1
|
Ghabban H, Albalawi DA, Al-otaibi AS, Alshehri D, Alenzi AM, Alatawy M, Alatawi HA, Alnagar DK, Bahieldin A. Investigating the bacterial community of gray mangroves ( Avicennia marina) in coastal areas of Tabuk region. PeerJ 2024; 12:e18282. [PMID: 39434799 PMCID: PMC11493069 DOI: 10.7717/peerj.18282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Mangrove vegetation, a threatened and unique inter-tidal ecosystem, harbours a complex and largely unexplored bacterial community crucial for nutrient cycling and the degradation of toxic pollutants in coastal areas. Despite its importance, the bacterial community composition of the gray mangrove (Avicennia marina) in the Red Sea coastal regions remains under-studied. This study aims to elucidate the structural and functional diversity of the microbiome in the bulk and rhizospheric soils associated with A. marina in the coastal areas of Ras Alshabaan-Umluj (Umluj) and Almunibrah-Al-Wajh (Al-Wajh) within the Tabuk region of Saudi Arabia. Amplicon sequencing targeting the 16S rRNA was performed using the metagenomic DNAs from the bulk and rhizospheric soil samples from Umluj and Al-Wajh. A total of 6,876 OTUs were recovered from all samples, of which 1,857 OTUs were common to all locations while the total number of OTUs unique to Al-wajh was higher (3,011 OTUs) than the total number of OTUs observed (1,324 OTUs) at Umluj site. Based on diversity indices, overall bacterial diversity was comparatively higher in rhizospheric soil samples of both sites. Comparing the diversity indices for the rhizosphere samples from the two sites revealed that the diversity was much higher in the rhizosphere samples from Al-Wajh as compared to those from Umluj. The most dominant genera in rhizosphere sample of Al-Wajh were Geminicoccus and Thermodesulfovibrio while the same habitat of the Umluj site was dominated by Propionibacterium, Corynebacterium and Staphylococcus. Bacterial functional potential prediction analyses showed that bacteria from two locations have almost similar patterns of functional genes including amino acids and carbohydrates metabolisms, sulfate reduction and C-1 compound metabolism and xenobiotics biodegradation. However, the rhizosphere samples of both sites harbour more genes involved in the utilization and assimilation of C-1 compounds. Our results reveal that bacterial communities inhabiting the rhizosphere of A. marina differed significantly from those in the bulk soil, suggesting a possible role of A. marina roots in shaping these bacterial communities. Additionally, not only vegetation but also geographical location appears to influence the overall bacterial composition at the two sites.
Collapse
Affiliation(s)
- Hanaa Ghabban
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Doha A. Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Amenah S. Al-otaibi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Asma Massad Alenzi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Marfat Alatawy
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University Collage of Haqel, University of Tabuk, Tabuk, Saudi Arabia
| | - Dalia Kamal Alnagar
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Alharbi T, Nour HE, Al-Kahtany K, Zumlot T, El-Sorogy AS. Health risk assessment and contamination of lead and cadmium levels in sediments of the northwestern Arabian Gulf coast. Heliyon 2024; 10:e36447. [PMID: 39247265 PMCID: PMC11380013 DOI: 10.1016/j.heliyon.2024.e36447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
This environmental assessment focuses on the coastal sediments of the Al-Khafji area in the Saudi Arabian Gulf, with an analysis of the human health risks posed by lead (Pb) and cadmium (Cd) contamination. Single and integrated indices were used to detect contamination and evaluate these metals' non-carcinogenic and carcinogenic impacts on adults and children through ingestion, dermal contact, and inhalation pathways. Sediment quality guidelines and contamination indices indicated the absence of significant contamination levels. The moderate contamination observed in scattered samples did not imply adverse biological effects due to the presence of these two metals in Al-Khafji sediments. The average values of the chronic daily intake (CDI) for both Pb and Cd were higher in children than adults across all three pathways, with ratios of 9.4, 4.7, and 4.7 folds, respectively. The hazard index (HI) values for Pb and Cd were below 1, confirming that the sediments of Al-Khafji are considered acceptable and safe in terms of these potentially toxic elements (PTEs). The average lifetime cancer risk (LCR) values for Pb and Cd were higher in children compared to adults, with ratios of 9.3 and 9.4 folds, respectively. However, all detected LCR levels do not represent a potential carcinogenic health hazard. Nevertheless, a regular monitoring program aimed at detecting early signals of environmental health depletion is recommended.
