.
Collapse
Affiliation(s)
- Qianru Wang
- Department of Microbiological Laboratory, Baoan District Center for Disease Control and Prevention, Shenzhen 518101, China
| | - Qingmei Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen 518107, China
| | - Fangzhu Ouyang
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Bixia Ke
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Shiqin Jiang
- Department of Clinical Pharmacy, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, China
| | - Jiajun Liu
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Jin Yan
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China
| | - Baisheng Li
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China.
| | - Wei Tan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Dongmei He
- Institute of Pathogenic Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China; Guangdong Provincial Key Laboratory of Pathogen Detection for Emerging Infectious Disease Response, Guangzhou 511430, China.
| |
Collapse
|
2
|
Li Y, Bi S, Guan W, Iddrisu L, Wei S, Chen Y, Sun L, Deng Q, Jiang Y, Fang Z, Gooneratne R. Antibiotic susceptibility of Vibrio parahaemolyticus isolated from prawns and oysters marketed in Zhanjiang, China. MARINE POLLUTION BULLETIN 2024; 206:116712. [PMID: 39018820 DOI: 10.1016/j.marpolbul.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
To evaluate the antibiotic susceptibility of Vibrio parahaemolyticus from prawns and oysters marketed in Zhanjiang, Guangdong, China. 84 strains of V. parahaemolyticus were isolated from prawns and oysters sampled from 9 major markets. The results showed that 84 V. parahaemolyticus strains had the highest rate of antibiotic resistance to oxytetracycline (69.05 %, 58/84) and the lowest rate of antibiotic resistance to enrofloxacin (1.19 %, 1/84), ciprofloxacin (4.76 %, 4/84) and norfloxacin (7.14 %, 6/84) in quinolone. Meanwhile, 96.42 % of the strains showed multiple antibiotic resistance (MAR). PCR results showed that the resistance phenotype was closely related to the antibiotic resistance genes and efflux pump genes (p < 0.01), and the efflux pump gene was the key causing MAR. The combination of antibiotics significantly eliminated multidrug resistance. In addition, efflux pump inhibitors also reduce MAR. This study may provide information on antibiotic susceptibility, antibiotic resistance and strategies for the control of V. parahaemolyticus.
Collapse
Affiliation(s)
- Yongbin Li
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Wenhao Guan
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lukman Iddrisu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China; Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, Canterbury 7647, New Zealand
| |
Collapse
|
3
|
Liu H, Zhu W, Zou Y, Xia X. Antimicrobial Activity and Mechanisms of Punicalagin against Vibrio parahaemolyticus. Foods 2024; 13:1366. [PMID: 38731737 PMCID: PMC11082947 DOI: 10.3390/foods13091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
This study sought to explore the antimicrobial activity of punicalagin against V. parahaemolyticus and its potential modes of action. V. parahaemolyticus ATCC 17802 and RIMD 2210633Sm were exposed to punicalagin, and the energy production, membrane potential, and envelope permeability, as well as the interaction with cell biomolecules, were measured using a variety of fluorescent probes combined with electrophoresis and Raman spectroscopy. Punicalagin treatment disrupted the envelope integrity and induced a decrease in intracellular ATP and pH. The uptake of 1-N-phenyl-naphtylamine (NPN) demonstrated that punicalagin weakened the outer membrane. Punicalagin damaged the cytoplasmic membrane, as indicated by the membrane depolarization and the leakage of intracellular potassium ions, proteins, and nucleic acids. Electronic microscopy observation visualized the cell damage caused by punicalagin. Further, gel electrophoresis coupled with the Raman spectrum assay revealed that punicalagin affected the protein expression of V. parahaemolyticus, and there was no effect on the integrity of genomic DNA. Therefore, the cell envelope and proteins of V. parahaemolyticus were the assailable targets of punicalagin treatment. These findings suggested that punicalagin may be promising as a natural bacteriostatic agent to control the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
| | | | | | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (H.L.); (W.Z.); (Y.Z.)
