1
|
Oliveira CYB, Abreu JL, Brandão BC, Oliveira DWS, de Sena PR, da Silva WA, Araújo ES, Rörig LR, de Almeida Costa GK, Silva SMBC, Müller MN, Tribuzi G, Gálvez AO. A Holistic Approach to Producing Anti- Vibrio Metabolites by an Endosymbiotic Dinoflagellate Using Wastewater from Shrimp Rearing. Microorganisms 2024; 12:1598. [PMID: 39203439 PMCID: PMC11356557 DOI: 10.3390/microorganisms12081598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The aquaculture industry requires green solutions to solve several environmental challenges, including adequate wastewater remediation and natural drug applications to treat bacteria- and virus-related diseases. This study investigated the feasibility of cultivating the dinoflagellate Durusdinium glynnii in aquaculture wastewater from shrimp rearing in a synbiotic system (AWW-SS), with different dilutions of f/2 medium (FM). Interestingly, D. glynnii demonstrated enhanced growth in all AWW-SS treatments compared to the control (FM). The highest growth rates were achieved at AWW-SS:FM dilutions of 75:25 and 50:50. The removal of total nitrogen and total phosphorus reached 50.1 and 71.7%, respectively, of the crude AWW-SS. Biomass extracts of D. glynnii grown with AWW-SS were able to inhibit the growth of the bacteria Vibrio parahaemolyticus (inhibition zone of 10.0 ± 1.7 mm) and V. vulnificus (inhibition zone of 11.7 ± 1.5 mm). The presented results demonstrate that the dinoflagellate D. glynnii is a potential candidate for the development of circularity for sustainable aquaculture production, particularly by producing anti-Vibrio compounds at a near-zero cost.
Collapse
Affiliation(s)
- Carlos Yure B. Oliveira
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Jéssika L. Abreu
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Barbara C. Brandão
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Deyvid Willame S. Oliveira
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Pedro Rodrigues de Sena
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| | - Weverson Ailton da Silva
- Fishery Resources and Engineering Postgraduate Program, State University of West Paraná, Toledo 85903-000, PR, Brazil;
| | - Evando S. Araújo
- Research Group on Electrospinning and Nanotechnology Applications, Department of Materials Science, Federal University of San Francisco Valley, Juazeiro 48902-300, BA, Brazil;
| | - Leonardo R. Rörig
- Laboratory of Phycology, Department of Botany, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Gisely Karla de Almeida Costa
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (G.K.d.A.C.); (S.M.B.C.S.)
| | - Suzianny Maria B. C. Silva
- Laboratory of Aquatic Animal Health, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (G.K.d.A.C.); (S.M.B.C.S.)
| | - Marius N. Müller
- Department of Oceanography, Federal University of Pernambuco, Recife 50740-600, PE, Brazil;
| | - Giustino Tribuzi
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopólis 88034-801, SC, Brazil;
| | - Alfredo O. Gálvez
- Laboratory of Live Food Production, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Recife 52171-900, PE, Brazil; (J.L.A.); (B.C.B.); (D.W.S.O.); (P.R.d.S.); (A.O.G.)
| |
Collapse
|
2
|
Pandit D, Haque MM, Bhuyan MS, Harun-Al-Rashid A, Barman PP, Roy R, Sarker B, Saifullah MK, Kunda M. A comprehensive scenario of heavy metals pollution in the rivers of Bangladesh during the last two decades. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34225-6. [PMID: 38995333 DOI: 10.1007/s11356-024-34225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
For decades, rivers have been used for transporting pollutants loaded with heavy metals (HMs) causing severe pollution in downstream. The current study aimed to review the levels and sources of 10 HMs, viz. As, Pb, Cd, Cr, Fe, Mn, Cu, Co, Ni, and Zn in the surface water of the rivers in Bangladesh. The PRISMA criteria were used to conduct a systematic review of the available literature published between 2001 and 2020, and thus a total of 55 documents were finally selected for review. The mean concentration of each HM exceeding the threshold limits as per World Health Organization (WHO), the United States Environmental Protection Agency (USEPA), and Department of Environment (DoE), Bangladesh standards were higher in the last decade (2011-2020) than in the previous one (2001-2010). Most HM concentrations in water were found above the threshold limits in three divisions (Dhaka, Rajshahi, and Chattogram). The Buriganga River in Dhaka has been the top polluted river in Bangladesh. Among the 10 HMs, six metals (As, Pb, Cd, Cr, Fe, and Mn) exceeded the limit set by WHO, USEPA, and DoE in all three seasons, where mean values of most of the HMs were found to be the highest in the summer season. Statistical analyses identified possible sources of HMs such as natural weathering, electroplating, fertilizers and pesticides, mining and manufacturing, textiles, coal mining and burning, batteries, and paint industries. Strong legislations and regulations, awareness programs, continuous monitoring, and comprehensive research are urgently needed to control riverine HMs pollution in Bangladesh.
