1
|
Ouheddou M, Abelouah MR, Ben-Haddad M, Hajji S, Laaraj NE, Akhouchal I, Barra I, Rangel-Buitrago N, Agnaou M, Alla AA. Microplastics in Morocco's most consumed fisheries: Chemical characterization, ecological traits, and implications for human health. MARINE POLLUTION BULLETIN 2025; 210:117334. [PMID: 39615337 DOI: 10.1016/j.marpolbul.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
The pervasive presence of microplastics (MPs) in the environment is well established, yet many critical questions remain about their distribution and potential impacts on both ecological and human health. To assess the risks that MPs pose, especially through marine ecosystems and human consumption, monitoring their ingestion by fish in natural environments is essential. This study investigated the contamination of 12 fish species, the most commonly consumed in Morocco, collected from the Atlantic Ocean off the Moroccan coast. Analysis of 240 fish (20 individuals per species) revealed that 100 % of the samples contained microplastics. MPs were detected in the gills, gonads, and gastrointestinal tracts of all 12 species. The average abundance of microplastics per fish ranged from 20.6 to 133.2 MPs, with the forms identified as fragments (60 %), fibers (30 %), films (8 %), and pellets and foams (1 %). Additionally, omnivorous and demersal species presented the highest levels of MP contamination. Infrared spectroscopy (ATR-FTIR) analysis identified seven polymers, with high-density polyethylene (34 %), polyethylene terephthalate (30 %), and polypropylene (17.5 %) being the most prevalent. The microplastics were predominantly dark or light in color, with a notable presence of red and blue particles. Fish ingest various sizes of microplastics, primarily particles smaller than 1 mm. Scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX) revealed that most MPs exhibited visible signs of weathering and contained inorganic components on their surfaces. The potential risk of MPs to fish, as assessed by the polymer hazard index (PHI), was categorized as level V, indicating that MPs may pose significant risks to human health. The highest estimated daily intake (EDI) of microplastics was found in children (1620 MPs/year), whereas the lowest intake was estimated in women (350 MPs/year) and men (337 MPs/year). Given the widespread presence of microplastics in commonly consumed fish species in Morocco, there is an urgent need for regulatory measures to ensure the safety of fisheries, both for domestic consumption and export. Policymakers should consider the development of guidelines for acceptable levels of microplastic contamination in fish to safeguard public health.
Collapse
Affiliation(s)
- Maryam Ouheddou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nour Eddine Laaraj
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Ihya Akhouchal
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Issam Barra
- Mohammed VI Polytechnic University (UM6P), Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), AgroBioSciences (AgBS), 43150 Benguerir, Morocco
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia
| | - Mustapha Agnaou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
2
|
Piskuła P, Astel A, Pawlik M. Microplastics in seawater and fish acquired from the corresponding fishing zones of the Baltic Sea. MARINE POLLUTION BULLETIN 2024; 211:117485. [PMID: 39718281 DOI: 10.1016/j.marpolbul.2024.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Microplastics in seawater and fish from the Baltic Sea were analyzed. The significant contribution of the study is due to extensive collection of fish and surface water samples from corresponding fishing zones. Microplastics were detected in 100 % of seawater and 61 % of fish samples. The abundances of microplastics were 19,984 ± 8858 items/m3 (seawater) and 3.3 items/fish in the fish organs. The average dimension was 1.08 ± 1.19 mm (seawater), and 0.77 ± 0.84 mm (fish). In 106 out of 178 specimens (61 %), MPs were found in the gills (46 %), digestive tract (38 %), or liver (16 %). Fiber was the most dominant shape found in seawater (91.7 %) and fish (68.3 %), while the dominant color of items was blue. Items were mostly composed of polyethylene (21 %), polypropylene (20 %), cellophane (16 %), polyamide (9 %), and polyacrylate (8 %).
Collapse
Affiliation(s)
- Paulina Piskuła
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland.
| | - Aleksander Astel
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Magdalena Pawlik
- Institute of Geography, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
3
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
4
|
Sajad S, Allam BK, Debnath A, Bangotra P, Banerjee S. Pollution status of microplastics in the sediments of warm monomictic Dal lake, India: Abundance, composition, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125247. [PMID: 39505103 DOI: 10.1016/j.envpol.2024.125247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/26/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024]
Abstract
This report presents the first investigation of microplastic (MP) contamination in the shoreline sediments of Dal Lake, Jammu and Kashmir, India. The MP concentrations ranged from 503 to 3154 MP/kg, with a notable seasonal variation. The highest concentrations of microplastics occurred in the Spring, ranging from 467 to 3445 MP/kg. Microplastics were identified using optical microscopy, Fourier Transform Infrared spectroscopy, and thermogravimetric analysis. Polymer analysis revealed that the Gagribal basin was contaminated with polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), polyamide (PA), and polyethylene terephthalate (PET). In contrast, the Nigeen basin mainly comprises PE, PP, and PS. The significantly elevated Polymer Hazard Index (PHI) values, exceeding 1000 in the Gagribal basin, were attributed to the presence of PVC. Sediment quality was assessed using Pollution Load Index (PLI), Potential Ecological Risk Index (PERI), and PHI. Health risk metrics, such as estimated daily intake (EDI) and microplastic carcinogenic risks (MPCR), were also evaluated. There is a positive correlation between microplastic abundance and total organic carbon (TOC), total phosphorus (TP), and total nitrogen (TN). The Nigeen basin, characterized by a higher proportion of less hazardous polymers like PP, exhibited greater TOC levels due to enhanced microbial degradation of microplastics. Conversely, the Gagribal basin, with its higher presence of toxic polymers like PVC, had lower TOC levels, likely due to these compounds' inhibition of microbial activity. This study provides crucial insight into the spatial distribution and ecological impact of MPs in Dal Lake, setting the stage for future research on their effects on aquatic ecosystems.
Collapse
Affiliation(s)
- Samreen Sajad
- Department of Environmental Sciences, Sharda University, Greater Noida, India
| | - Bharat Kumar Allam
- Department of Chemistry, Rajiv Gandhi University (A Central University), Rono Hills, Doimukh, Arunachal Pradesh, India
| | - Abhijit Debnath
- Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Pargin Bangotra
- Department of Physics, Netaji Subhas University of Technology, New Delhi, India
| | - Sushmita Banerjee
- Department of Environmental Sciences, Sharda University, Greater Noida, India.
| |
Collapse
|
5
|
Yang Z, Zhang J, Viyakarn V, Arnupapboon S, Chanyim A, Lorpai A, Hayashi T, Hagita R, Uchida K, Arakawa H. Concentrations and carbonyl index of microplastic in surface seawater in southeastern coastal region off Japan, Northwestern Pacific. MARINE POLLUTION BULLETIN 2024; 208:116957. [PMID: 39260145 DOI: 10.1016/j.marpolbul.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
In this study, microplastic concentrations in the southeastern coastal regions of Japan were measured along the northward ocean current at seven stations from Okinawa to Tokai region. Concentrations ranged from 0.014 to 0.094 pieces/m3, except for a station near the Bungo Channel mouth, which had 0.723 pieces/m3. Polystyrene (PS) foam was most prevalent near the east side of Kyushu, suggesting origination from nearby coastal areas. Fragmentation levels were higher in the Tokai region. In addition, carbonyl index (CI) of polyethylene (PE) microplastics increased northward, indicating northward movement from southern regions. Standard PE microplastics showed chemical treatment does not significantly alter CI values. Further spectral analysis suggested potential oxidation of polypropylene (PP) and PS foam by chemical treatment. This study provides a comprehensive understanding of the abundance, distribution, and characteristics of microplastics in the southeastern coastal regions of Japan in the northwest Pacific, enhancing the understanding of environmental fate of microplastics.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Jiaqi Zhang
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| | - Voranop Viyakarn
- Aquatic Resources Research Institute, Chulalongkorn University, 254 Institute Building 3, Pyathai Road, Patumwan, Bangkok, Thailand.