| |
Collapse
|
4
|
Nguyen KCT, Truong PH, Thi HT, Ho XT, Nguyen PV. Prevalence, multidrug resistance, and biofilm formation of Vibrio parahaemolyticus isolated from fish mariculture environments in Cat Ba Island, Vietnam. Osong Public Health Res Perspect 2024; 15:56-67. [PMID: 38481050 PMCID: PMC10982652 DOI: 10.24171/j.phrp.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 12/28/2023] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Vibrio parahaemolyticus is a major foodborne pathogen in aquatic animals and a threat to human health worldwide. This study investigated the prevalence, antimicrobial resistance, antimicrobial resistance genes (ARGs), and biofilm formation of V. parahaemolyticus strains isolated from fish mariculture environments in Cat Ba Island, Vietnam. METHODS In total, 150 rearing water samples were collected from 10 fish mariculture farms in winter and summer. A polymerase chain reaction assay was used to identify V. parahaemolyticus, its virulence factors, and ARGs. The antimicrobial resistance patterns and biofilm formation ability of V. parahaemolyticus strains were investigated using the disk diffusion test and a microtiter plate-based crystal violet method, respectively. RESULTS Thirty-seven V. parahaemolyticus isolates were recovered from 150 samples. The frequencies of the tdh and trh genes among V. parahaemolyticus isolates were 8.1% and 21.6%, respectively. More than 90% of isolates were susceptible to ceftazidime, cefotaxime, and chloramphenicol, but over 72% were resistant to ampicillin, tetracycline, and erythromycin. Furthermore, 67.57% of isolates exhibited multidrug resistance. The presence of ARGs related to gentamicin (aac(3)-IV), tetracycline (tetA) and ciprofloxacin (qnrA) in V. parahaemolyticus isolates was identified. Conversely, no ARGs related to ampicillin or erythromycin resistance were detected. Biofilm formation capacity was detected in significantly more multidrug-resistant isolates (64.9%) than non-multidrug-resistant isolates (18.9%). CONCLUSION Mariculture environments are a potential source of antibiotic-resistant V. parahaemolyticus and a hotspot for virulence genes and ARGs diffusing to aquatic environments. Thus, the prevention of antibiotic-resistant foodborne vibriosis in aquatic animals and humans requires continuous monitoring.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phuc Hung Truong
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hoa Truong Thi
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Xuan Tuy Ho
- Institute of Biotechnology, Hue University, Hue, Vietnam
- Faculty of Biotechnology, TNU-University of Sciences, Tan Thinh Ward, Thai Nguyen, Vietnam
- Department of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phu Van Nguyen
- Corresponding author: Phu Van Nguyen Institute of Biotechnology, Hue University, Nguyen Dinh Tu Street, Phu Thuong, Hue 530000, Vietnam E-mail:
| |
Collapse
|
5
|
Abou-Okada M, Rashad MM, Ali GE, Abdel-Radi S, Hassan A. Oxidative stress, gene expression and histopathology of cultured gilthead sea bream (Sparus aurata) naturally co-infected with Ergasilus sieboldi and Vibrio alginolyticus. BMC Vet Res 2023; 19:277. [PMID: 38104092 PMCID: PMC10724927 DOI: 10.1186/s12917-023-03840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Parasitic and bacterial co-infections have been associated with increasing fish mortalities and severe economic losses in aquaculture through the past three decades. The aim of this study was to evaluate the oxidative stress, histopathology, and immune gene expression profile of gilthead sea bream (Sparus aurata) co-infected with Ergasilus sieboldi and Vibrio alginolyticus. RESULTS Vibrio alginolyticus and Ergasilus sieboldi were identified using 16 S rRNA and 28 S rRNA sequencing, respectively. The collagenase virulence gene was found in all Vibrio alginolyticus isolates, and the multiple antimicrobial resistance index ranged from 0.286 to 0.857. Oxidant-antioxidant parameters in the gills, skin, and muscles of naturally infected fish revealed increased lipid peroxidation levels and a decrease in catalase and glutathione antioxidant activities. Moreover, naturally co-infected gilthead sea bream exhibited substantial up-regulation of il-1β, tnf-α, and cyp1a1. Ergasilus sieboldi encircled gill lamellae with its second antennae, exhibited severe gill architectural deformation with extensive eosinophilic granular cell infiltration. Vibrio alginolyticus infection caused skin and muscle necrosis in gilthead sea bream. CONCLUSION This study described some details about the gill, skin and muscle tissue defense mechanisms of gilthead sea bream against Ergasilus sieboldi and Vibrio alginolyticus co-infections. The prevalence of co-infections was 100%, and no resistant fish were detected. These co-infections imbalance the health status of the fish by hampering the oxidant-antioxidant mechanisms and proinflammatory/inflammatory immune genes to a more detrimental side. Our results suggest that simultaneous screening for bacterial and parasitic pathogens should be considered.
Collapse
Affiliation(s)
- Mahmoud Abou-Okada
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Maha M Rashad
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ghada E Ali
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Shimaa Abdel-Radi
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
6
|
Li D, Zhao J, Lan W, Zhao Y, Sun X. Effect of food matrix on rapid detection of Vibrio parahaemolyticus in aquatic products based on toxR gene. World J Microbiol Biotechnol 2023; 39:188. [PMID: 37156898 DOI: 10.1007/s11274-023-03640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
Vibrio parahaemolyticus has become an important public threat to human health. Rapid and robust pathogen diagnostics are necessary for monitoring its outbreak and spreading. Herein, we report an assay for the detection of V. parahaemolyticus based on recombinase aided amplification (RAA) combined with lateral flow dipstick (LFD), namely RAA-LFD. The RAA-LFD took 20 min at 36~38 ℃, and showed excellent specificity. It detected as low as 6.4 fg/µL of V. parahaemolyticus in genomic DNA, or 7.4 CFU/g spiked food samples with 4 h of enrichment. The limit of detection in shrimp (Litopenaeus Vannamei), fish (Carassius auratus), clam (Ruditapes philippinarum) evidenced that sensitivity was considerably affected by the food matrix. The presence of food matrix reduced the sensitivity of spiked food samples by 10 ~ 100 times. In the filed samples detection, RAA-LFD method showed good coincidence with GB4789.7-2013 method and PCR method at rates of 90.6% and 94.1%, respectively. RAA-LFD has high accuracy and sensitivity for the detection of V. parahaemolyticus, which can serve as a model tool to meet the growing need for point-of-care diagnosis of V. parahaemolyticus.
