1
|
Fan J, Zhang L, Wang A, Meng X, Xu C, Wang X, Wang S, Huang W, Xu F. Distribution, sources, and contamination evaluation of heavy metals in surface sediments of the Qizhou Island sea area in Hainan, China. MARINE POLLUTION BULLETIN 2024; 208:116933. [PMID: 39260142 DOI: 10.1016/j.marpolbul.2024.116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Coastal areas are regions of active interaction between the sea and land and are highly sensitive to changes in heavy metal contamination caused by natural and anthropogenic activities. The contents of heavy metals in 80 surface sediments in the Qizhou Island sea area in the northeast of Hainan Island were determined to assess the contamination status, spatial distribution, sources, and ecological risks. The results indicate that the main factors influencing the distribution patterns and contents of heavy metals are hydrodynamic conditions and sources of materials. The accumulation of Cd and Pb in the sediments is attributed to the combined effects of natural sources and anthropogenic input. In addition to widespread anthropogenic influence, the enrichment of Cd in the southeastern outer shelf area of the study region may be controlled by biogenic carbonate rocks or enhanced input of near-source materials during the late Pleistocene low sea level period.
Collapse
Affiliation(s)
- Jianxiu Fan
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China.
| | - Anqi Wang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiuji Meng
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Cheng Xu
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Xianqing Wang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Shisheng Wang
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571127, China
| | - Wenhe Huang
- China Power Engineering Consulting Group Co. Ltd, Guangzhou 511446, China
| | - Fangjian Xu
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Sathyanarayanan B, Sivaprakasam V, Periyasami S, Jeyasingh V, Sambath P. Exploring the temporal toxicity signature: A baseline evaluation of the heavy metal concentration in estuarine core sediments in the coastal region of cauvery delta, bay of bengal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57933-57958. [PMID: 39302580 DOI: 10.1007/s11356-024-34844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
Globally, the concentration of heavy metals and sediment toxicity analysis are significant liabilities to aquatic environments. This scrutiny outlines the sediment textures, heavy metals and toxicity status associated with environmental pollution indices in the core sediment of the Cauvery and Vettar estuaries, East coast of India. The impact of rapid industrialization, urbanization, harbour activities and agricultural activities influences on the twain estuary is a significant concern to designate the environment. The contamination status of the sediments affects the potential biodiversity, ecological risks and human health. A total of two core sediments were recovered from the Cauvery and Vettar estuaries in March 2023 to decipher the environmental pollution status. Meticulous observation of the textural studies underscores the prevalence of sand content in Cauvery, and Vettar sediments consist of predominate clay content and minor silt contents. Furthermore, the organic matter is augmented in the Vettar River due to the higher input of waste disposal, seaweeds and algae due to the surrounding landmass. Twain core sediments argue that heavy metal concentration is decreasing in order as Fe > Zn > Ni > Pb > Cu > Cr by using portable X-ray fluorescence (pXRF) spectrometry. Remarkable results of environmental pollution indices such as Igeo, Ef, Cf, Cd and mCd state very highly polluted, extreme enrichments, high contamination and very high degree of contamination. Furthermore, the potential ecological risk indices such as PLI, SQGs, and PERI argue polluted, medium to high toxicity and moderate adverse ecological risk to the estuarine regions. Statistical analysis of the heavy metal affirms the enrichment of Fe metals may derive from lithogenic and/or anthropogenic influences, and the other studied metals such as Cu, Ni, Zn, Pb and Cr may be influenced by the anthropogenic activities in the aspect of point and non-point pollution sources. This could result from both estuaries undergoing higher pollution, in which the Vettar estuary is a considerable environmental risk zone compared to the Cauvery river due to the impact of industrial effluents and rapid urbanization activities. This finding underscores the urgent need for enhanced estuarine sediment quality study and comprehensive assessment of sediment toxicity, regulating the beneficial acumen for the government to follow the suitable remediation on the embellish policy of river and marine environments.