Collapse
Affiliation(s)
- Debasish Pandit
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Fishery Resources Conservation and Management, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | | | - Md Simul Bhuyan
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Bangladesh Oceanographic Research Institute, Cox's Bazar, 4730, Bangladesh
| | - Ahmed Harun-Al-Rashid
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Partho Protim Barman
- Department of Coastal and Marine Fisheries, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Rana Roy
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Bishwajit Sarker
- Department of Agricultural Statistics, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Khalid Saifullah
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mrityunjoy Kunda
- Department of Aquatic Resource Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
3
|
Purbiantoro W, Huynh-Phuoc V, Castillo-Corea BRJ, Byadgi OV, Cheng TC. Effectiveness of dietary heat-killed Bacillus subtilis harboring plasmid containing 60 copies of CpG-ODN 1668 against Vibrio harveyi in Penaeus vannamei. Vet Res Commun 2024; 48:85-101. [PMID: 37530963 DOI: 10.1007/s11259-023-10182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
The cost of the purification process hinders the extensive use of cytosine phosphate guanosine-oligodeoxynucleotides (CpG-ODNs) for shrimp culture. Therefore, this study used a shuttle vector plasmid to carry 60 copies of CpG-ODN 1668 (pAD43-25_60CpG), which can replicate in Escherichia coli and Bacillus subtilis strain RIK1285. The first experiment used a reverse gavage procedure to deliver a substance (PBS [CK], pAD43-25 [P0], and pAD43-25_60CpG [P60], respectively) directly into the anterior midgut of Penaeus vannamei and transcriptome sequence analysis with a reference genome was performed to examine the expression of well-known immune-related genes. The results showed that the expression levels of immune-related genes in P60 group were significantly increased, particularly those associated with AMPs. In addition, using RT‒qPCR, the expression levels of AMP genes (LvALF, LvPEN-2, and LvPEN-3) in the P60 group may vary depending on the tissue and time point. The second experiment used dietary supplementation with three kinds of heat-killed B. subtilis (HKBS, HKBS-P0, and HKBS-P60) in 28 days of feeding experiments. The results showed that dietary supplementation with HKBS-P60 did not significantly improve shrimp growth performance and survival. However, on days 14 and 28 of the feeding regimens, alkaline phosphatase (AKP) and acid phosphatase (ACP) activity were considerably higher than in other treatments. In addition, following infection with Vibrio harveyi, AKP and ACP activity in the HKBS-P60 group was significantly higher than in other treatments, particularly at the early stage of bacterial infection. Moreover, HKBS-P60 was found to be better protected against V. harveyi infection with lower cumulative mortality (60%) compared to HKBS (90%) and HKBS-P0 (100%) at 7 days after infection. Overall, these findings confirmed that P60 could increase immunological responses in the shrimp midgut, and HKBS-P60 could be used as an effective tool to enhance the immune response and disease resistance in shrimp.
Collapse
Affiliation(s)
- Wahyu Purbiantoro
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Mataram, Nusa Tenggara Barat, Indonesia
| | - Vinh Huynh-Phuoc
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan
- College of Aquaculture and Fisheries, Can Tho University, Can Tho, Vietnam
| | - B R J Castillo-Corea
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Omkar Vijay Byadgi
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ta-Chih Cheng
- Laboratory of Molecular Fish Immunology and Genetics, Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan.
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
4
|
Siddique MAB, Ahammad AS, Bashar A, Hasan NA, Mahalder B, Alam MM, Biswas JC, Haque MM. Impacts of climate change on fish hatchery productivity in Bangladesh: A critical review. Heliyon 2022; 8:e11951. [PMID: 36506393 PMCID: PMC9732313 DOI: 10.1016/j.heliyon.2022.e11951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/26/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Bangladesh is among the countries most vulnerable to climate change due to its geographical location. Climate change issues have become major concerns in aquaculture industry, particularly for fish hatchery productivity. Fish production in Bangladesh is mainly steered by the aquaculture sector, which is dependent on private hatchery-based fish seed production to a great extent. This review aimed to present the impacts of climate change on fish hatcheries, particularly during different stages of hatchery production, and the economic loss from the onset of disease and other impairments due to environmental causes. Geographically, most hatcheries in Bangladesh are operated within a narrow range of temperature (22.8-23.1 °C, equivalent to 73-73.5 °F) and rainfall (1750-2000 mm). Thus, slightest fluctuations in these parameters affect seed production in fish hatcheries. The broodstock, produced in natural and captive conditions, is severely affected by flash flooding, water quality deterioration, river siltation, erratic rainfall, and temperature fluctuations. Based on our review, temperature fluctuation is the main factor hampering maturation and breeding performances of broodstock. Temperature has also been reported to affect embryonic development and cause stunted growth of larvae and juvenile. In shrimp and prawn hatcheries, fluctuations in temperature, pH, and salinity are responsible for post-larval disease outbreaks. In some instances, storms and heavy rainfall wash away reared broodfish and fish seed from the hatcheries, causing massive socioeconomic losses. This review presents indisputable negative impacts of climate change on hatchery production. As of now, no cost-effective proven strategies have been developed to minimize the effects of climate change on Bangladesh's fish hatchery production, on which the aquaculture industry is inextricably dependent. For sustainable fish hatchery production, basic research on climate impacts on hatcheries is inevitable, as well as improving capacity of hatchery owners are needed for resilient hatchery operations in Bangladesh and similar environments worldwide.