Collapse
Affiliation(s)
- Darong Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Jiayi Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China
| | - Xiaohong Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, 201306, People's Republic of China.
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, 201306, People's Republic of China.
| |
Collapse
|
7
|
Xiao C, Qiao Y, Yang G, Feng L. Antibiotics resistance evolution of isolated Vibrio parahaemolyticus from mariculture under the continuous culture of sub-inhibitory concentrations of Ulva fasciata hydroponic solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160124. [PMID: 36372171 DOI: 10.1016/j.scitotenv.2022.160124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of vibriosis from Vibrio (V.) parahaemolyticus is widespread in the mariculture, and live macroalgae has been considered to be effective and eco-friendly approach for the control of vibriosis. Three V. parahaemolyticus strains with β-lactam antibiotics resistance (resistant to ampicillin (AM), amoxicillin (AMX)) were isolated from mariculture in study, and the antibiotics resistance evolution mechanism was examined at the sub-inhibitory concentration (SIC) of hydroponic solution of Ulva (U.) fasciata (HSUF). The HSUF with the highest density (20 g fresh weight U. fasciata L-1) demonstrated the strongest inhibitory rates (47.0 %-65.8 %) on the three strains during the stable phase (8-24 h) of growth curve, which indicated that the HSUF (≤20 g L-1) could be considered to be at SIC for V. parahaemolyticus strains. After continuous subculture of V. parahaemolyticus with three dilutes (1/2 (HT), 1/20 (MT) and 1/50 (LT)) of HSUF (20 g L-1), all the strains of 20th generation were still resistant to AM and AMX. However, the LT condition reduced MIC of AM (2-16 times) and AMX (0-2 times) to strains, while MT and HT showed significantly various effect of β-lactam antibiotics resistance on different strains. The biofilm formation and ROS content of V. parahaemolyticus were almost positively correlated to the concentrations of HSUF. Transcriptome sequencing analysis of a representative strain showed that the lower concentrations of HSUF caused more down-regulated DEGs of the strains, and more down-regulated (vmeA, vmeB, sapA, mrdA) DEGs of strains were related to the pathway of β-lactam antibiotics resistance at LT condition. Thus, low concentration of HSUF was seemed to have better improvement for V. parahaemolyticus strains resistant to β-lactam antibiotics, which were mainly related to the impairment of biofilm formation, ROS and efflux pump.
Collapse
Affiliation(s)
- Changyan Xiao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Qiao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, People's Republic of China
| | - Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
8
|
Zhou H, Liu X, Hu W, Yang J, Jiang H, Sun X, Bie X, Lu Z, Xue F, Zeng D, Jiang L, Feng Q, Liu Y, Shen W. Prevalence, antimicrobial resistance and genetic characterization of Vibrio parahaemolyticus isolated from retail aquatic products in Nanjing, China. Food Res Int 2022; 162:112026. [DOI: 10.1016/j.foodres.2022.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/18/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022]
|
9
|
Albini E, Orso M, Cozzolino F, Sacchini L, Leoni F, Magistrali CF. A systematic review and meta-analysis on antimicrobial resistance in marine bivalves. Front Microbiol 2022; 13:1040568. [PMID: 36532500 PMCID: PMC9751792 DOI: 10.3389/fmicb.2022.1040568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 10/09/2023] Open
Abstract
Bivalves are filter-feeding animals able to accumulate contaminants and microorganisms, either of marine or terrestrial origin. The aim of this study was to describe the prevalence of antimicrobial resistance (AMR) in bacterial isolates from bivalves using a systematic review of the literature. Comprehensive searches of MEDLINE, EMBASE, and Web of Science were carried out, based upon a registered protocol (PROSPERO), and following the preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. The methodological quality of the included studies was assessed using a modified Hoy checklist. Meta-analyses of prevalence were carried out using random-effects models. In total, 103 articles were selected from 1,280 records and were included in the final analysis. The studies were from Asia (n = 54), Europe (n = 27), South and North America (n = 10 and n = 6, respectively), Africa (n = 2), Oceania (n = 1), and multicentre and intercontinental (n = 3). The meta-analysis of multiple antibiotic resistance (MAR) index revealed Aeromonas spp. as the genus with the highest prevalence of AMR (37%), followed by Vibrio spp. (34%), Salmonella spp. (18%), and Escherichia coli (15%). Resistance to third/fourth/fifth generation cephalosporins and fluoroquinolones, two highest priority, critically important antimicrobials (HPCIA), was recorded in approximately 10% of E. coli isolates. Resistance to carbapenems was very low (<2%) in Salmonella spp. and in E. coli, but was found in 5% of Vibrio spp. and in more than a third of Aeromonas spp. isolates. In aquatic bacteria, resistance to carbapenems was higher in Asian than in European isolates. Our study shows the presence of antibiotic resistant bacteria (ARB), including bacteria resistant to HPCIA, in marine bivalves, posing a risk for consumers.