Collapse
Affiliation(s)
| | - Vasudevan Sivaprakasam
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, Chidambaram, India.
| | - Sivaranjan Periyasami
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, Chidambaram, India
| | - Vigneshwar Jeyasingh
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, Chidambaram, India
| | - Pravinraj Sambath
- Department of Earth Sciences, Annamalai University, Annamalai Nagar, 608002, Chidambaram, India
| |
Collapse
|
3
|
Wang W, Huo Y, Lin C, Lian Z, Wang L, Liu Y, Sun X, Chen J, Lin H. Occurrence, accumulation, ecological risk, and source identification of potentially toxic elements in multimedia in a subtropical bay, Southeast China. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135110. [PMID: 38970976 DOI: 10.1016/j.jhazmat.2024.135110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Potentially toxic elements (PTEs) in seawater and sediments may be amplified along the aquatic food chain, posing a health threat to humans. This study comprehensively analyzed the concentrations, distribution, potential sources, and health risk of 7 PTEs in multimedia (seawater, sediment and organism) in typical subtropical bays in southern China. The results indicated that Zn was the most abundant element in seawater, and the average concentration of Cd in sediment was 3.93 times higher than the background value. Except for As, the seasonal differences in surface seawater were not significant. The content of Zn in fishes, crustacea, and shellfish was the highest, while the contents of Hg and Cd were relatively low. Bioaccumulation factor indicated that Zn was a strongly bioaccumulated element in seawater, while Cd was more highly enriched by aquatic organisms in sediment. According to principal component analysis (PCA), and positive matrix factorization (PMF), the main sources of PTEs in Quanzhou Bay were of natural derivation, industrial sewage discharge, and agricultural inputs, each contributing 40.4 %, 24.2 %, and 35.4 %, respectively. This study provides fundamental and significant information for the prevention of PTEs contamination in subtropical bays, the promotion of ecological safety, and the assessment of human health risk from PTEs in seafood.
Collapse
Affiliation(s)
- Weili Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Beihai 536000, China
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Cai Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Zhonglian Lian
- Zhanjiang Marine Center, Ministry of Natural Resources, Zhanjiang 524005, China.
| | - Lingqing Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xiuwu Sun
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jinmin Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
4
|
Wang M, Chen Q, Cui J, Yu Z, Wang W, Sun Z, Chen Q. Distribution, ecological risk, and sediment-influencing mechanisms of heavy metals in surface sediments along the intertidal gradient in typical mangroves in Hainan, China. MARINE POLLUTION BULLETIN 2024; 206:116677. [PMID: 39018823 DOI: 10.1016/j.marpolbul.2024.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
The relative importance of each sediment physicochemical property to sediment heavy-metal (HM) contents has not yet been quantitatively evaluated. Differences in the HM contents of mangrove surface sediments among the high, middle, and low intertidal zones, and their quantitative relationships to sediment physicochemical properties, were investigated in Dongzhaigang and Qinglan Harbor reserves, Hainan, China. In both reserves, the Cu and Ni concentrations increased significantly from the low to high intertidal zones; the patterns of change in the Mn and Pb contents were opposite in the two reserves. The Cr concentration was significantly lower and the Pb concentration was significantly higher in the dry season than in the wet season. Ecological risks of HM were higher in Dongzhaigang than in Qinglan Harbor. Regression and redundancy (hierarchical partitioning) analyses showed that the sediment total sulfur, nitrogen and potassium contents and pH were key factors affecting the HM contents of mangrove surface sediments.
Collapse
Affiliation(s)
- Mengli Wang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Qian Chen
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Jingyi Cui
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Zhouwei Yu
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Wenjuan Wang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Zhongyi Sun
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China
| | - Quan Chen
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
5
|
He C, Stocchino A, He Y, Leung KMY, De Leo F, Yin ZY, Jin YF. Risk assessment of e-waste - Liquid Crystal Monomers re-suspension caused by coastal dredging operations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173176. [PMID: 38750734 DOI: 10.1016/j.scitotenv.2024.173176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The Pearl River Estuary (PRE), one of the primary e-waste recycling centers in the world, has been suffering from the pollution of Liquid Crystal Monomers (LCMs), critical materials with persistent, bio-accumulative, and toxic substances used in electronic devices. It has been detected in seabed sediment with both high frequency and concentration near PRE - Hong Kong (HK) waters. In the same area, dredging operations with in-situ sediment have been frequently used in the last decades for coastal land reclamation projects. Dredging is known to cause a huge amount of sediment re-suspension into water columns, with potential damage to marine ecosystems and biodiversity. In this study, we proposed a new risk assessment strategy to estimate the secondary pollution due to the re-suspension sediment highly contaminated by LCMs. We formulate a robust and reliable probabilistic approach based on unsupervised machine learning and hydrodynamic and sediment transport numerical simulation. New risk indexes were also proposed to better quantify the impact of contaminated sediments. We applied the methodology to assess the potential impact of dredging operations in the PRE and Hong Kong waters on the local marine ecosystem. The results of the analysis showed how the potentially contaminated areas depended on the dredging locations.