Collapse
Affiliation(s)
- Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamdy E Nour
- Geology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Khaled Al-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taisser Zumlot
- Center of Environmental Resource Management, University of Texas at ELPASO, USA
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Youssef M, Otaibi SA, El-Sorogy AS. Distribution, Source, and Contamination of Heavy Metals in Coastal Sediments of Jeddah, Red Sea, Saudi Arabia. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:12. [PMID: 39009950 DOI: 10.1007/s00128-024-03923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024]
Abstract
The study investigates heavy metal (HM) contamination in coastal sediments of Jeddah along Red Sea coast, analyzing spatial distribution and sources. 24 samples underwent (ICP-AES) for Fe, Al, Mn, Ni, Pb, Zn, Cu, Cr, Co, Sr, V, and As. HM averages followed Fe ˃ Al ˃ Sr ˃ Mn ˃ Zn ˃ V ˃ Cu ˃ Ni ˃ Cr ˃ As ˃ Co ˃ Pb. Contamination indices revealed severe Sr enrichment, minor As and Co enrichment, and no enrichment for other HMs. Sediment quality guidelines suggest Ni, Cu, Zn, and As risks to benthic communities at some sites, while Cr and Pb pose minimal risk. Multivariate analysis indicates natural sources for Fe, Al, Mn, Ni, Zn, Cu, Cr, Co, and V, and anthropogenic sources for Sr, As, and Pb, linked to agriculture, industry, and urbanization. Increased Sr values may stem from seawater acidification impacting calcitic corals and molluscs.
Collapse
Affiliation(s)
- Mohamed Youssef
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Sami Al Otaibi
- Department of soil Science, College of Food & Agriculture Sciences, king Saud University, Riyadh, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
El-Sorogy AS, Tawfik M, Almadani SA, Zumlot T. Evaluation of sediment quality for heavy metal(loid)s contamination and health risk assessment in the Gulf of Suez, Egypt. MARINE POLLUTION BULLETIN 2024; 203:116496. [PMID: 38761683 DOI: 10.1016/j.marpolbul.2024.116496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The Gulf of Suez faces challenges related to contamination, primarily due to industrial, tourism, and shipping activities along its shores. This study aims to record the distribution, concentration, and potential environmental and health risk impacts of heavy metal(loid)s (HMs) in 30 surface sediment samples collected from Ras Sidr coastline, Gulf of Suez. Various contamination and health indices were employed for this study. The average concentrations of HMs (μg/g) were ranked as follows: Fe (3472), Mn (103.3), V (10.41), As (7.94), Cr (6.00), Zn (5.31), Ni (2.94). The spatial distribution of HMs indicated an increase in Mn, Zn, As, and V levels toward the southern part of the study area, potentially linked to the proximity of manganese quarries and their metal association at Abu Zenima. Contamination indices revealed moderately severe enrichment with As, minor enrichment with Mn, and no enrichment for the remaining HMs. Multivariate analysis suggested a natural origin for Cr, Fe, Mn, Ni, Zn, and V, while As were likely anthropogenic. Values of hazard index (HI) for HMs in both adults and children followed the descending order of As > Fe > Cr > V > Mn > Ni > Zn. However, all HI values were below 1.0, indicating no significant non-carcinogenic risk for individuals along the Ras Sidr coastline. 19 samples exhibited lifetime cancer risk (LCR) values exceeding 1 × 10-4 for As in children, suggesting potential carcinogenic risks. LCR values for As in adults and Cr in adults and children ranged from 1 × 10-5 to less than 1 × 10-6, indicating acceptable or tolerable levels of carcinogenic risk and no significant threats to health.
Collapse
Affiliation(s)
- Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed Tawfik
- Geology Department, Faculty of Science, Zagazig University, Zagazig, Egypt; Geology Department, Faculty of Basic Science, King Salman International University, Egypt.