Collapse
Affiliation(s)
| | - A.K. Shakur Ahammad
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abul Bashar
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Neaz A. Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Balaram Mahalder
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mehedi Alam
- Department of Fishery Resources Conservation and Management, Khulna Agricultural University, Khulna, Bangladesh
| | | | - Mohammad Mahfujul Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh,Corresponding author.
| |
Collapse
|
5
|
Bashar A, Heal RD, Hasan NA, Salam MA, Haque MM. COVID-19 impacts on the Bangladesh shrimp industry: A sequential survey-based case study from southwestern Bangladesh. FISHERIES SCIENCE : FS 2022; 88:767-786. [PMID: 36187420 PMCID: PMC9510452 DOI: 10.1007/s12562-022-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Shrimp farming is fundamental to the national economy of Bangladesh, particularly through earning foreign currency. The nationwide lockdown and international cargo restriction jeopardized the sector and breaking its marketing chain. Assessing the degree of farming socio-economic peril from COVID-19 and suggesting early coping strategies and long-term mitigation measures are pressing to build resilience for this food production sector. To collect survey data, two key-informant face-to-face surveys with 51 shrimp farmers and 62 consumers in southwest Bangladesh were accomplished. As national lockdowns restricted access to export markets and movements within the country, farm incomes decreased against rising production costs. To compensate, farmers reduced their workforce (29.4%), but even with the sale of co-cultured finfish still suffered from large drops in revenue (42.8% average profit reduction). Furthermore, we present evidence that shrimp farmers should consider diversification of aquaculture product type as co-culture of additional shrimp species was a poor mitigation strategy against large market price fluctuations. Product price reductions were passed on to the consumer, who enjoyed falling product prices including more expensive shrimp products, but the markup for nearly all aquaculture products increased. The current jeopardy and consequences of shrimp farming future are discussed, including coping strategies to help policymakers in building resilience against future uncertainties. Supplementary Information The online version contains supplementary material available at 10.1007/s12562-022-01630-0.
Collapse
Affiliation(s)
- Abul Bashar
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Richard D. Heal
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth, UK
| | - Neaz A. Hasan
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md. Abdus Salam
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Mahfujul Haque
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
6
|
Impact of Omega-3 Fatty Acids Nano-Formulation on Growth, Antioxidant Potential, Fillet Quality, Immunity, Autophagy-Related Genes and Aeromonas hydrophila Resistance in Nile Tilapia (Oreochromis niloticus). Antioxidants (Basel) 2022; 11:antiox11081523. [PMID: 36009242 PMCID: PMC9405413 DOI: 10.3390/antiox11081523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/02/2023] Open
Abstract
In modern aquaculture, enriching Nile tilapia’s diet with omega-3 poly-unsaturated fatty acids (PUFAs) not only plays an important role in its general health but also fortifies its fillet with omega-3-PUFAs. However, the major challenge affecting their delivery is their high instability due to oxidative deterioration. Thus, the prospective incorporation of omega-3-PUFAs into nanocarriers can enhance their stability and bioactivity. In this regard, the effect of reformulated omega-3-NPs was investigated on Nile tilapia’s performance, flesh antioxidant stability, immunity, and disease resistance. Four fish groups supplemented with omega-3-PUFAs-loaded nanoparticles (omega-3 NPs) at levels of 0, 1, 2, and 3 g/kg diet and at the end of feeding trial fish challenged with Aeromonas hydrophila. Fish performance (weight gain and feed conversion) was improved in groups supplemented with omega-3-NPs (2 and 3 g/kg diet). The deposition of omega-3-PUFAs in fish flesh elevated with increasing dietary omega-3-NPs. Simultaneously the oxidative markers (H2O2, MDA, and reactive oxygen species) in fish flesh were reduced, especially with higher omega-3-NPs. Post-challenge, downregulation of IL-1β, IL-6, IL-8, TNF-α, and caspase-1 were noticed after dietary supplementation of omega-3-NPs. Moreover, mRNA expression of autophagy-related genes was upregulated while the mTOR gene was downregulated with higher omega-3 NPs levels. Lower expression of A. hydrophila ahyI and ahyR genes were detected with omega-3 NPs supplementation. In conclusion, omega-3-NPs application can fortify tilapia flesh with omega-3-PUFAs and augment its performance, immunity, and disease resistance against Aeromonas hydrophila.