Collapse
Affiliation(s)
- Chang He
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Alessandro Stocchino
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| | - Yuhe He
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Francesco De Leo
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Zhen-Yu Yin
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yin-Fu Jin
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
6
|
Yang J, Ren L, Hua C, Tian Y, Yong X, Fang S. Identification of toxic metal contamination in surface sediments of the Xiaoqing River under a long-term perspective (1996-2020): Risks, sources and driving factors. ENVIRONMENTAL RESEARCH 2024; 251:118613. [PMID: 38432570 DOI: 10.1016/j.envres.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
The contamination of sediments by toxic metals poses a significant threat to both river ecosystems and human health. In this study, the geo-accumulation index (Igeo), biotoxicity evaluation method, and potential ecological risk index (RI) were employed to analyze the contamination level, biotoxicity risk, and potential ecological risk of toxic metals in surface sediments of the Xiaoqing River. To identify toxic metal sources, Spearman correlation and principal component analysis with multiple linear regression analysis (PCA-MLR) were employed. Additionally, redundancy analysis (RDA) was utilized to investigate potential driving factors affecting toxic metal accumulation in sediments. The results revealed that the levels of the five investigated metals (Cr, Pb, As, Hg, and Cd) showed constant fluctuations during the period 1996-2020. The midstream was found to be more polluted than the upstream and downstream. In the research area, Hg was identified as the primary contaminant with high levels of contamination, posing a biotoxicity risk and potential ecological risk. Pollution sources were identified for two periods: A (1996-2010) and B (2011-2020), with industrial, agricultural, traffic, and natural sources being the main contributors. During period A, industrial sources accounted for the highest proportion (40.8%), followed by agricultural sources (36.6%), and geological natural sources (22.6%). During period B, agricultural sources accounted for the highest proportion (42%), followed by industrial and traffic sources (32.4%), and geological natural sources (25.6%). The distribution of toxic metals in the basin was significantly influenced by water pH, sediment organic matter, population density, and per capita GDP. The study results provide fundamental data for preventing pollution and managing water resources contaminated with toxic metals in the sediments of the Xiaoqing River in Jinan. Additionally, it serves as a reference for analyzing related ecological and environmental issues in the basin.
Collapse
Affiliation(s)
- Jiaying Yang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Lijun Ren
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Chunyu Hua
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yueru Tian
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xian Yong
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Shumin Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
7
|
Yi S, Song Z, Lin J, Liu W, Li B. Distribution, sources and influencing factors of heavy metals in the Ledong Sea, South China Sea. MARINE POLLUTION BULLETIN 2024; 202:116396. [PMID: 38657493 DOI: 10.1016/j.marpolbul.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
The Ledong Sea Area is located on the southwest side of Hainan Island. In recent years, with the development of industrialization and urbanization, the problem of heavy metals in marine sediments has gradually become a global problem, and research on this topic is of great significance for nearshore environmental protection and coastal management. This paper analysed the heavy metal content of 97 surface sediments in the Ledong Sea, indicating unpolluted to moderately polluted and low to moderate risk. Cu, Zn, Hg, Pb, Cr, and Cd are highly correlated, with similar origins, and originate from rivers carrying industrial wastewater, domestic sewage, and weathered material from the parent rocks, which are subsequently redistributed under the action of ocean dynamics. The distribution of Hg is mainly influenced by feed and biological metabolites during the farming process. As originates from rivers carrying large amounts of agricultural pesticide and fertilizer residues.
Collapse
Affiliation(s)
- Shantang Yi
- Guangzhou Marine Geological Survey, China Geological Survey, 511458 Guangzhou, China; School of Marine Sciences, Sun Yat-sen University, 519082 Zhuhai, China
| | - Zhuoli Song
- Qingdao Huanhai Marine Engineering Prospecting Institute, 266033 Qingdao, China
| | - Jijiang Lin
- South China Sea Information Center of State Oceanic Administration, 510310 Guangzhou, China
| | - Weiliang Liu
- School of Marine Sciences, Sun Yat-sen University, 519082 Zhuhai, China
| | - Bo Li
- Guangzhou Marine Geological Survey, China Geological Survey, 511458 Guangzhou, China.
