1
|
Bone JR, Stafford R, Hall AE, Herbert RJH. Vertical arrays of artificial rockpools on a seawall provide refugia across tidal levels for intertidal species in the UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175528. [PMID: 39147048 DOI: 10.1016/j.scitotenv.2024.175528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Eco-engineering of coastal infrastructure aims to address the insufficient intertidal habitat provided by coastal development and flood defence. There are numerous ways to enhance coastal infrastructure with habitat features, but a common method involves retrofitting artificial rockpools. Often these are 'bolt-on' units that are fixed to existing coastal infrastructure but there is a paucity of literature on how to optimise their arrangement for biodiversity. In this study, 24 artificial rockpools were installed at three levels between High Water Neaps and Mean Tide Level on a vertical concrete seawall on the south coast of the UK. The species abundance of the rockpools and adjacent seawall were surveyed at low tide for 2 years following rockpool installation and compared. Over the course of the study, sediment had begun to accumulate in some of the rockpools. At the 2-year mark, the sediment was removed and assessed for macrofauna. Algal biomass of the seawall and rockpools was estimated using previously obtained dry weight values for the dominant algae taxa. After 2 years, it was determined that artificial rockpools successfully increase species richness of seawalls, particularly at higher tidal levels where water-retaining refugia are crucial for many species. The rockpools hosted 37 sessile taxa and 9 sessile taxa were recorded on the seawall. Rockpools increased the vertical elevation for brown canopy-forming seaweeds by providing better attachment surfaces. Although the retained sediment only hosted 3 infaunal species, it was observed to provide shelter for shore crabs during surveys. As sea levels and ocean and air temperatures continue to rise, vertical eco-engineering arrangements will play a crucial role in allowing species to migrate up the tidal zone, negating habitat loss and localised extinction.
Collapse
Affiliation(s)
- Jessica R Bone
- Bournemouth University, Fern Barrow, Poole BH12 5BB, UK; Natural England, London, UK
| | - Rick Stafford
- Bournemouth University, Fern Barrow, Poole BH12 5BB, UK.
| | - Alice E Hall
- University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | | |
Collapse
|
2
|
Bauer F, Knights AM, Griffin JN, Hanley ME, Foggo A, Brown A, Jones E, Firth LB. Scale-dependent topographic complexity underpins abundance and spatial distribution of ecosystem engineers on natural and artificial structures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173519. [PMID: 38821270 DOI: 10.1016/j.scitotenv.2024.173519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
In response to ongoing coastal urbanization, it is critical to develop effective methods to improve the biodiversity and ecological sustainability of artificial shorelines. Enhancing the topographic complexity of coastal infrastructure through the mimicry of natural substrata may facilitate the establishment of ecosystem engineering species and associated biogenic habitat formation. However, interactions between ecosystem engineers and their substratum are likely determined by organismal size and resource needs, thus making responses to topography highly scale-dependent. Here, we assessed the topographic properties (rugosity, surface area, micro-surface orientations) that underpin the abundance and distribution of two ecosystem engineers (fucoids, limpets) across six spatial scales (1-500 mm). Furthermore, we assessed the 'biogenic' rugosity created by barnacle matrices across fine scales (1-20 mm). Field surveys and 3D scanning, conducted across natural and artificial substrata, showed major effects of rugosity and associated topographic variables on ecosystem engineer assemblages and spatial occupancy, while additional abiotic environmental factors (compass direction, wave exposure) and biotic associations only had weak influences. Natural substrata exhibited ≤67 % higher rugosity than artificial ones. Fucoid-covered patches were predominantly associated with high-rugosity substrata and horizontal micro-surfaces, while homescars of limpets (≥15 mm shell length) predominated on smoother substratum patches. Barnacle-driven rugosity homogenized substrata at scales ≤10 mm. Our findings suggest that scale-dependent rugosity is a key driver of fucoid habitat formation and limpet habitat use, with wider eco-engineering applications for mimicking ecologically impactful topography on coastal infrastructure.