| | - Sukchai Arnupapboon
- Southeast Asia Fisheries Development Center, Phrasamutchedi, Samut Prakan 10290, Thailand.
| | - Anusorn Chanyim
- Southeast Asia Fisheries Development Center, Phrasamutchedi, Samut Prakan 10290, Thailand.
| | - Anuphap Lorpai
- Southeast Asia Fisheries Development Center, Phrasamutchedi, Samut Prakan 10290, Thailand.
| | - Toshifumi Hayashi
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Ryuichi Hagita
- Center for Marine Research and Operations, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Keiichi Uchida
- Department of Marine Resources and Energy, Tokyo University of Marine Science and Technology, 5-7, Konan-4, Minato, Tokyo 108-8477, Japan.
| | - Hisayuki Arakawa
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan.
| |
Collapse
|
6
|
Hajji S, Ben-Haddad M, Abelouah MR, Rangel-Buitrago N, Ait Alla A. Microplastic characterization and assessment of removal efficiency in an urban and industrial wastewater treatment plant with submarine emission discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174115. [PMID: 38908571 DOI: 10.1016/j.scitotenv.2024.174115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Wastewater treatment plants (WWTPs) are significant contributors to microplastic (MP) pollution in marine ecosystems when they are inefficient. This study aimed to evaluate the effectiveness of microplastic removal from the effluent of the Anza WWTP (Morocco), which processes industrial and urban wastewater using a lamellar decantation system combined with a submarine emissary for treated water discharge. Additionally, this study investigated the presence of microplastics in the Atlantic seawater where treatment plant effluent is released. Microplastics were collected and extracted from wastewater and seawater samples to assess their abundance, shape, size, polymer type, and removal rates in the treatment plant. The findings revealed an average MP concentration of 1114 ± 90 MPs/L in the influent and 607 ± 101 MPs/L in the effluent, indicating a removal efficiency of 46 %. Seasonal analysis revealed the highest MP concentrations during the summer, with 2181.33 MPs/L in the influent and 1209 MPs/L in the effluent. Seawater samples from the discharge zone of the submarine emissary had an average MP concentration of 1600 MPs/m3. Characterization of the MPs revealed that fibers were the most common form of MPs in all the samples. The 500-100 μm size fraction was predominant in the WWTP samples, while MPs smaller than 1 mm were more abundant in the seawater samples. Seven polymer types were identified using attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), with PET, PE, PVC, PA, PS, PP, and EVA being the most prevalent. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX) revealed various degrees of weathering and chemical elements adhering to the MP surfaces. The results of this study provide valuable insights into the effectiveness of conventional treatment systems in removing microplastics and offer a reference for developing management strategies to mitigate MP pollution in Morocco's marine ecosystems.
Collapse
Affiliation(s)
- Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
7
|
Abouda S, Galati M, Oliveri Conti G, Cappello T, Abelouah MR, Romdhani I, Ait Alla A, Ferrante M, Maisano M, Banni M. Metabolomic and biochemical disorders reveal the toxicity of environmental microplastics and benzo[a]pyrene in the marine polychaete Hediste diversicolor. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135404. [PMID: 39098204 DOI: 10.1016/j.jhazmat.2024.135404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Recently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.
Collapse
Affiliation(s)
- Siwar Abouda
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gea Oliveri Conti
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Margherita Ferrante
- Interdepartmental Research Center for the Implementation of Physical, Chemical and Biological Monitoring Processes in Aquaculture and Bioremediation Systems, Department of Medical, Surgical and Advanced Technologies, Hygiene and Public Health "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Maria Maisano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse, Sousse, Tunisia
| |
Collapse
|
8
|
Ben-Haddad M, Abelouah MR, Hajji S, Abou Oualid J, Ait Alla A, Rangel-Buitrago N. Scenic degradation and visual pollution along the Agadir coastline (Morocco): Analysis and management. MARINE POLLUTION BULLETIN 2024; 205:116629. [PMID: 38917496 DOI: 10.1016/j.marpolbul.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Visual pollution refers to the degradation of landscape aesthetics, manifesting as visible deterioration. On the Agadir coast in Morocco, factors such as urbanization, erosion, marine wracking, litter, sewage, beach driving, and animal waste contribute to this issue, which detracts from coastal scenery. This study employs the coastal scenery evaluation system (CSES) to conduct a scenic assessment of 40 coastal sites, aiming to describe the current state of visual pollution and inform management interventions. The CSES utilizes a checklist comprising 18 physical and 8 human parameters to calculate a scenic evaluation index (D value), which categorizes coastal sites into five classes. These range from Class I - typically undisturbed natural areas with pristine scenic qualities - to Class V - which are degraded natural areas significantly impacted by human activities. The scenic evaluation classified these sites into three classes. Four sites (10 %) were classified as Class III, fifteen (37.5 %) as Class IV, and twenty-one (52.5 %) as Class V. No sites were classified as Classes I or II. The assessments presented here offer a comprehensive overview of the Agadir coastal scenery and establish a baseline for developing strategies to address visual pollution.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| |
Collapse
|
9
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
10
|
De-la-Torre GE, Santillán L, Dioses-Salinas DC, Yenney E, Toapanta T, Okoffo ED, Kannan G, Madadi R, Dobaradaran S. Assessing the current state of plastic pollution research in Antarctica: Knowledge gaps and recommendations. CHEMOSPHERE 2024; 355:141870. [PMID: 38570048 DOI: 10.1016/j.chemosphere.2024.141870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Antarctica stands as one of the most isolated and pristine regions on our planet. Regardless, recent studies have evidenced the presence of plastic pollution in Antarctic environments and biota. While these findings are alarming and put into perspective the reach of plastic pollution, it is necessary to assess the current knowledge of plastic pollution in Antarctica. In the present review, an updated literature review of plastic pollution in multiple Antarctic environmental compartments and biota was conducted. Studies were cataloged based on environmental compartments (e.g., sediments, seawater, soil, atmosphere) and biota from different ecological niches. A detailed analysis of the main findings, as well as the flaws and shortcomings across studies, was conducted. In general terms, several studies have shown a lack of adequate sampling and analytical procedures for plastic research (particularly in the case of microplastics) and standard procedures; thus, compromising the reliability of the data reported and comparability across studies. Aiming to guide future studies and highlight research needs, a list of knowledge gaps and recommendations were provided based on the analysis and discussion of the literature and following standardized procedures.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Luis Santillán
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Emma Yenney
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Landau, Germany
| | - Tania Toapanta
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Elvis D Okoffo
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - Gunasekaran Kannan
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
11
|
Meng X, Chen S, Li D, Song Y, Sun L. Identification of marine microplastics based on laser-induced fluorescence and principal component analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133352. [PMID: 38198873 DOI: 10.1016/j.jhazmat.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Although the laser-induced fluorescence method shows great potential for microplastic particle detection, overlapping fluorescence signals make accurate type and proportion identification difficult. This paper presents the identification of marine microplastics based on laser-induced fluorescence and principal component analysis. This method works by measuring the fluorescence spectra of water-containing microplastic samples irradiated with a 405-nm laser, which are then analyzed using the principal component analysis (PCA) method. The nine types of microplastics were differentiated based on their positions in the PCA score plot. The mixed sample was positioned between the pure microplastic samples. The component ratio determines its position relative to that of the pure microplastic samples. The first two principal components of the mixed microplastics were linearly dependent. Natural seawater had less influence on the detection, and a mass concentration as low as 0.03% was detected.