| | - Sattam A Almadani
- Geology and Geophysics Department, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Taisser Zumlot
- Center of environmental resource management (CERM), University of Texas at ElPASO, USA
| |
Collapse
|
5
|
El-Sorogy AS, Al-Hashim MH, Almadani SA, Giacobbe S, Nour HE. Potential contamination and health risk assessment of heavy metals in Hurghada coastal sediments, Northwestern Red Sea. MARINE POLLUTION BULLETIN 2024; 198:115924. [PMID: 38103499 DOI: 10.1016/j.marpolbul.2023.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Throughout the year, people flock to the Red Sea's shoreline for tourism and fishing. The current study aims to document heavy metal contamination and human health assessment in 30 surface sediment samples collected along the Hurghada shoreline in Egypt. To estimate sediment contamination, the pollution index (PI), pollution load index (PLI), degree of contamination (Cdeg), and Nemerow integrated pollution index (NIPI) were calculated, while the chronic daily intake (CDI), hazard index (HI), cancer risk (CR), and total lifetime cancer risk (LCR) were determined on both adults and children via ingestion, dermal, and inhalation pathways. The HM averages (μg/g dry weight) were in the following order: Fe (345.70) > Mn (49.36) > Pb (41.98) > Zn (7.47) > Ni (1.73) > Cu (1.23) > Co (1.09) > Cd (0.14). Pollution indices found that Hurghada coastal sediments were moderately polluted with Pb but not with the other HMs. The average CDI values were in the descending order of ingestion > dermal > inhalation pathways, and the average CDI values on children were higher than those on adults. The hazard index (HI) for adults and children was Pb > Ni > Cd > Fe > Mn > Co > Cu > Zn, and all values were <1.0, showing that these HMs had no substantial non-carcinogenic impacts on the human body. LCR results show that children have greater values than adults. LCR values in adults were lower than 1 × 10-6, indicating no substantial health concerns, while in children they ranged from 1 × 10-6 to 1 × 10-4, indicating no significant risk to human health.
Collapse
Affiliation(s)
- Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Mansour H Al-Hashim
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sattam A Almadani
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina University, Italy
| | - Hamdy E Nour
- Geology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
6
|
Alzahrani H, El-Sorogy AS, Qaysi S. Assessment of human health risks of toxic elements in coastal area between Al-Khafji and Al-Jubail, Saudi Arabia. MARINE POLLUTION BULLETIN 2023; 196:115622. [PMID: 37806013 DOI: 10.1016/j.marpolbul.2023.115622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
The present work aims to document the distribution of toxic elements (TEs) and assess the human health risk posed by the TEs in the marine sediment of the Arabian Gulf, Saudi Arabia. The descending order of TE averages (μg/g) was as follows: Ni > Cr > V > Zn > Pb > Cu > As > Co. Based on the enrichment factor values, only minor enrichment for Pb, As, Cr, and Ni was noted. The hazard index (HI) values for the non-carcinogenic risk of the TEs were less than 1.0, and the lifetime cancer risk values for carcinogenic Pb, Cr, and As ranged between 2.96 × 10-8 and 5.44 × 10-5, indicating no significant health hazards for the inhabitants of the study area.
Collapse
Affiliation(s)
- Hassan Alzahrani
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia.
| | - Saleh Qaysi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
7
|
Mohamed AES, Heba MEED, Ahmed RE, Mahmoud SK, Ghada YZ. Spatial distribution and risk assessment of heavy metals in the coastal waters of the Gulf of Suez, Red Sea, Egypt. MARINE POLLUTION BULLETIN 2023; 193:115122. [PMID: 37329737 DOI: 10.1016/j.marpolbul.2023.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
To assess ecological and health risks connected with heavy metal contamination in the Gulf of Suez, Red Sea seawater during winter 2021. The selected heavy metals were detected using the "AAS" Technique. The results presented that; the average metal concentrations ranged between (0.57, 1.47, 0.76, 5.44, 0.95, 18.79, and 1.90 μg/l) for Cd, Pb, Zn, Mn, Fe, Cu, and Ni along the investigated area. Pollution Index for overall Gulf sectors <1, indicating a slightly and moderately affected region. Metal Index for the Gulf is >1, representing the existence of heavy metal pollution, which is alarming in this area. (HPI) Heavy metal pollution index <100 indicates low contamination of heavy metal "and is apposite for consumption. The Gulf's ecological risk index (Eri) mostly fell under the low-ecological risk. The risk health estimation revealed that CDI values for carcinogenic were (10-5 to10-7), (10-6 to10-8), and (10-9 to10-11) for ingestion, dermal, and inhalation, respectively. Ingestion for children is twice as high as the proportions documented for adults. At the same time, THQ values for non-carcinogenic ingestion, dermal, and inhalation were (10-5 to 10-8), (10-4 to 10-5), and (10-10 to 10-12), respectively. Also, the total hazard quotient (THQ ing. + THQ inh.) values were <1 acceptable limit, indicating no non-carcinogenic risk to the residents through dermal adsorption and oral water intake. The ingestion pathway was the main pathway for total risk. In conclusion, the overall hazard risks are lower than the permissible limit of <1 regarding heavy metals.