| |
Collapse
|
8
|
Saygin H, Tilkili B, Kayisoglu P, Baysal A. Oxidative stress, biofilm-formation and activity responses of P. aeruginosa to microplastic-treated sediments: Effect of temperature and sediment type. ENVIRONMENTAL RESEARCH 2024; 248:118349. [PMID: 38309565 DOI: 10.1016/j.envres.2024.118349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Climate change and plastic pollution are the big environmental problems that the environment and humanity have faced in the past and will face in many decades to come. Sediments are affected by many pollutants and conditions, and the behaviors of microorganisms in environment may be influenced due to changes in sediments. Therefore, the current study aimed to explore the differential effects of various microplastics and temperature on different sediments through the metabolic and oxidative responses of gram-negative Pseudomonas aeruginosa. The sediments collected from various fields including beaches, deep-sea discharge, and marine industrial areas. Each sediment was extracted and then treated with various microplastics under different temperature (-18, +4, +20 and 35 °C) for seven days. Then microplastics were removed from the suspension and microplastic-exposed sediment samples were incubated with Pseudomonas aeruginosa to test bacterial activity, biofilm, and oxidative characteristics. The results showed that both the activity and the biofilm formation of Pseudomonas aeruginosa increased with the temperature of microplastic treatment in the experimental setups at the rates between an average of 2-39 % and 5-27 %, respectively. The highest levels of bacterial activity and biofilm formation were mainly observed in the beach area (average rate +25 %) and marine industrial (average rate +19 %) sediments with microplastic contamination, respectively. Moreover, oxidative characteristics significantly linked the bacterial activities and biofilm formation. The oxidative indicators of Pseudomonas aeruginosa showed that catalase and glutathione reductase were more influenced by microplastic contamination of various sediments than superoxide dismutase activities. For instance, catalase and glutathione reductase activities were changed between -37 and +169 % and +137 to +144 %, respectively; however, the superoxide dismutase increased at a rate between +1 and + 21 %. This study confirmed that global warming as a consequence of climate change might influence the effect of microplastic on sediments regarding bacterial biochemical responses and oxidation characteristics.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Pinar Kayisoglu
- Deptment of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey
| | - Asli Baysal
- Deptment of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Sariyer, Istanbul, Turkey.
| |
Collapse
|
9
|
Deng W, Yang W, Tang H, Zhang M, Li S, Wu Y, Bu D, Lu C, Li G, Qi D. Dynamics of the surface carbonate system in oil fields with a high concentration of wells on the northwestern South China Sea shelf. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170261. [PMID: 38253095 DOI: 10.1016/j.scitotenv.2024.170261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Oil exploitation may pose adverse effects on marine ecosystems, but its impacts on surface carbonate dynamics remain unknown. In a carbonate system with low air-sea ∆pCO2, such as the South China Sea (SCS), human activities may affect the pCO2 distribution patterns and potentially alter CO2 sink or source at the surface. This study investigates the surface carbonate system in two oil fields, namely the Wenchang Oil Feld and Enping Oil Feld, located on the northwestern SCS (NWSCS) shelf. In Enping Oil Field, although there is a slight increase in surface pCO2 due to probable total alkalinity (TA) consumption from CaCO3 precipitation, strong biological production makes the plume water a strong CO2 sink. Similarly, the biological processes dominated the pCO2 variability in Wenchang Oil Feld, exhibiting high values in its central area. In NWSCS, the influence of shelf water was observed during both cruises. And the pCO2 drawdown caused by the decreased sea surface temperature (SST) and CO2 outgassing outweighed their increases via enhanced vertical mixing, leading to a pCO2 drawdown from September to October within this water mass. More importantly, there were no significant disparities observed in carbonate parameters at stations along transects with and without wells, and the observed parameter values in this study fell within the range reported previously on the nSCS shelf with similar controlling processes. Thus the impact of oil exploitation on carbonate dynamics is negligible, and the characteristics of the carbonate system in oil field are primarily governed by natural processes such as the mixing of plume water and basin water, CaCO3 precipitation and the changes in SST. The provided data establish a crucial baseline for detecting future alterations in carbonate chemistry within oil fields, and the rapid fluctuations in sea surface pCO2 highlight the need for higher spatiotemporal resolution observation.