Collapse
Affiliation(s)
- Xiongfei Meng
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; Department of Navigation and Shipping, ShanDong JiaoTong University, Weihai 264200, China
| | - Shimeng Chen
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Lanjun Sun
- Department of Navigation and Shipping, ShanDong JiaoTong University, Weihai 264200, China
| |
Collapse
|
12
|
Bahrani F, Mohammadi A, Dobaradaran S, De-la-Torre GE, Arfaeinia H, Ramavandi B, Saeedi R, Tekle-Röttering A. Occurrence of microplastics in edible tissues of livestock (cow and sheep). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22145-22157. [PMID: 38403824 DOI: 10.1007/s11356-024-32424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Plastic contamination is widely recognized as a major environmental concern due to the entry of small plastic particles into the food chain, thereby posing potential hazards to human health. However, the current understanding of microplastic (MP; < 5 mm) particles in livestock, which serve as an important food source, is limited. This study aims to investigate the concentration and characteristics of MPs in edible tissues of cow and sheep, namely liver, meat, and tripe, obtained from butcher shops in five areas of Bushehr port, Iran. The mean concentration of MPs in different tissues of cow and sheep were 0.14 and 0.13 items/g, respectively. Among the examined tissues, cow meat exhibited the highest concentration of MPs, with a concentration of 0.19 items/g. Nylon and fiber were identified as the predominant polymer types and shapes of MPs found in cow and sheep tissues, respectively. Furthermore, no statistically significant difference was observed in MP concentration across different tissues of cow and sheep. Significantly, this study highlights the elevated hazards associated with exposure to MPs through the consumption of edible cow and sheep tissues, particularly for children who consume meat. The results underscore the potential transfer of MPs from the environment to livestock bodies through their food, contamination during meat processing, and subsequent health hazards for consumers.
Collapse
Affiliation(s)
- Farkhondeh Bahrani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, 45877, Gelsenkirchen, Germany
| |
Collapse
|
13
|
Abelouah MR, Ben-Haddad M, Hajji S, Nouj N, Ouheddou M, Mghili B, De-la-Torre GE, Costa LL, Banni M, Ait Alla A. Exploring marine biofouling on anthropogenic litter in the Atlantic coastline of Morocco. MARINE POLLUTION BULLETIN 2024; 199:115938. [PMID: 38141584 DOI: 10.1016/j.marpolbul.2023.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Today, the world is increasingly concerned about marine litter and its interaction with marine biodiversity. However, knowledge concerning the fouling organisms associated with marine litter is very limited in many of the world's marine environments. In this survey, we investigated biofouling on different types of marine litter washed up on all the coasts of the central Atlantic of Morocco. The findings revealed 21 fouling species belonging to 9 phyla (Arthropoda, Mollusca, Echinodermata, Annelida, Bryozoa, Porifera, Chlorophyta, Ochrophyta, and Ascomycota). More specifically, frequently observed fouling species include Mytilus galloprovincialis, Balanus laevis, Megabalanus coccopoma, and Pollicipes pollicipes species. Large marine litter items recorded the highest colonization of marine organisms in comparison to small ones. The frequency of occurrence (FO) of the species most commonly fouled on all coasts was Perforatus perforatus (FO = 48.60), followed by Mytilus galloprovincialis (FO = 45.80), Balanus trigonus (FO = 32.05), Balanus laevis (FO = 30.25), Megabalanus coccopoma (FO = 25.25), Bryozoa species (FO = 19.40), Spirobranchus triqueter (FO = 18.18), Lepas pectinata (FO = 14.45), and Pollicipes pollicipes (FO = 13.05). The majority of the species registered in this study are sessile. Substrate coverage by fouling taxa was significantly different between plastic substrate and other types of marine litter. Likewise, this study revealed that the proportion of fouling organisms is higher on rough surfaces. Overall, this research could be crucial to understanding the little-known subject of marine litter and its colonization by marine biota. Given that these marine litters can act as vectors and cause ecological, biogeographical, and conservation issues in the marine environment, minimizing the quantity of anthropogenic litter reaching the Moroccan Atlantic could significantly reduce its accumulation on the sea surface and seabed, thereby reducing the risk of invasion by non-indigenous species.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Nisrine Nouj
- Material and Environmental Laboratory (LME), Department of Chemistry, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Maryam Ouheddou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes CEP, Rio de Janeiro 28013-602, Brazil.
| | - Mohamed Banni
- Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
14
|
Romdhani I, Gallo A, Venditti M, Abelouah MR, Varchetta R, Najahi H, Boukadida K, Boni R, Alla AA, Minucci S, Banni M. Unveiling the impact of environmental microplastics on mussel spermatozoa: First evidence of prothymosin-α detection in invertebrate's male gametes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132521. [PMID: 37717447 DOI: 10.1016/j.jhazmat.2023.132521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Mytilus galloprovincialis mussels, like many other marine invertebrates, employ external fertilization as a mating strategy, exposing their gametes to various contaminants upon release into seawater. Environmental microplastics (EMP) are prevalent marine pollutants that pose a significant threat to aquatic biota. In this regard, our study aimed to investigate the potential effects of exposing mussels' male gametes to increasing concentrations of EMP (1, 10, 50, and 100 μg/l) collected from a Mediterranean sandy beach. We focused on assessing gamete quality by analysing physiological parameters such as viability, mitochondrial membrane potential, oxidative status, and motility. Additionally, we evaluated DNA integrity and activation of apoptosis. Furthermore, our study aimed to detect the presence of the prothymosin-α (PTMA) protein, which has never been previously investigated in invertebrate spermatozoa. Our data revealed that exposure of mussel spermatozoa to EMPs altered their oxidative status and mitochondrial membrane potential, induced a decrease in motility, DNA integrity, and an increased apoptotic occurrence, leading to a decline in overall viability. The localization of PTMA into the head and flagellum of spermatozoa further supported its presence and susceptibility to the effects of microplastics. These findings raise concerns about the reproductive capacity of mussels under environmental microplastic pollution and highlight potential long-term threats to population sustainability.