Collapse
|
7
|
Ritu RF, Islam SMM, Rashid H, Haque SM, Zulfahmi I, Sumon KA. Application of fenitrothion on Heteropneustes fossilis causes alteration in morphology of erythrocytes via modifying hematological parameters. Toxicol Rep 2022; 9:895-904. [PMID: 36518401 PMCID: PMC9742834 DOI: 10.1016/j.toxrep.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
In Bangladesh, the extensive use of fenitrothion on crops and in aquaculture ponds inevitably threatens a range of aquaculture species, including fish, owing to stress responses and physiological disturbances. The present study elucidated the potential toxic effects of fenitrothion on the blood biomarkers (haemato-biochemistry and structure of erythrocytes) of stinging catfish (Heteropneustes fossilis), a commercially significant aquaculture species. Fish were exposed to four sub-lethal concentrations (0%, 10%, 20%, and 40% of the 96-h LC50 value) of fenitrothion in triplicate and observed on the 7th, 14th, 21st, and 28th day following exposure. With increasing fenitrothion concentration, blood glucose and white blood cell levels increased significantly; in contrast, hemoglobin, red blood cell, and packed cell volume substantially decreased. However, the mean corpuscular volume and mean corpuscular hemoglobin did not change significantly during the exordial period (0-7 d); although, at a later stage, changes were observed. Frequencies of observed erythrocytic nuclear abnormalities, such as degeneration, bi-nucleus, micronucleus, notch nucleus, and nuclear bridge and erythrocytic cellular abnormalities, such as echinocytes, fusion, elongation, and tear drop morphology increased significantly in a concentration-dependent manner. Differences between the control individuals and those individuals under treatment were considered insignificant for twin cells on the 14th day of exposure. The study showed the pernicious impact of the effects of fenitrothion on H. fossilis through physiological alteration, which is likely to pose challenges for aquaculture production.
Collapse
Affiliation(s)
- Rifat Farjana Ritu
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - SM Majharul Islam
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Harunur Rashid
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Shahroz Mahean Haque
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Syiah Kuala University, Indonesia
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
8
|
Al-Emran M, Hasan NA, Khan MP, Islam SMM, Bashar A, Zulfahmi I, Shahjahan M, Sumon KA. Alterations in hematological parameters and the structure of peripheral erythrocytes in Nile tilapia (Oreochromis niloticus) exposed to profenofos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29049-29061. [PMID: 34993795 DOI: 10.1007/s11356-021-17972-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The burden of pesticide use from agricultural intensification lies in the fact that pesticides may end up in aquatic ecosystems and have pernicious effects on non-target organisms, including fish. Different blood biomarkers, including hemato-biochemical indices, erythrocytic nuclear abnormalities (ENA), and erythrocytic cellular abnormalities (ECA), were observed in Nile tilapia (Oreochromis niloticus) after exposure to varying sub-lethal concentrations (0%, 5%, 10%, 20%, and 40% of 96-h LC50) of profenofos at different time intervals (7, 14, 21, and 28 days). The results revealed that glucose and white blood cell (WBC) levels significantly increased, while hemoglobin, red blood cell (RBC), and packed cell volume (PCV) significantly decreased in a time- and concentration-dependent manner. Aberrant erythrocytic morphology-derived ENA, such as nuclear degeneration, micronuclear formation, binuclear development, nuclear budding, and karyopyknosis, significantly increased with time in profenofos-exposed groups compared to controls. Between the treatment and control groups, a significant execution was discerned for teardrop and fusion type ECA. For other cellular aberrations of erythrocytes, including elongated, twin, and spindle, a significant difference appeared only at the beginning of the experiment (day 7). This study concludes that the presence of widely used profenofos in aquatic systems has a pernicious effect on Nile tilapia.
Collapse
Affiliation(s)
- Md Al-Emran
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Neaz A Hasan
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Polash Khan
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - S M Majharul Islam
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Abul Bashar
- Department of Aquaculture, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Ilham Zulfahmi
- Department of Fisheries Resources Utilization, Faculty of Marine and Fisheries, Syiah Kuala University, Banda Aceh, Indonesia
| | - Md Shahjahan
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Kizar Ahmed Sumon
- Department of Fisheries Management, Faculty of Fisheries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|