Collapse
Affiliation(s)
- Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Massimiliano Orso
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Francesco Cozzolino
- Health Planning Service, Regional Health Authority of Umbria, Perugia, Italy
| | - Luca Sacchini
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | | |
Collapse
|
10
|
Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018–2020. PLoS One 2022; 17:e0273700. [PMID: 36018831 PMCID: PMC9416985 DOI: 10.1371/journal.pone.0273700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of acute seafood-associated gastroenteritis worldwide. The aim of this study was to investigate the presence of virulence genes, biofilm formation, motor capacities and antimicrobial resistance profile of V. parahaemolyticus isolates isolated from clinical samples in Nantong during 2018–2020. Sixty-six V. parahaemolyticus strains isolated from stool specimens of diarrheal patients were examined. The PCR results showed that there were two tdh+trh+ isolates, four tdh-trh- isolates and sixty tdh+trh- isolates, accounting for 3.0%, 6.1% and 90.9%, respectively. All the tdh carrying isolates manifested the positive reactions for the Kanagawa phenomenon (KP) test. Most of the isolates harbored at least one of the specific DNA markers of ‘pandemic group’ strains, suggesting that the dominant isolates of V. parahaemolyticus in Nantong might belong to the new O3: K6 or its serovariants. All tdh+ isolates possessed the Vp-PAI genes, but no tdh-trh- isolates carried the T3SS2 genes. All isolates were biofilm producers and had relatively strong motor capacities. In addition, the V. parahaemolyticus isolates were resistant to ampicillin (98.5%), cefuroxime (75.6%), cefepime (66.7%), piperacillin (59.1%) and ampicillin/sulbactam (50.0%), but sensitive to ciprofloxacin (100.0%), levofloxacin (100.0%), trimethoprim-sulfamethoxazole (98.5%), gentamicin (98.5%), amikacin (97%), meropenem (71.2%), and ceftazidime (56.1%). Multidrug-resistant isolates in clinical might be related to the inappropriate use of antimicrobials in aquaculture.
Collapse
|
11
|
Lv X, Cao W, Zhang H, Zhang Y, Shi L, Ye L. CE-RAA-CRISPR Assay: A Rapid and Sensitive Method for Detecting Vibrio parahaemolyticus in Seafood. Foods 2022; 11:foods11121681. [PMID: 35741880 PMCID: PMC9223090 DOI: 10.3390/foods11121681] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Vibrio parahaemolyticus is one of the major pathogenic Vibrio species that contaminate seafood. Rapid and accurate detection is crucial for avoiding foodborne diseases caused by pathogens and is important for food safety management and mariculture. In this study, we established a system that combines chemically enhanced clustered regularly interspaced short palindromic repeats (CRISPR) and recombinase-aided amplification (RAA) (CE–RAA–CRISPR) for detecting V. parahaemolyticus in seafood. The method combines RAA with CRISPR-associated protein 12a (Cas12a) for rapid detection in a one-pot reaction, effectively reducing the risk of aerosol contamination during DNA amplifier transfer. We optimized the primers for V. parahaemolyticus, determined the optimal crRNA/Cas12a ratio, and demonstrated that chemical additives (bovine serum albumin and L-proline) could enhance the detection capacity of Cas12a. The limit of detection (at optimal conditions) was as low as 6.7 × 101 CFU/mL in pure cultures and 7.3 × 101 CFU/g in shrimp. Moreover, this method exhibited no cross-reactivity with other microbial pathogens. The CE–RAA–CRISPR assay was compared with the quantitative polymerase chain reaction assay using actual food samples, and it showed 100% diagnostic agreement.
Collapse
Affiliation(s)
- Xinrui Lv
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Weiwei Cao
- College of Food and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China;
| | - Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Yilin Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; (X.L.); (H.Z.); (Y.Z.); (L.S.)