Collapse
Affiliation(s)
- A El-Sawy Mohamed
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Egypt
| | - M Ezz El-Din Heba
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Egypt.
| | - R Elgendy Ahmed
- Geology Lab National Institute of Oceanography and Fisheries, Egypt
| | - S Kelany Mahmoud
- Microbiology Lab National Institute of Oceanography and Fisheries, Egypt.
| | - Y Zaghloul Ghada
- Marine Chemistry Lab National Institute of Oceanography and Fisheries, Egypt
| |
Collapse
|
8
|
Yalçın MG, Mutlu E, Olguner C, Atakoğlu ÖÖ, Bat L, Özkan EY. Spatial geochemical structure of soft sediment on shallow littoral of the Gulf of Antalya, the eastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2023; 193:115155. [PMID: 37321003 DOI: 10.1016/j.marpolbul.2023.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
The concentrations of heavy metals in soft sediments of the Manavgat and Lara regions in Antalya, Türkiye were investigated to assess contamination levels and their potential sources, followed by multivariate statistical analysis and generation of spatial distribution maps. Results showed low contamination levels for As, Zn, and Cu, moderate contamination for Pb, Ni, and Mn, and very high accumulation for Co and Cr. Geoaccumulation index (Igeo) and contamination factor (CF) analyses revealed moderate enrichment for Mn and low enrichment for As, indicating no human-induced contamination in Cu, Pb, Zn, Mn, and As, while Ni, Co, and Cr originated mainly from agriculture. The maximum modified degree of contamination (mCd) value was at an extreme high level, with an average mCd of 4.12 indicating high contamination. Maximum pollution load index (PLI) value was 3.13, indicating high-grade pollution and an average value of 1.7 indicating moderate pollution.
Collapse
Affiliation(s)
| | - Erhan Mutlu
- Department of Hydrobiology, Fisheries Faculty, University of Akdeniz, Antalya, Türkiye
| | | | - Özge Özer Atakoğlu
- Department of Geology, Engineering Faculty, University of Akdeniz, Antalya, Türkiye
| | - Levent Bat
- Department of Hydrobiology, Fisheries Faculty, University of Sinop, 57000 Sinop, Türkiye.
| | - Ebru Yeşim Özkan
- Department of Hydrobiology, Fisheries Faculty, University of Izmir Katip Çelebi, Türkiye
| |
Collapse
|
9
|
Al-Kahtany K, Nour HE, El-Sorogy AS, Alharbi T. Ecological and health risk assessment of heavy metals contamination in mangrove sediments, Red Sea coast. MARINE POLLUTION BULLETIN 2023; 192:115000. [PMID: 37210984 DOI: 10.1016/j.marpolbul.2023.115000] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
Due to the significance of mangroves for the diversity of marine and terrestrial life along the Red Sea coast, the present work aimed to evaluate the environmental and health risk of heavy metals in Wadi el-Gemal sediments. The findings of single and integrated indices demonstrated no significant pollution with Fe, Cu, Zn, Ni, Co, and Cd, while the sediments showed severe and minor enrichment with Mn and Cd, respectively, which might be attributed to the presence of some mining activities in the mountains near the study area. The possible carcinogenic and non-carcinogenic risks due to their dermal absorption from the sediments were analyzed and the findings demonstrated that the non-carcinogenic health hazards were within tolerable and safe limits. Moreover, the evaluation of chronic daily intake and the overall cancer risk (LCR) for adults and children for Pb and Cd both ruled out any current potential carcinogenic health risks.
Collapse
Affiliation(s)
- Khaled Al-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Hamdy E Nour
- Geology Department Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
10
|
Mookan VP, Machakalai RK, Srinivasan S, Sigamani S, Kolandhasamy P, Gnanamoorthy P, Moovendhan M, Srinivasan R, Hatamleh AA, Ai-Dosary MA. Assessment of metal contaminants along the Bay of Bengal - Multivariate pollution indices. MARINE POLLUTION BULLETIN 2023; 192:115008. [PMID: 37182243 DOI: 10.1016/j.marpolbul.2023.115008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/16/2023]
Abstract
The spatial concentration of heavy metals (Mn, Ni, Cu, Co, Zn, Cd, and Pb) was studied in coastal areas (n = 9) including water (n = 27) and sediment (n = 27) in the Palk Bay, India to understand the metal pollution due to prevailing natural and anthropogenic activities. Pollution indices like metal index (MI), geoaccumulation index (Igeo), contamination factor (CF), pollution load index (PLI) and potential ecological risk (PER) were calculated based on the background/reference value. The values of MI index indicated that water was free of metals, whereas Igeo, CF, PLI and PER indicated moderate contamination of sediment in monsoon. Cadmium concentrations were the highest irrespective of the indices (Igeo: 0.04-1.42, Cf: 0.36-0.74, PLI: 0.36-0.74, and PER: 76.89-143.36) indicating moderate pollution. The Principal Component Analysis (PCA) affirmed that Cd was positively correlated with stations indicating anthropogenic sources of Cd contamination.