Collapse
Affiliation(s)
- Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse,Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia; Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, ViaSanta Maria di Costantinopoli, 16, 80138 Napoli, Italy
| | - Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, ViaSanta Maria di Costantinopoli, 16, 80138 Napoli, Italy
| | - Mohamed Rida Abelouah
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse,Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia; Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Rita Varchetta
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Hana Najahi
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse,Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Khouloud Boukadida
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse,Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Raffaele Boni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Sciences, University of Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, PZ, Italy
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sergio Minucci
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, ViaSanta Maria di Costantinopoli, 16, 80138 Napoli, Italy
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, Higher Institute of Agronomy, University of Sousse,Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia.
| |
Collapse
|
15
|
Egea-Corbacho A, Martín-García AP, Franco AA, Albendín G, Arellano JM, Rodríguez-Barroso R, Coello MD, Quiroga JM, Cabello JF, Iglesias Prado I, Malta EJ. Microplastic in industrial aquaculture: Occurrence in the aquatic environment, feed and organisms (Dicentrarchus labrax). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166774. [PMID: 37660804 DOI: 10.1016/j.scitotenv.2023.166774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
The increasing use of plastics and the growing concern about their impact on the environment and living beings makes it necessary to study how microplastics (MP) affect aquaculture systems. In order to gain an in-depth understanding of these systems, this study covers the water intake, the purification treatment at the inlet, the water in the culture tanks, as well as the feed used in the feeding and the organism itself. For this purpose, five samples were taken, both in the water line, feed and sea bass during the weeks of the experiment. It is shown that the available purification systems reduce the amount of MP entering from the receiving environment. However, new MP are observed in the sea bass tank, which may be due mainly to those added through the feed and found in the feed, as well as in the piping and other materials used in current aquaculture systems (PTFE, PA, among others). If focusing on the feed that can reach the consumer, in the case of this study, carried out with sea bass, some types of MP (PE, PTFE, PS and PA) were found in 4 head samples and 4 skin/muscle samples. Although inlet water purification systems manage to reduce a high percentage of MPs in the system, it is observed that there are other access routes that should be considered and reduced in aquaculture facilities to prevent them from reaching the human consumer.
Collapse
Affiliation(s)
- Agata Egea-Corbacho
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Ana Pilar Martín-García
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain.
| | - Ana A Franco
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Gemma Albendín
- Toxicology Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain
| | - Juana Mª Arellano
- Toxicology Department, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz, Spain.
| | - Rocío Rodríguez-Barroso
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Mª Dolores Coello
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - José Mª Quiroga
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Jose F Cabello
- Aquaculture Technology Centre of Andalusia (CTAQUA), 11500 El Puerto de santa María, Spain
| | - Iria Iglesias Prado
- Aquaculture Technology Centre of Andalusia (CTAQUA), 11500 El Puerto de santa María, Spain
| | - Erik-Jan Malta
- Aquaculture Technology Centre of Andalusia (CTAQUA), 11500 El Puerto de santa María, Spain
| |
Collapse
|
16
|
Hajji S, Ben-Haddad M, Rida Abelouah M, De-la-Torre GE, Ait Alla A. Sludge drying and dewatering processes influence the abundance and characteristics of microplastics in wastewater treatment plants. CHEMOSPHERE 2023; 339:139743. [PMID: 37567259 DOI: 10.1016/j.chemosphere.2023.139743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Wastewater treatment plants (WWTPs) have been identified as high-load receptors of microplastics (MPs) from different sources. However, the influence of specific treatment stanges requires further research. The main objective of this research was to evaluate the abundance and chemical characteristics of MPs in the sludge of two major wastewater treatment plants in the Agadir metropolis (Central Atlantic of Morocco). The Aourir plant receives urban influents and the inputs of the M'zar facility were urban and industrial. Samples were collected from the sludge matrices after primary settling, clarifying, dewatering, and drying systems. In addition, the effect of seasonality on MP load was assessed. The results showed that a higher abundance was noticed in raw sludge than in dewatered one in Aourir WWTP, while in M'zar WWTP, a very low decrease is noticed in dried sludge compared to raw sludge. The concentration of MPs in the summer season was significantly higher compared to other seasons for Aourir WWTP, while the winter season was higher for M'zar WWTP. Moreover, the most abundant shapes were fibers and the fraction 100-500 μm was the most preponderant. Eleven polymers were identified by ATR-FTIR, being polyester, polyethylene, polypropylene, and polystyrene the most abundant ones. Scanning Electron Microscopy coupled with Energy Dispersive X-ray revealed the visible degradation and fragmentation of MPs from sewage sludge and their ability to adsorb inorganic elements. It was estimated that between 2.2 × 107 and 7.4 × 108 MPs were evacuated with the sludge per day. The obtained findings confirmed that WWTP sludge acts as a vector of MPs with a high level of hazard to various matrices, such as landfills, agricultural soils, and groundwater. Overall, consideration must be given to the regulatory system managing the fate of sewage sludge to mitigate the collateral effects and provide solutions.
Collapse
Affiliation(s)
- Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | | | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
17
|
Ben-Haddad M, Charroud I, Mghili B, Abelouah MR, Hajji S, Aragaw TA, Rangel-Buitrago N, Alla AA. Examining the influence of COVID-19 lockdowns on coastal water quality: A study on fecal bacteria levels in Moroccan seawaters. MARINE POLLUTION BULLETIN 2023; 195:115476. [PMID: 37677975 DOI: 10.1016/j.marpolbul.2023.115476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Fecal bacteria in bathing seawater pose a substantial public health risk and require rigorous monitoring. The unexpected beach closures during the COVID-19 lockdowns have afforded unique opportunities to evaluate the impact of human activities on bathing water quality (BWQ). This study examined the temporal changes in fecal coliforms (FC) and streptococci (FS) within bathing seawater across a popular coastal region in Morocco during two lockdown periods (2020 L and 2021 L), comparing these data with observations from pre-lockdown years (2018, 2019) and post-lockdown periods (2020, 2021, 2022). Our findings illuminate the influential role the hiatus periods played in enhancing bathing water quality, attaining an "excellent" status with marked reductions in fecal coliform and streptococci levels. Consequently, the FC/FS analysis exposed a clear preponderance of humans as the primary sources of fecal contamination, a trend that aligns with the burgeoning coastal tourism and the escalating numbers of beach visitors. Additionally, the presence of domestic animals like camels and horses used for tourist rides, coupled with an increase in wild animals such as dogs during the lockdown periods, compounded the potential sources of fecal bacteria in the study area. Furthermore, occasional sewage discharge from tourist accommodations and wastewater treatment plants may also contribute to fecal contamination. To effectively mitigate these concerns and bolster public health, a commitment to relentless surveillance efforts, leveraging novel and innovative tools, is essential. These findings underline the crucial interplay between human activities and the health of our coastal ecosystems, emphasizing the need for sustainable practices for a safer and healthier future.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Imane Charroud
- Laboratory of Biotechnologies and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Biology and Ecology of Deep Marine Ecosystems (BEEP), UMR 6197 (UBO, CNRS, Ifremer), Plouzané, France.