- Correspondence:
| |
Collapse
|
12
|
Li W, Li Y, Zheng N, Ge C, Yao H. Occurrence and distribution of antibiotics and antibiotic resistance genes in the guts of shrimp from different coastal areas of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152756. [PMID: 34990667 DOI: 10.1016/j.scitotenv.2021.152756] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
With the continuous increase in shrimp (Litopenaeus vannamei) aquaculture production, the widespread use of antibiotics as a means of preventing and treating diseases has adversely affected the environment, animal health and symbiotic microorganisms in gut environments. At the same time, antibiotic resistance genes (ARGs) are widespread in aquaculture and pose a great threat to aquatic organisms and humans. Therefore, in the present study, the occurrence and distribution of 17 antibiotics, ARGs and mobile genetic elements (MGEs) were detected in the guts of shrimp collected from 12 coastal regions of China. The results showed that sulfadiazine, ciprofloxacin and norfloxacin were detectable in the guts of L. vannamei at all sampling sites. Sul1, sul2, floR and intI-1 were also detected in the guts of L. vannamei at all sampling sites. The total relative abundances of ARGs and MGEs were significantly positively correlated according to Pearson correlation analysis. Sulfonamide resistance genes (sul1 and sul2) were significantly positively correlated with intI-1. These results indicated that MGEs could increase the risk of horizontal gene transfer of ARGs in a gut environment. MGEs are the most important factors promoting the spread of ARGs. Correlation analysis showed that sulfadiazine was significantly positively correlated with sul1 and sul2 and that fluoroquinolone antibiotics were significantly positively correlated with floR, indicating that antibiotics could induce the production of ARGs. Network analysis indicated that Iamia and Alkaliphilus species may harbor the most antibiotic resistance genes, and these bacteria were closely related to the proliferation and spread of ARGs in a gut environment. Antibiotic use and the spread of ARGs in mariculture systems may have negative effects on shrimp and human health. The use of antibiotics should be strictly regulated to control contaminants in mariculture systems, including pathogens and ARGs, thereby reducing potential risks to human health.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Yaying Li
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Chaorong Ge
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
13
|
Investigating the Effect of an Oxytetracycline Treatment on the Gut Microbiome and Antimicrobial Resistance Gene Dynamics in Nile Tilapia ( Oreochromis niloticus). Antibiotics (Basel) 2021; 10:antibiotics10101213. [PMID: 34680794 PMCID: PMC8532870 DOI: 10.3390/antibiotics10101213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/03/2022] Open
Abstract
Antibiotics play a vital role in aquaculture where they are commonly used to treat bacterial diseases. However, the impact of antibiotic treatment on the gut microbiome and the development of antimicrobial resistance in Nile tilapia (Oreochromis niloticus) over time remains to be fully understood. In this study, fish were fed a single treatment of oxytetracycline (100 mg/kg/day) for eight days, followed by a 14-day withdrawal period. Changes in the distal gut microbiome were measured using 16S rRNA sequencing. In addition, the abundance of antimicrobial resistance genes was quantified using real-time qPCR methods. Overall, the gut microbiome community diversity and structure of Nile tilapia was resilient to oxytetracycline treatment. However, antibiotic treatment was associated with an enrichment in Plesiomonas, accompanied by a decline in other bacteria taxa. Oxytetracycline treatment increased the proportion of tetA in the distal gut of fish and tank biofilms of the treated group. Furthermore, the abundance of tetA along with other tetracycline resistance genes was strongly correlated with a number of microbiome members, including Plesiomonas. The findings from this study demonstrate that antibiotic treatment can exert selective pressures on the gut microbiome of fish in favour of resistant populations, which may have long-term impacts on fish health.
Collapse
|
14
|
Mok JS, Cho SR, Park YJ, Jo MR, Ha KS, Kim PH, Kim MJ. Distribution and antimicrobial resistance of Vibrio parahaemolyticus isolated from fish and shrimp aquaculture farms along the Korean coast. MARINE POLLUTION BULLETIN 2021; 171:112785. [PMID: 34340145 DOI: 10.1016/j.marpolbul.2021.112785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/05/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
The present study investigated the distribution and antimicrobial susceptibility patterns of Vibrio parahaemolyticus in water samples and aquatic animals (fish and shrimp) from major aquaculture farms along the Korean coast in 2018. V. parahaemolyticus is the most common pathogen causing seafood-borne illness. The strain was detected in 34.7% of all samples tested, and was detected at higher levels during summer to autumn when the water temperature is higher. Although more than 90.0% of V. parahaemolyticus isolates were sensitive to 13 of the 15 antimicrobials tested, which is useful for treating V. parahaemolyticus infectious disease, the isolates exhibited higher resistance to two antibiotics (colistin and ampicillin), which should be excluded as treatment options for these infections. Koreans typically enjoy consuming raw seafood. To reduce the potential human health risk of raw seafood consumption, the prevalence and antimicrobial resistance of V. parahaemolyticus in aquaculture environments should be continuously valuated.
Collapse
Affiliation(s)
- Jong Soo Mok
- South Sea Fisheries Research Institute, National Institute of Fisheries Science, Yeosu 59780, Republic of Korea.