Collapse
Affiliation(s)
| | - Rajesh Kumar Machakalai
- Centre for Earth and Atmospheric Sciences, Sathyabama Institute of Science and Technology, Chennai, India
| | - Sundararajan Srinivasan
- Centre for Earth and Atmospheric Sciences, Sathyabama Institute of Science and Technology, Chennai, India
| | - Sivaraj Sigamani
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, India.
| | - Prabhu Kolandhasamy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, India
| | - Palingamoorthy Gnanamoorthy
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China
| | - Meivelu Moovendhan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, India
| | - Ramachandran Srinivasan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai, India
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Munirah Abdullah Ai-Dosary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
You M, Hu Y, Meng Y. Chemical speciation and bioavailability of potentially toxic elements in surface sediment from the Huaihe River, Anhui Province, China. MARINE POLLUTION BULLETIN 2023; 188:114616. [PMID: 36701971 DOI: 10.1016/j.marpolbul.2023.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In order to understand the characteristics of speciation and ecological risk of potentially toxic element (PTE) pollution in the surface sediment of huaihe river (Anhui province), 23 surface sediment samples were collected. The occurrence characteristics of PTEs (As, Cr, Zn, Cu, Cd, Pb, Mn) were analyzed by modified continuous extraction method (BCR), and the pollution status and potential ecological risk of PTEs were comprehensively evaluated by Pollution Load Index (PLI), Geoaccumulation Index (Igeo), Enrichment Factor (EF) and the risk assessment code (RAC). Results showed that the total concentrations of As, Mn, Cd, Cr, Cu, Pb, and Zn in sediment were 14.98 ± 2.32, 936.02 ± 144.48, 0.32 ± 0.08, 161.73 ± 124.83, 40.44 ± 9.67, 15.46 ± 6.67, and 74.85 ± 26.43 mg/kg, respectively. The mean concentrations of PTEs with the increasing order of Zn < Mn < Cr < Pb < Cu < As < Cd. Most PTEs appeared to mainly associate with a dominant proportion of residual fraction suggesting lower mobility whereas Cd and Mn presented a relative higher exchangeable fraction indicating a great degree of bioavailability and easily ingested by aquatic organism. Results of pollution degree showed that 3 sampling sites belong to the pollution degree of strong pollution, and the other sampling sites belonged to the medium pollution level. The indexes EF revealed moderately enrichment of Cr, minor enrichment of Cd, Mn and As, no enrichment of Cu, Zn and Pb. The values of the Igeo and RAC demonstrated that Cd and Mn pose a high ecological risk, which deserves further attention.
Collapse
Affiliation(s)
- Mu You
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan normal university, Huainan 232001, China; National Center for Quality Supervision and Inspection of Coal Chemical Products (Anhui), Huainan 232001, China
| | - Yunhu Hu
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan normal university, Huainan 232001, China.
| | - Ying Meng
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan normal university, Huainan 232001, China
| |
Collapse
|
12
|
Al-Kahtany K, Nour HE, Giacobbe S, Alharbi T, El-Sorogy AS. Heavy metal pollution in surface sediments and human health assessment in southern Al-Khobar coast, Saudi Arabia. MARINE POLLUTION BULLETIN 2023; 187:114508. [PMID: 36603236 DOI: 10.1016/j.marpolbul.2022.114508] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Surface sediment samples from twenty-nine stations in south Al-Khobar coastline, Arabian Gulf, have been examined to assess the heavy metal contamination and impact on human health through dermal contact. The content in Cu, Zn, Cd, Pb, Fe, Mn, Co, Hg and Ni, was evaluated. Pollution index, modified degree of contamination, and pollution load index agreed to exclude heavy metal pollution. Differently, soil pollution index and Nemerow integrated pollution index pointed out moderate and heavy pollution grade for Hg and Cu, respectively. The human health assessment, according to the low values of the hazard index ˂ 1.0 for both adults and children, excluded any significant impact on the human body. The chronic daily intake and the total lifetime cancer risk also were consistent in excluding any risk to human health. Similarly, the carcinogenic risks for Pb and Cd, and the total cancer risk ˂1 × 10-6, did not imply significant health hazards.