Collapse
Affiliation(s)
- Wei Deng
- Nansha Islands Coral Reef Ecosystem National Observation Research Station, Hainan, China; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Wei Yang
- Nansha Islands Coral Reef Ecosystem National Observation Research Station, Hainan, China; Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen, China
| | - Hong Tang
- Nansha Islands Coral Reef Ecosystem National Observation Research Station, Hainan, China; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Minxia Zhang
- China National Offshore Oil Corporation Research Institute, Beijing 10028, China
| | - Shengyong Li
- Nansha Islands Coral Reef Ecosystem National Observation Research Station, Hainan, China; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Yingxu Wu
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen, China
| | - Dezhi Bu
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen, China
| | - Chuqian Lu
- Nansha Islands Coral Reef Ecosystem National Observation Research Station, Hainan, China; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China.
| | - Guozhao Li
- Real Estate Registration Center of Longyan, Fujian Province, China
| | - Di Qi
- Polar and Marine Research Institute, College of Harbor and Coastal Engineering, Jimei University, Xiamen, China.
| |
Collapse
|
10
|
Zhou Y, Du S, Liu Y, Yang T, Liu Y, Li Y, Zhang L. Source identification and risk assessment of trace metals in surface sediment of China Sea by combining APCA-MLR receptor model and lead isotope analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133310. [PMID: 38142655 DOI: 10.1016/j.jhazmat.2023.133310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
This study aimed to investigate the distribution, pollution, risk and sources of trace metals in sediments along China Sea. Clear spatial variations were found for Cr, Mn, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, and Pb, whereas As did not show spatial variation. East China Sea (ECS) contained the highest concentrations of Mn, Co, Ni, Cu, Zn, South China Sea (SCS) shallow sea contained the highest concentrations of Zn, Se, Mo, Ag, Cd, and Pb, whereas coral reefs contained the lowest concentrations of trace metals. Spatial variations could be explained by economic development characteristics along China Sea. As, Se and Cd exhibited low to moderate pollution in China Sea sediment, yet pollution for Cu, Zn, Ni, and Ag appeared in some regions. Sediment in ECS had moderate ecological risks and other regions at low ecological risks. The absolute principle component score-multiple linear regression (APCS-MLR) and Pb stable isotope indicated that 43-74% of trace metals (Ni, Cu, Zn, As, Se, Cd, and Pb) were derived from anthropogenic sources like traffic emission, agricultural activities, industrial source. No pollution and ecological risk were observed in coral reefs, yet 39-71% (Pb) was derived from anthropogenic activities such as motor vessels.
Collapse
Affiliation(s)
- Yanyan Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Sen Du
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tao Yang
- East China Sea Bureau, Ministry of Natural Resources, Shanghai 200136, China
| | - Yongliang Liu
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Daxue Road 178, Xiamen 361005, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
11
|
Chen Q, Wu L, Zhou C, Liu G, Yao L. A study of environmental pollution and risk of heavy metals in the bottom water and sediment of the Chaohu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19658-19673. [PMID: 38361101 DOI: 10.1007/s11356-024-32141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Most of the existing research for heavy metals in water at present is focusing on surface water. However, potential environmental risk of heavy metals in the bottom water of lakes cannot be ignored. In this study, the content, distribution, and speciation of nine heavy metals (As, V, Cr, Co, Ni, Cu, Zn, Cd, and Pb) in the bottom water and sediment of Chaohu Lake were studied. Some pollution assessment methods were used to evaluate the environmental effect of heavy metals. Positive matrix factorization was conducted to investigate the potential sources of heavy metals in sediment. The contents of heavy metals in the bottom water of Chaohu Lake mean that its environmental pollution can be ignored. In sediment, Cd and Zn have showed stronger ecological risk. pH and redox potential are more likely to affect the stability of heavy metals in the bottom water of Chaohu Lake during the dry reason. Industrial sources (16%) are no longer the largest source of heavy metal pollution; traffic sources (33.6%) and agricultural sources (23.4%) have become the main sources of pollution at present. This study can provide some support and suggestions for the treatment of heavy metals in lakes.
Collapse
Affiliation(s)
- Qiang Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Lei Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China.
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, 230061, Anhui, China.