| | - Sung Rae Cho
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Yu Jeong Park
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Mi Ra Jo
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea
| | - Poong Ho Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Min Ju Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon 22383, Republic of Korea
| |
Collapse
|
15
|
Lorenzoni G, Tedde G, Mara L, Bazzoni AM, Esposito G, Salza S, Piras G, Tedde T, Bazzardi R, Arras I, Uda MT, Virgilio S, Meloni D, Mudadu AG. Presence, Seasonal Distribution, and Biomolecular Characterization of Vibrio parahaemolyticus and Vibrio vulnificus in Shellfish Harvested and Marketed in Sardinia (Italy) between 2017 and 2018. J Food Prot 2021; 84:1549-1554. [PMID: 33956961 DOI: 10.4315/jfp-21-059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023]
Abstract
ABSTRACT In the present study, we investigated the presence, seasonal distribution, and biomolecular characteristics of Vibrio parahaemolyticus and Vibrio vulnificus in samples of bivalve mollusks (Mytilus galloprovincialis, Crassostrea gigas, and Ruditapes decussatus) harvested and marketed in Sardinia (Italy) between 2017 and 2018. A total of 435 samples were submitted for qualitative determination of Vibrio spp., V. parahaemolyticus, and V. vulnificus. Potentially enteropathogenic isolates were detected with biomolecular methods. The overall prevalence of Vibrio spp. was 7.6%. The highest Vibrio prevalence was found in R. decussatus (8.3%). The prevalences of V. parahaemolyticus and V. vulnificus were 2.7 and 4.8%, respectively. Higher prevalences of V. parahaemolyticus and V. vulnificus were found in R. decussatus (4.2%) and C. gigas (6.2%), respectively. Only two pathogenic V. parahaemolyticus strains were recovered (genotypes: tdh- and trh+; tdh+ and trh-), both from M. galloprovincialis. None of the isolates were tdh+ and trh+. Pathogenic Vibrio infections are often underestimated, and human infections are increasing in Europe. European data on the true distribution of Vibrionaceae are scarce, and the results of the present study highlight the need of constant monitoring to update the distribution of pathogenic vibrios. HIGHLIGHTS
Collapse
Affiliation(s)
- Giuseppa Lorenzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Giuseppe Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Laura Mara
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Anna Maria Bazzoni
- Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Via Rockefeller 58/60, 07100 Sassari, Italy
| | - Giuseppe Esposito
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sara Salza
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Gabriella Piras
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Tiziana Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Riccardo Bazzardi
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Igor Arras
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Maria Teresa Uda
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Sebastiano Virgilio
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| | - Domenico Meloni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Alessandro Graziano Mudadu
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, 07100 Sassari, Italy
| |
Collapse
|
16
|
Jin J, Zhou Y, Zhang Z, Wang H, Hou W, Wang H, Li R, Zhou M. Characteristics of Antimicrobial-Resistant Vibrio parahaemolyticus Strains and Identification of Related Antimicrobial Resistance Gene Mutations. Foodborne Pathog Dis 2021; 18:873-879. [PMID: 34279997 DOI: 10.1089/fpd.2020.2911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multidrug-resistant (MDR) Vibrio parahaemolyticus strains have become a great threat to public health. The purpose of this study was to investigate differences in biological characteristics and antimicrobial resistance gene (ARG) mutations of V. parahaemolyticus that displayed different levels of antimicrobial resistance. The susceptibility of 74 V. parahaemolyticus strains to 9 common antimicrobials was investigated, of which 88% were resistant to 3-4 antimicrobials and 3% to 5-7 antimicrobials. Interestingly, only 9% were resistant to 1-2 antimicrobials. The MDR strains possessed longer growth lag time than the non-MDR strains and displayed weaker swimming abilities. Whole genome sequencing was performed on strains VP41, VP44, 460, and 469 that were resistant to two to three classes of antimicrobials. ARGs were identified and compared with that of reference strain ATCC17802, and some important mutations were deduced. The Val189Ile mutation emerged in qnr gene of a single strain. Besides, the nonsynonymous mutations existed in four ARGs in different strains, including CatB (Pro165Ser, Gly208Asp), VmeA (Ile313Thr), VmeC (Glu329Ala), and VmeD (Asn205Ser). These results linked resistance gene mutations to enhance resistance in V. parahaemolyticus strains and provide a reference for more effective monitoring and prevention of V. parahaemolyticus infections.
Collapse
Affiliation(s)
- Jiaqi Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yulei Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zheng Zhang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wenfu Hou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Rui Li
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
17
|
Antimicrobial Resistance Gene Detection Methods for Bacteria in Animal-Based Foods: A Brief Review of Highlights and Advantages. Microorganisms 2021; 9:microorganisms9050923. [PMID: 33925810 PMCID: PMC8146338 DOI: 10.3390/microorganisms9050923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance is a major public health problem and is mainly due to the indiscriminate use of antimicrobials in human and veterinary medicine. The consumption of animal-based foods can contribute to the transfer of these genes between animal and human bacteria. Resistant and multi-resistant bacteria such as Salmonella spp. and Campylobacter spp. have been detected both in animal-based foods and in production environments such as farms, industries and slaughterhouses. This review aims to compile the techniques for detecting antimicrobial resistance using traditional and molecular methods, highlighting their advantages and disadvantages as well as the effectiveness and confidence of their results.