| | - Bilal Mghili
- LESCB, URL-CNRST N° 18, Abdelmalek Essaadi University, Faculty of Sciences, Tetouan, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Tadele Assefa Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| |
Collapse
|
18
|
Kim B, Kim H, Yoo K. Insight into the marine microplastic abundance and distribution in ship cooling systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117940. [PMID: 37075634 DOI: 10.1016/j.jenvman.2023.117940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs) are becoming widely recognized as one of many global environmental issues. Although recently, it has been suggested that marine plastics may affect a ship's operation, the presence of MPs in a ship's cooling system has not received significant attention. In this study, samples of 40 L each were taken from each of the five main pipes (sea chest (SC), ejector pump (EP), main engine jacket freshwater pump (MJFP), main engine jacket freshwater cooler (MJFC), and expansion tank (ET)) in each season (February, May, July, October 2021) to identify and characterize MPs in the five main pipes of the ship cooling system from the training ship Hanbada, Korea Maritime and Ocean University. As a result of FTIR analysis, the total MP abundance was 24,100 particles/m3 in the cooling system of the ship. MP concentrations were observed to be higher (p < 0.05) in winter and spring (dry season: 1578 ± 604 particles/m3) than in summer and autumn (wet season: 990 ± 390 particles/m3). In addition, the MP concentration in the seawater cooling system (SCS) (1509 ± 553 particle/m3) was slightly higher (p > 0.05) than that in the freshwater cooling system (FCS) (1093 ± 546 particles/m3). Compared to previous studies, it was confirmed that the quantitative amount of MPs on board was similar to or slightly less than the concentration of MPs investigated along the coast of Korea (1736 particles/m3). To identify the chemical composition of MPs, an optical microscope and FTIR analysis was carried out, and PE (polyethylene), PP (polypropylene), and PET (polyethylene terephthalate) were identified as major chemicals in all samples. MPs in the form of fibers and fragments accounted for approximately 95% of the total. This study provided evidence of MP contamination in the main pipe in the cooling system of the ship. These findings confirm that marine MPs existing in seawater may have flowed into the ship's cooling system, and it is necessary to understand the effect of marine MPs on the ship's engine and cooling system through continuous monitoring.
Collapse
Affiliation(s)
- Boram Kim
- Maritime Industry Research Division, Logistics and Maritime Industry Research Department, Korea Maritime Institute, Busan, 49111, South Korea
| | - Hyunsu Kim
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea
| | - Keunje Yoo
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| |
Collapse
|
19
|
Suaria G, Cappa P, Perold V, Aliani S, Ryan PG. Abundance and composition of small floating plastics in the eastern and southern sectors of the Atlantic Ocean. MARINE POLLUTION BULLETIN 2023; 193:115109. [PMID: 37327719 DOI: 10.1016/j.marpolbul.2023.115109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/18/2023]
Abstract
We report the distribution of floating plastics in the eastern and southern sectors of the Atlantic Ocean based on 35 neuston net trawl samples collected during two research cruises in 2016 and 2017. Plastic particles (>200 μm) were found in 69% of net tows, with median densities of 1583 items·km-2 and 5.1 g·km-2. Most particles (80% of 158) were microplastics (<5 mm) of secondary origin (88%), followed by industrial pellets (5%), thin plastic films (4%) and lines/filaments (3%). Due to the large mesh size we used, textile fibers were not considered in this study. μFTIR analysis revealed that most particles found in the net were made of polyethylene (63%), followed by polypropylene (32%) and polystyrene (1%). A transect between 0 and 18°E along 35°S in the South Atlantic Ocean revealed higher densities farther west, supporting the accumulation of floating plastics in the South Atlantic gyre, mainly west of 10°E.
Collapse
Affiliation(s)
- Giuseppe Suaria
- CNR-ISMAR (Institute of Marine Sciences - National Research Council), Lerici 19032, La Spezia, Italy.
| | - Paolo Cappa
- Independent Researcher, Sommariva Perno 12040, Italy
| | - Vonica Perold
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| | - Stefano Aliani
- CNR-ISMAR (Institute of Marine Sciences - National Research Council), Lerici 19032, La Spezia, Italy
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
20
|
De-la-Torre GE, Pizarro-Ortega CI, Dioses-Salinas DC, Ribeiro VV, Urizar Garfias Reyes DF, Ben-Haddad M, Rakib MRJ, Dobaradaran S. Micro- and mesoplastic pollution along the coast of Peru. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27707-6. [PMID: 37199842 DOI: 10.1007/s11356-023-27707-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Peru suffers from poor solid waste and coastal management, as well as evidenced plastic pollution in various forms. However, studies in Peru focusing on small plastic debris (i.e., meso- and microplastics) are still limited and inconclusive. Thus, the present study investigated the abundance, characteristics, seasonality, and distribution of small plastic debris along the coast of Peru. The abundance of small plastic debris is predominantly driven by specific locations, where a source of contamination is present, rather than presenting seasonal patterns. Meso- and microplastics were strongly correlated in both seasons (summer and winter), suggesting meso-plastic constantly breaking down as microplastic sources. Additionally, heavy metals (e.g., Cu, Pb) were found in low concentrations (mean concentrations < 0.4%) on the surface of some mesoplastics. Here, we provided a baseline on the multiple factors involving small plastic debris on the Peruvian coast and preliminarily identify associated contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente Y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | | | | | | | - Damarisch Fernanda Urizar Garfias Reyes
- Círculo de Investigación en Contaminación Por Plásticos, Universidad Nacional Agraria La Molina, Lima, Peru
- Grupo de Investigación Salud Pública, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| |
Collapse
|
21
|
Lee S, Kim D, Kang KK, Sung SE, Choi JH, Sung M, Shin CH, Jeon E, Kim D, Kim D, Lee S, Kim HK, Kim K. Toxicity and Biodistribution of Fragmented Polypropylene Microplastics in ICR Mice. Int J Mol Sci 2023; 24:ijms24108463. [PMID: 37239816 DOI: 10.3390/ijms24108463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Currently, polypropylene (PP) is used in various products, thus leading to high daily exposure in humans. Thus, it is necessary to evaluate the toxicological effects, biodistribution, and accumulation of PP microplastics in the human body. In this study, administration of two particle sizes of PP microplastics (approximately 5 and 10-50 µm) did not lead to any significant changes in several toxicological evaluation parameters, including body weight and pathological examination, compared with the control group in ICR mice. Therefore, the approximate lethal dose and no-observed-adverse-effect level of PP microplastics in ICR mice were established as ≥2000 mg/kg. Furthermore, we manufactured cyanine 5.5 carboxylic acid (Cy5.5-COOH)-labeled fragmented PP microplastics to monitor real-time in vivo biodistribution. After oral administration of the Cy5.5-COOH-labeled microplastics to the mice, most of the PP microplastics were detected in the gastrointestinal tract and observed to be out of the body after 24 h in IVIS Spectrum CT. Therefore, this study provides a new insight into the short-term toxicity, distribution, and accumulation of PP microplastics in mammals.