Collapse
Affiliation(s)
- Khaled Al-Kahtany
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Hamdy E Nour
- Geology Department, Faculty of Science, Zagazig University, Egypt.
| | - Salvatore Giacobbe
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Messina University, Italy
| | - Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
13
|
Wang J, Ge J, Yang X, Cheng D, Yuan C, Liu Z, Yang S, Guo Y, Gu Y. Distribution and ecological risk assessment of heavy metals in sediments of Dajiuhu Lake Wetland in Shennongjia, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25999-26011. [PMID: 36350440 DOI: 10.1007/s11356-022-23952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The rapid development of modern society has resulted in discharge of large, heavy metal quantities into wetlands that have been continuously accumulating, causing severe pollution. Dajiuhu, located in the Shennongjia Forest District of Hubei Province in China, is a wetland of significant value internationally, serving as a model wetland ecosystem with heightened scientific research value. In this study, 27 surface sediment samples from nine sub-lakes in Dajiuhu were collected in August 2020. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the sediments were determined. The heavy metal occurrence and speciation characteristics were analyzed by an improved BCR (European Community Bureau of Reference) extraction method. Four methods were used to evaluate heavy metals' pollution degree and ecological risk. The possible source of heavy metals was inferred using correlation analysis and principal component analysis. The heavy metal content in the lake sediments of Dajiuhu wetland was from the highest to the lowest concentration as follows: Zn [Formula: see text] Cr [Formula: see text] Ni [Formula: see text] Pb [Formula: see text] Cu [Formula: see text] Cd. The average Cd content exceeded the national nature reserve threshold values, while the other heavy metals measured were below their respective threshold values. However, due to the occurrence of Pb and Cd in different forms, they still pose certain pollution and ecological risk to the lake wetlands. On the other hand, Zn, Cr, Ni, and Cu do not pose an ecological risk in the lakes of the Dajiuhu wetland. The spatial distribution of heavy metal content in the nine sub-lakes did vary significantly. Regarding the heavy metal sources in the lake sediments, Ni, Cr, and Cu originate from natural factors, and Cd and Pb have mainly anthropogenic origins. In contrast, Zn has both natural and anthropogenic origins. This study provides further insights into the study of heavy metal pollution in lake wetlands. It provides a framework and a direction for managing heavy metal pollution in the Dajiuhu wetland.
Collapse
Affiliation(s)
- Jiumei Wang
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
| | - Jiwen Ge
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China.
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China.
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China.
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China.
| | - Xiaojing Yang
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
| | - Dandan Cheng
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
| | - Chenhao Yuan
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Meihang Remote Sensing Information Co. Ltd, Xi'an, 710199, China
| | - Ziwei Liu
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
| | - Shiyu Yang
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Laboratory of Basin Hydrology and Wetland Eco-Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
| | - Yan Guo
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710199, China
| | - Yansheng Gu
- School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
- Institution of Ecology and Environmental Sciences, China University of Geosciences, 68 Jincheng Street, Hongshan District, Wuhan, 430074, Hubei Province, China
| |
Collapse
|
14
|
Xiao H, Shahab A, Ye F, Wei G, Li J, Deng L. Source-specific ecological risk assessment and quantitative source apportionment of heavy metals in surface sediments of Pearl River Estuary, China. MARINE POLLUTION BULLETIN 2022; 179:113726. [PMID: 35567962 DOI: 10.1016/j.marpolbul.2022.113726] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
In this study, surface sediments of the Pearl River Estuary were collected from 29 stations and investigated the spatial distribution, pollution level, quantitative source apportionment, and source-specific ecological risk of 10 heavy metals. The mean concentrations followed the order of Mn > Zn > Cr > Cu > Ni > Pb > As > Co > Cd > Hg. In terms of spatial distribution, it showed that the heavy metals were enriched in the inner Pearl River Estuary with 'extremely high' level of Hg, whereas, Cd and Zn posed 'moderate to high' contamination potential. We apportioned four main sources using positive matrix factorization model, in which natural geogenic and industrial manufacturing sources accounted for 36.84% and 27.11% of the total, respectively. However, the source-specific risk assessment suggested that mixed anthropogenic sources were the main contributors, and ecological risks were strongly affected by anthropogenic imports from the surrounding cities.
Collapse
Affiliation(s)
- He Xiao
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Feng Ye
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gangjian Wei
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jieyue Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Liming Deng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|