Collapse
|
18
|
Narayanan SV, Joseph TC, Peeralil S, Koombankallil R, Vaiyapuri M, Mothadaka MP, Lalitha KV. Tropical shrimp aquaculture farms harbour pathogenic Vibrio parahaemolyticus with high genetic diversity and Carbapenam resistance. MARINE POLLUTION BULLETIN 2020; 160:111551. [PMID: 32810670 DOI: 10.1016/j.marpolbul.2020.111551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
In characterization of food borne pathogens from the environment, assessment of virulence, genetic diversity and AMR are essential preludes to formulate preventive strategies and to combat the spread. This study aimed to identify and characterize pathogenic Vibrio parahaemolyticus in the coastal aquaculture farms of Kerala, India. Twenty-seven β-haemolytic V. parahaemolyticus were isolated from 7 out of 40 farms studied. Among the 27 isolates, 15 possessed the tdh gene and 4 had trh. ERIC PCR and PFGE illustrated the presence of pathogenic isolates that shared genetic similarity with clinical strains. One pathogenic isolate was identified to be multidrug resistant (MDR) and 59% exhibited a MAR index of 0.2 or above. Seventy four percent of the pathogenic isolates were ESBL producers and 3.7% of them were carbapenemase producers phenotypically. This asks for adoption of control measures during farming to prevent the transmission of pathogenic V. parahaemolyticus to the environment and food chain.
Collapse
Affiliation(s)
- Sreejith V Narayanan
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India; Cochin University of Science and Technology, Kalamassery, Cochin 682022, Kerala, India.
| | - Toms C Joseph
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India
| | - Shaheer Peeralil
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India
| | - Reshmi Koombankallil
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India
| | - Murugadas Vaiyapuri
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India
| | - Mukteswar P Mothadaka
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India
| | - Kuttanapilly V Lalitha
- Microbiology Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Cochin 682029, Kerala, India
| |
Collapse
|
19
|
Su C, Chen L. Virulence, resistance, and genetic diversity of Vibrio parahaemolyticus recovered from commonly consumed aquatic products in Shanghai, China. MARINE POLLUTION BULLETIN 2020; 160:111554. [PMID: 32810672 DOI: 10.1016/j.marpolbul.2020.111554] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
Vibrio parahaemolyticus can cause severe gastroenteritis, septicaemia and even death in humans. Continuous monitoring of V. parahaemolyticus contamination in aquatic products is imperative for ensuring food safety. In this study, we isolated and characterized 561 V. parahaemolyticus strains recovered from 23 species of commonly consumed shellfish, crustaceans, and fish collected in July and August of 2017 in Shanghai, China. The bacterium was not isolated from two fish species Carassius auratus and Parabramis pekinensis. The results revealed a very low occurrence of pathogenic V. parahaemolyticus carrying the toxin genes trh (0.2%) and tdh (0.0%). However, high percentages of resistance to the antimicrobial agents ampicillin (93.0%), rifampin (82.9%), streptomycin (75.4%) and kanamycin (50.1%) were found. A high incidence of tolerance to the heavy metals Hg2+ (74.7%) and Zn2+ (56.2%) was also observed in the isolates. ERIC-PCR-based fingerprinting of MDR isolates (77.5%) revealed 428 ERIC-genotypes, demonstrating remarkable genetic variation among the isolates. The results of this study support the urgent need for food safety risk assessment of aquatic products.
Collapse
Affiliation(s)
- Chenli Su
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, People's Republic of China.
| |
Collapse
|
20
|
Hu Y, Li F, Zheng Y, Jiao X, Guo L. Isolation, Molecular Characterization and Antibiotic Susceptibility Pattern of Vibrio parahaemolyticus from Aquatic Products in the Southern Fujian Coast, China. J Microbiol Biotechnol 2020; 30:856-867. [PMID: 32160689 PMCID: PMC9728269 DOI: 10.4014/jmb.2001.01005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is a major gastroenteritis-causing pathogen in many Asian countries. Antimicrobial resistance in V. parahaemolyticus has been recognized as a critical threat to food safety. In this study, we determined the prevalence and incidence of antimicrobial resistance in V. parahaemolyticus in the southern Fujian coast, China. A total of 62 isolates were confirmed in retail aquatic products from June to October of 2018. The serotype O3:K6 strains, the virulence genes tdh and trh, antibiotic susceptibility and molecular typing were investigated. Then plasmid profiling analysis and curing experiment were performed for multidrug-resistant strains. The results showed that the total occurrence of V. parahaemolyticus was 31% out of 200 samples. Five strains (8.1%) out of 62 isolates were identified as the V. parahaemolyticus O3:K6 pandemic clone. A large majority of isolates exhibited higher resistance to penicillin (77.4%), oxacillin (71%), ampicillin (66.1%) and vancomycin (59.7%). Seventy-one percent (44/62) of the isolates exhibited multiple antimicrobial resistance. All 62 isolates were grouped into 7 clusters by randomly amplified polymorphic DNA, and most of the isolates (80.6%) were distributed within cluster A. Plasmids were detected in approximately 75% of the isolates, and seven different profiles were observed. Seventy-six percent (25/33) of the isolates carrying the plasmids were eliminated by 0.006% SDS incubated at 42°C, a sublethal condition. The occurrence of multidrug-resistant strains could be an indication of the excessive use of antibiotics in aquaculture farming. The rational use of antimicrobial agents and the surveillance of antibiotic administration may reduce the acquisition of resistance by microorganisms in aquatic ecosystems.