Collapse
Affiliation(s)
- Sijoon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongseon Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| | - Kyung-Ku Kang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Soo-Eun Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Joo-Hee Choi
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Minkyoung Sung
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Chang-Hoon Shin
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eunyoung Jeon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongkyu Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Dongmin Kim
- Korea Institute of Industrial Technology, Chenan 31056, Republic of Korea
| | - Sunjong Lee
- Korea Institute of Industrial Technology, Chenan 31056, Republic of Korea
| | - Hee-Kyung Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Kilsoo Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
- College of Veterinary Medicine, Kyungpook National University, 80 Dahakro, Buk-gu, Daegu 41566, Republic of Korea
| |
Collapse
|
22
|
Morgado V, Palma C, Bettencourt da Silva RJN. Determination of microplastic contamination levels and trends in vast oceanic sediment areas with uncertainty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163612. [PMID: 37100132 DOI: 10.1016/j.scitotenv.2023.163612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Small plastic particles, designated as microplastics, are known vehicles of several contaminants desorbed from their surface after being ingested by marine organisms. The monitoring of the levels and trends of microplastics in oceanic areas is essential to identify relevant threats and respective sources whose management should be improved to protect the environmental resources. However, the assessment of contamination trends in large oceanic areas is affected by contamination heterogeneity, sampling representativeness, and the uncertainty of collected sample analyses. Only contamination variations not justifiable by system heterogeneity and their characterisation uncertainty are meaningful and should be taken seriously by the authorities. This work describes a novel methodology for the objective identification of meaningful variation of microplastic contamination in vast oceanic areas by the Monte Carlo simulation of all uncertainty components. This tool was successfully applied to the monitoring of the levels and trends of microplastic contamination in sediments from a 700 km2 oceanic area from 3 km to 20 km offshore Sesimbra and Sines (Portugal). This work allowed concluding that contamination has not varied between 2018 and 2019 (difference of mean total microplastic contamination between -40 kg-1 and 34 kg-1) but that microparticles made of PET are the major type of studied microplastics (in 2019, mean contamination is between 36 kg-1 and 85 kg-1). All assessments were performed for a 99 % confidence level.
Collapse
Affiliation(s)
- Vanessa Morgado
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Instituto Hidrográfico, R. Trinas 49, 1249-093 Lisboa, Portugal
| | - Carla Palma
- Instituto Hidrográfico, R. Trinas 49, 1249-093 Lisboa, Portugal
| | - Ricardo J N Bettencourt da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
23
|
Abelouah MR, Romdhani I, Ben-Haddad M, Hajji S, De-la-Torre GE, Gaaied S, Barra I, Banni M, Ait Alla A. Binational survey using Mytilus galloprovincialis as a bioindicator of microplastic pollution: Insights into chemical analysis and potential risk on humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161894. [PMID: 36716882 DOI: 10.1016/j.scitotenv.2023.161894] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) contamination in edible mussels has raised concerns due to their potential risk to human health. Aiming to provide valuable insights regarding the occurrence, physicochemical characteristics, and human health implications of MP contamination, in the present study, two nationwide surveys of MP contamination in mussels (Mytilus galloprovincialis) were conducted in Morocco and Tunisia. The results indicated that MP frequency ranged from 79 % to 100 % in all the analyzed samples. The highest MP density was detected in mussels from Morocco (gills "GI": 1.88 MPs/g ww-1; digestive glands "DG": 0.92 MPs/g ww-1) compared to mussels of Tunisia (GI: 1.47 MPs g- 1; DG: 0.79 MPs g- 1). No significant differences in MP density were found between the two organs (GI and DG) for both countries. MPs were predominantly blue and black fibers, and smaller than 1000 μm. Seven polymeric types were identified, of which PET, PP, and PE were the most abundant, accounting for >87 % of all samples. Scanning Electron Microscopy (SEM) coupled with Energy dispersive X-ray (EDX) showed that most MPs have noticeable signs of weathering and inorganic components on their surface. The highest MP daily intake was found in children, while the lowest was estimated in women and men. Moreover, the annual dietary exposure of MPs through mussel consumption was estimated to be 1262.17 MPs/year in Morocco and 78.18 MPs/year in Tunisia. The potential risk assessment of MPs in mussels based on the polymer hazard index (PHI) was estimated in the high-risk levels, implying that MPs may pose health risks to humans. Overall, this research suggests that the consumption of mussels represents a considerable MP exposure route for the Moroccan and Tunisian populations.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | | | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Issam Barra
- Mohammed VI Polytechnic University (UM6P), Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), AgroBioSciences (AgBS), 43150 Benguerir, Morocco.
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| |
Collapse
|
24
|
Fan X, Qian S, Bao Y, Sha H, Liu Y, Cao B. Desorption behavior of antibiotics by microplastics (tire wear particles) in simulated gastrointestinal fluids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121252. [PMID: 36764374 DOI: 10.1016/j.envpol.2023.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are widely distributed throughout the environment. Upon ingesting MPs, the pollutants that they carry are then desorbed into organisms. This results in the accumulation of various chemicals within the organism. This study systematically examined the mechanism of antibiotic desorption using tire wear particles (TWP) as a carrier of antibiotics in simulated human gastrointestinal fluid and fish intestinal fluid. The findings of this study revealed the formation of cracks, pores, and depressions on the surface of photoaged TWP in an aquatic environment, as well as additional adsorption sites that are more favorable for the attachment of pollutants. Furthermore, the simulated human gastric fluid had a higher desorption rate than that of the fish intestinal fluid. The competition for TWP adsorption sites in the gastrointestinal fluid and the potential dissolution of antibiotics were the primary drivers of the increase in the desorption rate. The desorption rate in the simulated human gastrointestinal fluid was greater than that in the simulated fish intestinal fluid due to the composition of the gastrointestinal fluid. However, the carrying of pollutants by MPs poses a potential threat to human health. This study improves our understanding of TWP toxicity and has significant implications for the development of risk assessments.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China; College of Environment, Hohai University, Nanjing, 210098, China; Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou, 215000, China.
| | - Shenwen Qian
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiquan Bao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Haidi Sha
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Binwen Cao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| |
Collapse
|
25
|
Hajji S, Ben-Haddad M, Abelouah MR, De-la-Torre GE, Alla AA. Occurrence, characteristics, and removal of microplastics in wastewater treatment plants located on the Moroccan Atlantic: The case of Agadir metropolis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160815. [PMID: 36502989 DOI: 10.1016/j.scitotenv.2022.160815] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment plants (WWTPs) are some of the main sources of microplastics (MPs) in the environment. However, studies on the occurrence and removal efficiency of MPs in WWTPs are still scarce, especially in African countries. Thus, the aim of this work was to study the abundance of MPs in the influent and effluent of two WWTPs (Aourir and M'zar) from the Agadir metropolis (Moroccan Atlantic). The two WWTPs receive different wastewater inputs (domestic and industrial). In addition, the impacts of seasonality on the fate and removal efficiency were investigated. The results showed that the MPs abundance in the wastewater decreased from 188 MPs/L in the influent to 50 MPs/L in the effluent for Aourir WWTP (domestic inputs); while the abundance was greater in the M'zar WWTP (urban and industrial inputs) recording a mean value of 519 MPs/L and 86 MPs/L in the influent and effluent, respectively. MPs collected in the Aourir WWTP ranged from 290 to 3200 μm, while MPs from the M'zar WWTP, ranged from 330 to 4200 μm. Overall, the size range of 100-500 μm was the most abundant for both WWTPs. Fibers were the highest MPs morphotype found, followed by fragments. MP colors were mainly red, black, blue, and transparent for both treatment plants. Additionally, FTIR spectroscopy showed the presence of eight different polymers, mainly polyethylene (PE), polypropylene (PP), and polystyrene (PS). Seasonal variation analysis showed that MPs abundance in summer was significantly higher compared to other seasons. However, the comparison of the removal efficiency (RE) between the different seasons indicated that the winter season (74 %) recorded the highest RE for Aourir WWTP. Conversely, spring (87 %) recorded the highest RE for M'zar WWTP. SEM/EDX micrographs showed different degrees of weathering and chemical elements adhering to the surface of the MPs. The findings of the current study will serve as a baseline for future considerations about management strategies, wastewater reuse, as well as the understanding of the occurrence of microplastic pollution along the marine ecosystems of Morocco.