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Chuncai Zhou
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Gang Liu
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| | - Long Yao
- Chaohu Administration Environmental Protection Monitoring Station, Hefei, 238000, Anhui, China
| |
Collapse
|
12
|
Zhu A, Liu J, Qiao S. Quantitative source apportionment of heavy metals in sediments from the Bohai Sea, China. MARINE POLLUTION BULLETIN 2023; 196:115620. [PMID: 37804671 DOI: 10.1016/j.marpolbul.2023.115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
In this study, the sources of nine heavy metals (Cd, As, Hg, Cu, Pb, Ni, Cr, Zn, and Co) in the sediments of the Bohai Sea were quantitatively identified through a positive factor matrix to provide better advice for marine and coastal management. In Bohai Sea sediments, most metals fell below detectable contamination levels, including As, Cu, Pb, Ni, Cr, Zn, and Co. Unfortunately, Bohai Sea sediments were moderately to significantly enrich with Cd and Hg, posing potentially adverse ecological risks to aquatic ecosystems. Our modeled results showed three factors representing natural, anthropogenic, and atmospheric deposition sources. Enriched Cd and Hg were likely derived from anthropogenic activities through river runoff and atmospheric deposition due to adjacent Zn smelting and chlor-alkali production, respectively. The other metals were mainly derived from natural sources.
Collapse
Affiliation(s)
- Aimei Zhu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, Qingdao 266061, China
| | - Jihua Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China.
| | - Shuqing Qiao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Key Laboratory of Marine Geology and Metallogeny, Ministry of Natural Resources, Qingdao 266061, China; Laboratory of Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| |
Collapse
|
13
|
Shetaia SA, Nasr RA, Lasheen ESR, Dar MA, Al-Mur BA, Zakaly HMH. Assessment of heavy metals contamination of sediments and surface waters of Bitter lake, Suez Canal, Egypt: Ecological risks and human health. MARINE POLLUTION BULLETIN 2023; 192:115096. [PMID: 37271076 DOI: 10.1016/j.marpolbul.2023.115096] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
The concentrations of heavy metals in the surface waters and sediments of Bitter Lake were investigated to assess the level, distribution, and source of pollution and the associated ecological and human health risks. The ecological indices of the lake water indicate low contamination degrees by heavy metals. A dermal exposure-based health risk evaluation revealed no carcinogenic or non-carcinogenic impact on human health. The contamination factor (CF) for Cu, Ni, Pb, Mn, Fe, and Zn (CF < 1) indicate low contamination levels, while Cd reaches very high contamination in most sediment sites (CF ranges from 6.2 to 72.4). Furthermore, the potential ecological risk factor (Eri) and modified hazard quotient (mHQ) indicate low ecological risk for all metals except Cd, revealing high to very high-level ecological risk in most sites (Eri ranges from 185 to 2173 and mHQ from 1.8 to 6.3). This emphasizes the urgency of prompt actions to improve the environment in Bitter Lake.
Collapse
Affiliation(s)
- Said A Shetaia
- Geology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Riham A Nasr
- National Institute of Oceanography and Fisheries, Egypt
| | - El Saeed R Lasheen
- Geology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt.
| | - Mahmoud A Dar
- National Institute of Oceanography and Fisheries, Egypt
| | - Bandar A Al-Mur
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hesham M H Zakaly
- Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt; Istinye University, Faculty of Engineering and Natural Sciences, Computer Engineering Department, Istanbul, 34396, Turkey; Institute of Physics and Technology, Ural Federal University, 620078 Ekaterinburg, Russia.
| |
Collapse
|
14
|
Panqing Y, Abliz A, Xiaoli S, Aisaiduli H. Human health-risk assessment of heavy metal-contaminated soil based on Monte Carlo simulation. Sci Rep 2023; 13:7033. [PMID: 37120424 PMCID: PMC10148830 DOI: 10.1038/s41598-023-33986-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
Soil contamination soils of by heavy metals (HMs) poses serious threats to the soil environment and enters the human body through exposure pathways such as ingestion and skin contact, posing a threat to human health. The purpose of this study was to analyze the sources and contributions of soil HMs, and to quantitatively assess the human health risks of soil HMs to different populations (i.e. children, adult females and adult males), and to analyze the human health risks caused by various sources of sensitive populations. 170 topsoil (0-20 cm) were collected from Fukang, Jimsar and Qitai on the northern slope of Tianshan Mountains in Xinjiang, China, and the contents of Zn, Cu, Cr, Pb and Hg were determined. This study used the Unmix model and a health-risk assessment (HRA) model to assess the human health risks of five HMs. The results showed that: (1) The mean values of Zn and Cr were lower than the background values of Xinjiang, the mean values of Cu and Pb were slightly higher than the background values of Xinjiang but lower than the national standard, and the mean value of Hg and Pb was higher than the background value of Xinjiang and the national standard. (2) The sources of soil HMs in the region were mainly traffic, natural, coal, and industrial sources. Moreover, the HRA model combined with Monte Carlo simulation showed similar trends in the health-risk status of all population groups in the region. Probabilistic HRA revealed that noncarcinogenic risks were acceptable for all populations (HI < 1) while carcinogenic risks were high (children: 77.52%; female: 69.09%; male: 65.63%). For children, carcinogenic risk from industrial and coal sources exceeded the acceptable threshold by 2.35 and 1.20 times, respectively, and Cr was the main element contributing to human carcinogenic risk. These findings suggest that carcinogenic risks from coal-based Cr emissions cannot be ignored, and the study area should aim to control Cr emissions from industrial sources. The results of this study provide support for the prevention of human health risks and the control of soil HMs pollution across different age groups.