Collapse
Affiliation(s)
- Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China,Corresponding author Phone: +86-596-2528735 Fax: +86-596-2528735 E-mail:
| | - Fengxia Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Yixian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 5000, P.R. China
| | - Liqing Guo
- Zhangzhou Center for Disease Control and Prevention, Zhangzhou 6000, P.R. China
| |
Collapse
|
21
|
Yang X, Zhao P, Dong Y, Shen X, Shen H, Li J, Jiang G, Wang W, Dai H, Dong J, Gao S, Si X. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J Food Sci 2020; 85:1834-1844. [PMID: 32449955 DOI: 10.1111/1750-3841.15105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Vibrio parahaemolyticus is an important pathogenic bacterium in both food safety management and mariculture. Rapid and accurate detection technologies are critical for effective control of its outbreak and spreading. Conventional technologies and polymerase chain reaction (PCR)-based approaches have limited usage because of the requirement of laboratory instruments and trained personnel. Using the isothermal recombinase polymerase amplification (RPA) technology, several detection assays have been developed with added convenience. Combining the lateral flow strip (LFS) test with RPA can further simplify the detection. In this study, an improved RPA assay using LFS for visual detection of V. parahaemolyticus was developed. Primers were designed targeting the virulence genes and screened for amplification efficiency, nonspecific amplification, and primer-dimer formation. Probes were designed for the best primer pairs, and the weakness of LFS tests, being easily affected by primer-dependent artifacts, was overcome by sequence modifications on primers and probe. The RPA-LFS assay took 25 min at 35 to 45 °C, and showed excellent specificity. It detected as low as one colony forming unit (CFU) of V. parahaemolyticus per reaction without DNA purification, or 10 CFU/10 g spiked food samples with 2 hr of enrichment. The detection limit was better than the currently available RPA-based detection methods. Application of the RPA-LFS assay for simulated samples or real clinical samples showed accurate and consistent detection results compared to bioassay and quantitative PCR. The RPA-LFS assay provided a rapid, accurate, and convenient V. parahaemolyticus detection method suitable for on-site detection in resource-limited conditions. PRACTICAL APPLICATION: This research developed a rapid and visual detection technology for Vibrio parahaemolyticus that is not dependent on complicated equipment. The detection process takes 25 min and the result is read with the naked eye. A detection kit can be developed based on this technology for on-site detection of V. parahaemolyticus in resource-limited regions for food safety management and mariculture.
Collapse
Affiliation(s)
- Xiaohan Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Panpan Zhao
- Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yu Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Juan Li
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
| | - Ge Jiang
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hong Dai
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Xinxin Si
- School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
22
|
He Y, Wang S, Zhang J, Zhang X, Sun F, He B, Liu X. Integrative and Conjugative Elements-Positive Vibrio parahaemolyticus Isolated From Aquaculture Shrimp in Jiangsu, China. Front Microbiol 2019; 10:1574. [PMID: 31379767 PMCID: PMC6657232 DOI: 10.3389/fmicb.2019.01574] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of multidrug- and toxin-resistant bacteria as a result of increasing industrialization and sustained and intense antimicrobial use in aquaculture results in human health problems through increased incidence of food-borne illnesses. Integrative and conjugative elements (ICEs) are self-transmissible mobile genetic elements that allow bacteria to acquire complex new traits through horizontal gene transfer and encode a wide variety of genetic information, including resistance to antibiotics and heavy metals; however, there is a lack of studies of ICEs of environmental origin in Asia. Here, we determined the prevalence, genotypes, heavy metal resistance and antimicrobial susceptibility of 997 presumptive strains of Vibrio parahaemolyticus (tlh+, tdh–), a Gram-negative bacterium that causes gastrointestinal illness in humans, isolated from four species of aquaculture shrimp in Jiangsu, China. We found that 59 of the 997 isolates (5.9%) were ICE-positive, and of these, 9 isolates tested positive for all resistance genes. BLAST analysis showed that similarity for the eight strains to V. parahaemolyticus was 99%. Tracing the V. parahaemolyticus genotypes, showed no significant relevance of genotype among the antimicrobial resistance strains bearing the ICEs or not. Thus, in aquaculture, ICEs are not the major transmission mediators of resistance to antibiotics or heavy metals. We suggest future research to elucidate mechanisms that drive transmission of resistance determinants in V. parahaemolyticus.
Collapse
Affiliation(s)
- Yu He
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Shuai Wang
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Jianping Zhang
- College of Food Biological Engineering, Xuzhou University of Technology, Xuzhou, China.,Key Construction Laboratory of Food Resources Development and the Quality Safety in Jiangsu, Xuzhou University of Technology, Xuzhou, China
| | - Xueyang Zhang
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai, China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Zaozhuang, China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|