Collapse
Affiliation(s)
- Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | | | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| |
Collapse
|
26
|
Capozzi F, Sorrentino MC, Cascone E, Iuliano M, De Tommaso G, Granata A, Giordano S, Spagnuolo V. Biomonitoring of Airborne Microplastic Deposition in Semi-Natural and Rural Sites Using the Moss Hypnum cupressiforme. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12050977. [PMID: 36903839 PMCID: PMC10005416 DOI: 10.3390/plants12050977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/25/2023] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
We show that the native moss Hypnum cupressiforme can be used as a biomonitor of atmospheric microplastics (MPs). The moss was collected in seven semi-natural and rural sites in Campania (southern Italy) and was analyzed for the presence of MPs, according to standard protocols. Moss samples from all sites accumulated MPs, with fibers representing the largest fraction of plastic debris. Higher numbers of MPs and longer fibers were recorded in moss samples from sites closer to urbanized areas, likely as the results of a continuous flux from sources. The MP size class distribution showed that small size classes characterized sites having a lower level of MP deposition and a high altitude above sea level.
Collapse
Affiliation(s)
- Fiore Capozzi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Maria Cristina Sorrentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
- Correspondence: or
| | - Eleonora Cascone
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Mauro Iuliano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Gaetano De Tommaso
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Angelo Granata
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Simonetta Giordano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| | - Valeria Spagnuolo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cupa Nuova Cintia, 21-80126 Napoli, Italy
| |
Collapse
|
27
|
Ben-Haddad M, Abelouah MR, Hajji S, Rangel-Buitrago N, Alla AA. The halophyte Cakile maritima Scop. 1772 as a trap of plastic litter on the Moroccan coast. MARINE POLLUTION BULLETIN 2023; 187:114574. [PMID: 36634536 DOI: 10.1016/j.marpolbul.2023.114574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/25/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Some plant communities of coastal dunes may affect the magnitude and distribution of litter on the ecosystem. In this study, the aim is to assess the aptitude of the halophyte Cakile maritima Scop. 1772 to be a trap and sink of plastic litter on the Moroccan Atlantic coast. Overall, a significant difference was noted between plastic litter trapped in C. maritima patches (1173 items) and control plots (502 items). Food containers and ropes were the most common trapped items. Shoreline and recreational activities, followed by dumping and ocean/waterway activities are the main sources of the trapped plastic items. The findings suggest the expansion of the cleaning operations to include coastal dunes, the need to change behavior among beachgoers in regard to food plastics disposal, as well the control of C. maritima distribution in the study area, and similar plant species in other regions.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Nelson Rangel-Buitrago
- Programa de Biologia, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia; Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Barranquilla, Atlántico, Colombia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
28
|
Sönmez VZ, Akarsu C, Sivri N. Impact of coastal wastewater treatment plants on microplastic pollution in surface seawater and ecological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120922. [PMID: 36574808 DOI: 10.1016/j.envpol.2022.120922] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study aims to understand the influence of wastewater treatment plant discharge on the microplastic status in the surface seawater of Istanbul. For this purpose, for the first time, the distribution, composition, and ecological risk of microplastics at nine sampling stations on the southern coast of Istanbul, Marmara, were investigated at monthly intervals over a one-year period. The results showed that the microplastic abundance ranged from 0 to over 1000 particles per liter. Fibers were the dominant form at all stations. Microplastics 249-100 μm were the dominant size, and transparency was the color most found at all stations. Polyethylene and ethylene-vinyl acetate were the major types of microplastics, accounting for 50% overall. The pollution load index revealed that over 70% of sampling stations were at hazard level I. However, the hazardous index was categorized as level III with a value of 662.3 due to the presence of the most hazardous polymer named polyurethane. Further investigations into the risk assessment of MP can reveal crucial knowledge for understanding the microplastic cycle.
Collapse
Affiliation(s)
- Vildan Zülal Sönmez
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey.
| | - Ceyhun Akarsu
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey
| | - Nüket Sivri
- İstanbul University-Cerrahpaşa, Department of Environmental Engineering, 34320, Istanbul, Turkey
| |
Collapse
|
29
|
Yin Z, Zhao Y. Microplastics pollution in freshwater sediments: The pollution status assessment and sustainable management measures. CHEMOSPHERE 2023; 314:137727. [PMID: 36603683 DOI: 10.1016/j.chemosphere.2022.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) pollution in freshwater sediments has brought hidden dangers to food and drinking water supply. Implementing sustainable management measures for MPs pollution in freshwater sediments has become an inevitable trend for sustainable development of society. Existing studies still lacked sufficient discussion in sustainable management of MPs pollution in freshwater sediments. This makes it difficult to formulate sustainable management measures for MPs pollution in freshwater sediments. This study analyzed the pollution status of MPs in freshwater sediments from 84 study areas. The results showed that current studies on MPs pollution in freshwater sediments were mainly concentrated in densely populated and economically developed areas. The average abundance of MPs in freshwater sediments from collected study areas was 1290.88 items/kg, this brought a potential threat to sustainable development in surrounding areas. The pollution load level and potential ecological risk level of MPs in freshwater sediments from these study areas were low. Reducing MPs discharge and restricting the use of high-risk polymers are effective ways to prevent the deterioration of MPs pollution status in freshwater sediments. The abundance and types of MPs in freshwater sediments from these study areas were affected by human activities. Sustainable management of MPs pollution in freshwater sediments from collected study areas requires establishing a lifecycle management system for plastic products, and the industrial structures should be optimized. In addition, legislation and market regulation are effective ways to restrict the discharge of plastic wastes. Sustainable management of MPs in freshwater sediments requires the synergy of legislation and market regulation.
Collapse
Affiliation(s)
- Zhenzhou Yin
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot 010051, China.
| | - Yi Zhao
- Wuhai Energy Investment Co. LTD, China Energy Investment Corporation, Wuhai, 016000, China
| |
Collapse
|
30
|
Kim Y, Cho S, Chung H. Feasibility of diffuser-incorporated near-infrared trans-reflectance measurement for quantitative detection of microplastics captured in perfluorocarbon. Anal Chim Acta 2023; 1239:340746. [PMID: 36628737 DOI: 10.1016/j.aca.2022.340746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
A diffuser-incorporated near-infrared (NIR) trans-reflectance measurement is demonstrated for quantitative detection of polyethylene (PE) particles captured in perfluorohexane (PFH, C6F14). PFH effectively captures PE particles through its hydrophobicity and absorbs little NIR radiation, recommending it for use in background-free NIR detection of captured PE particles. A reflective metal disk was used to push the captured PE particles in PFH toward the bottom of the vial that contained the sample, and the trans-reflectance measurement was performed by illuminating NIR radiation from the bottom of the vial at 45o. Reproducibility is limited by the variation in the positions of small PE-particle aggregates at the water/PFH interface and the difficulty in ensuring full NIR sampling (coverage) of large aggregates. An effective way to secure improved reproducibility under these circumstances is illumination of broader and more uniform NIR radiation for measurement. For this purpose, a polytetrafluoroethylene (PTFE) disk was uniquely incorporated as a diffuser for the trans-reflectance measurement. Compared to the measurement with no diffuser, the diffuser-incorporated scheme produced more distinct PE peaks of low-quantity samples (0.1 and 0.2 mg) and enhanced the reproducibility in measurements of all the samples (0.1-4.0 mg of PE). As a result, the correlation between peak intensity and particle quantity was excellent (R2: 0.997), and a limit of detection of 0.07 mg was achieved.