Collapse
Affiliation(s)
- Ye Panqing
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Abdugheni Abliz
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China.
- Ecological Post-Doctoral Research Station, Xinjiang University, Urumqi, 830046, China.
| | - Sun Xiaoli
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Halidan Aisaiduli
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
15
|
Zhao S, Qi J, Ding X. Characteristics, seasonal variations, and dry deposition fluxes of carbonaceous and water-soluble organic components in atmospheric aerosols over China's marginal seas. MARINE POLLUTION BULLETIN 2023; 191:114940. [PMID: 37087828 DOI: 10.1016/j.marpolbul.2023.114940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
A total of 37 atmospheric aerosol samples were collected over the Yellow and Bohai Seas (YBS) during four cruises in autumn, winter, spring and summer from 2017 to 2018. The concentrations of organic carbon (OC) and water-soluble organic carbon (WSOC) ranged from 1.04 to 15.43 μg m-3 and 0.77-5.49 μg m-3, respectively, with higher values in autumn and winter than in spring and summer. WSOC contributed 68.49 % to OC in summer and 34.55 % in winter and was affected by temperature and relative humidity. Dicarboxylic acid showed a predominance of oxalic acid followed by malonic and then succinic acids. The contributions of secondary sources to OC and WSOC were 54 % and 65.3 %, respectively, indicating the importance of secondary aging in improving the water solubility of OC. The dry deposition flux of WSOC over the YBS was estimated to be 0.87 mg m-2 d-1, which might play a potential role in the marine carbon cycle.
Collapse
Affiliation(s)
- Sen Zhao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xue Ding
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
16
|
Lion GN, Olowoyo JO. Possible Sources of Trace Metals in Obese Females Living in Informal Settlements near Industrial Sites around Gauteng, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5133. [PMID: 36982040 PMCID: PMC10049368 DOI: 10.3390/ijerph20065133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Trace metals have been reported in the literature to be associated with obesity. Exposure to some trace metals such as Mn, Cr, Ni, Cd, and Pb may pose a serious health risk to individuals living around a polluted environment. The present study assessed the levels of trace metals in the blood of obese females living around industrial areas in Gauteng, South Africa. The study was carried out using a mixed method approach. Only females with a BMI ≥ 30.0 were considered. A total of 120 obese females participated in the study (site 1: 40-industrial area, site 2: 40-industrial area, and site 3: 40-residential area), aged 18-45 and not in menopause. Blood samples were analysed for trace metals content using inductively coupled plasma mass spectrometry (ICP-MS). The mean concentrations of trace metals were in the order Pb > Mn > Cr > Co > As > Cd (site 1), Pb > Mn > Co > As > Cd (site 2), and Mn > Cr > Co > As > Pb > Cd (site 3). The blood Mn from site 1 ranged from 6.79 µg/L-33.99 µg/L, and the mean differences obtained from the participants from different sites were significant (p < 0.01). The blood levels of Mn, Pb, Cr, Co, As, and Cd were above the recommended limits set by the WHO in some of the participants. The present study noted, among others, closeness to industrial areas, lifestyle decisions such as the use of tobacco products by their partners indoors, and the method used for cooking as factors that might have accounted for the blood levels of Mn, Pb, Cd and Co. The study showed that there is a need for constant monitoring of the levels of trace metals in the blood of those living in these areas.
Collapse
Affiliation(s)
- Gladness Nteboheng Lion
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Joshua Oluwole Olowoyo
- Department of Biology and Environmental Sciences, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
- Department of Health Science and The Water School, Florida Gulf Coast University, Fort Myers, FL 33965, USA
| |
Collapse
|