Collapse
Affiliation(s)
- Yunjung Kim
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sanghoon Cho
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
31
|
Mohamadi S, Madadi R, Rakib MRJ, De-la-Torre GE, Idris AM. Abundance and characterization of personal protective equipment (PPE) polluting Kish Island, Persian Gulf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158678. [PMID: 36099950 PMCID: PMC9464308 DOI: 10.1016/j.scitotenv.2022.158678] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/13/2023]
Abstract
Plastic pollution is one of the major environmental threats the world is facing nowadays, which was exacerbated during the COVID-19 pandemic. In particular, multiple reports of single-use plastics driven by the pandemic, namely personal protective equipment (PPE) (e.g., face masks and gloves), contaminating coastal areas have been published. However, most studies focused solely on counting and visually characterizing this type of litter. In the present study, we complement conventional reports by characterizing this type of litter through chemical-analytical techniques. Standardized sampling procedures were carried out in Kish Island, The Persian Gulf, resulting in an average density of 2.34 × 10-4 PPE/m2. Fourier transformed infrared spectroscopy confirmed the polymeric composition of weathered face masks and showed the occurrence of additional absorption bands associated with the photooxidation of the polymer backbone. On the other hand, the three layers of typical surgical face masks showed different non-woven structures, as well as signs of physical degradation (ruptures, cracks, rough surfaces), possibly leading to the release of microplastics. Furthermore, elemental mapping through energy-dispersive X-ray spectroscopy showed that the middle layer of the masks allocated more elements of external origin (e.g., Na, Cl, Ca, Mg) than the outer and inner layers. This is likely to the overall higher surface area of the middle layer. Furthermore, our evidence indicates that improperly disposed PPE is already having an impact on a number of organisms in the study area.
Collapse
Affiliation(s)
- Sedigheh Mohamadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Reyhane Madadi
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
32
|
Ben-Haddad M, Abelouah MR, Lamine I, Hajji S, Noureddine S, Rangel-Buitrago N, Ait Alla A. Trace metals in urbanized coasts: The central Atlantic of Morocco as a case study. MARINE POLLUTION BULLETIN 2023; 186:114455. [PMID: 36473246 DOI: 10.1016/j.marpolbul.2022.114455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study describes the contamination, accumulation, and ecological risk assessment of five trace metals (Cd, Pb, Cu, Zn, and Cr) in sediments of an urbanized beach in the central Atlantic coastline of Morocco. The two-year investigation (2018 and 2019) included six sampling sites along a 6 km coastal reach. In both years, none of the studied trace metals exceeded the background or the sediment quality guidelines (SQGs). The eco-toxicological indices revealed low degree of contamination, unpolluted ecosystem, and low ecological risk of metals. However, Cd exceeded the background value and some SQGs following the increase of anthropogenic activities in 2019. Likewise, it indicated unpolluted to moderately polluted sediment as well as moderate ecological risk. Overall, it is highly recommended to mitigate the avoidable anthropogenic activities (marine litter generation, sewage discharge, intense urbanization, and vehicle traffic on the beach) that lead to the elevation of metal pollution in the study area.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Imane Lamine
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Slimani Noureddine
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia; Programa de Biologia, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| |
Collapse
|
33
|
Ben-Haddad M, Hajji S, Abelouah MR, Costa LL, Rangel-Buitrago N, Alla AA. Has the "Covid-19" lockdown an impact on beach faunal communities? The central Atlantic coast of Morocco as a case study. MARINE POLLUTION BULLETIN 2022; 185:114259. [PMID: 36279727 PMCID: PMC9581804 DOI: 10.1016/j.marpolbul.2022.114259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 05/13/2023]
Abstract
The restrictions related to the COVID-19 pandemic have led to a global hiatus in anthropogenic activities; several scientists have utilized this unique opportunity to assess the human impact on biological systems. In this study, the study describes for a period of five years (2018-2022) how the faunal community have been affected by human disturbances, as well as the effect of the "anthropause" period driven by the COVID-19 lockdown. The results confirmed human disturbances on faunal communities related to coastal urbanization. It was found that the "anthropause" period showed the highest values of abundance and biomass, hence the "COVID-19 lockdown" allowed recovery of faunal communities. The findings highlight the impact of human disturbances and that the community showed resilience. Overall, the authorities must perform restrictive measures aiming to mitigate the impact of anthropogenic activities in the study area including the banning of off-road and recreational vehicles, carrying out efficient cleaning and grooming operations, monitoring the severe harvesting of edible species, as well as penalizing the disposal of anthropogenic waste and sewage discharge from the touristic facilities. Likewise, management actions such as the temporal beach closures and the regular surveillance could be advantageous to provide a more sustainable exploitation of sandy beaches.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco
| | - Leonardo Lopes Costa
- Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenid Alberto Lamego, 2000, Campos dos Goytacazes CEP, Rio de Janeiro, Brazil
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia; Programa de Biologia, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco
| |
Collapse
|
34
|
De-la-Torre GE, Dioses-Salinas DC, Dobaradaran S, Spitz J, Nabipour I, Keshtkar M, Akhbarizadeh R, Tangestani M, Abedi D, Javanfekr F. Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 215:114337. [PMID: 36116495 PMCID: PMC9476362 DOI: 10.1016/j.envres.2022.114337] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 05/11/2023]
Abstract
Marine pollution with personal protective equipment (PPE) has recently gained major attention. Multiple studies reported the release of microplastics (MPs) and chemical contaminants from face masks, the most used PPE type. However, not much is known concerning the release of phthalate esters (PAEs) in aquatic media, as well as the hazard posed by other types of PPE. In the present study, we investigated the release of MPs and PAEs from face masks and gloves recovered from the environment. The results indicated that both PPEs release MPs comparable to the literature, but higher concentrations were presented by face masks. In turn, the total concentration of six PAEs was higher in gloves than in face masks. The release of these contaminants is exacerbated over time. The present study allows researchers to understand the contribution of PPE to marine pollution while accounting for gloves, a generally overlooked source of contaminants.
Collapse
Affiliation(s)
- Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | | | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany.
| | - Jörg Spitz
- Akademie Fur Menschliche Medizin GmbH, Schlangenbad, Germany
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mozhgan Keshtkar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Razegheh Akhbarizadeh
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahbubeh Tangestani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Delaram Abedi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Javanfekr
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|