Collapse
Affiliation(s)
- Franz Bauer
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - John N Griffin
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | | | - Emma Jones
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Lear KO, Ebner BC, Fazeldean T, Bateman RL, Morgan DL. Effects of coastal development on sawfish movements and the need for marine animal crossing solutions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14263. [PMID: 38578170 DOI: 10.1111/cobi.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 04/06/2024]
Abstract
Although human-made barriers to animal movement are ubiquitous across many types of ecosystems, the science behind these barriers and how to ameliorate their effects lags far behind in marine environments compared with terrestrial and freshwater realms. Using juvenile sawfish in an Australian nursery habitat as a model system, we aimed to assess the effects of a major anthropogenic development on the movement behavior of coastal species. We compared catch rates and movement behavior (via acoustic telemetry) of juvenile green sawfish (Pristis zijsron) before and after a major coastal structure was built in an important nursery habitat. Acoustic tracking and catch data showed that the development did not affect levels of sawfish recruitment in the nursery, but it did constrain movements of juveniles moving throughout the nursery, demonstrating the reluctance of shoreline-associated species to travel around large or unfamiliar coastal structures. Given the current lack of information on human-made movement barriers in the marine environment, these findings highlight the need for further research in this area, and we propose the development of and experimentation with marine animal crossings as an important area of emerging research.
Collapse
Affiliation(s)
- Karissa O Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Brendan C Ebner
- Department of Primary Industries, Grafton Fisheries Centre, Grafton, New South Wales, Australia
- TropWATER, James Cook University, Townsville, Queensland, Australia
| | - Travis Fazeldean
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Rebecca L Bateman
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
4
|
Sempere-Valverde J, Chebaane S, Bernal-Ibáñez A, Silva R, Cacabelos E, Ramalhosa P, Jiménez J, Monteiro JG, Espinosa F, Navarro-Barranco C, Guerra-García JM, Canning-Clode J. Surface integrity could limit the potential of concrete as a bio-enhanced material in the marine environment. MARINE POLLUTION BULLETIN 2024; 200:116096. [PMID: 38340372 DOI: 10.1016/j.marpolbul.2024.116096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Coastal sprawl is among the main drivers of global degradation of shallow marine ecosystems. Among artificial substrates, quarry rock can have faster recruitment of benthic organisms compared to traditional concrete, which is more versatile for construction. However, the factors driving these differences are poorly understood. In this context, this study was designed to compare the intertidal and subtidal benthic and epibenthic assemblages on concrete and artificial basalt boulders in six locations of Madeira Island (northeastern Atlantic, Portugal). To assess the size of the habitat, the shorelines in the study area were quantified using satellite images, resulting in >34 % of the south coast of Madeira being artificial. Benthic assemblages differed primarily between locations and secondarily substrates. Generally, assemblages differed between substrates in the subtidal, with lower biomass and abundance in concrete than basalt. We conclude that these differences are not related to chemical effects (e.g., heavy metals) but instead to a higher detachment rate of calcareous biocrusts from concrete, as surface abrasion is faster in concrete than basalt. Consequently, surface integrity emerges as a factor of ecological significance in coastal constructions. This study advances knowledge on the impact and ecology of artificial shorelines, providing a baseline for future research towards ecological criteria for coastal protection and management.
Collapse
Affiliation(s)
- Juan Sempere-Valverde
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain; MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Sahar Chebaane
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alejandro Bernal-Ibáñez
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo Silva
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - Eva Cacabelos
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Hydrosphere-Environmental Laboratory for the Study of Aquatic Ecosystems, 36331 Vigo, Spain; Institute of Marine Research (IIM-CSIC), 36208 Vigo, Spain
| | - Patrício Ramalhosa
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - Jesús Jiménez
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal
| | - João Gama Monteiro
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Free Espinosa
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain
| | - Carlos Navarro-Barranco
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain
| | - José Manuel Guerra-García
- Laboratorio de Biología Marina, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6, 41012 Sevilla, Spain
| | - João Canning-Clode
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| |
Collapse
|
5
|
Schaefer N, Bishop MJ, Bugnot AB, Herbert B, Hoey AS, Mayer-Pinto M, Sherman CDH, Foster-Thorpe C, Vozzo ML, Dafforn KA. Variable effects of substrate colour and microtexture on sessile marine taxa in Australian estuaries. BIOFOULING 2024; 40:223-234. [PMID: 38526167 DOI: 10.1080/08927014.2024.2332710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Concrete infrastructure in coastal waters is increasing. While adding complex habitat and manipulating concrete mixtures to enhance biodiversity have been studied, field investigations of sub-millimetre-scale complexity and substrate colour are lacking. Here, the interacting effects of 'colour' (white, grey, black) and 'microtexture' (smooth, 0.5 mm texture) on colonisation were assessed at three sites in Australia. In Townsville, no effects of colour or microtexture were observed. In Sydney, spirorbid polychaetes occupied more space on smooth than textured tiles, but there was no effect of microtexture on serpulid polychaetes, bryozoans and algae. In Melbourne, barnacles were more abundant on black than white tiles, while serpulid polychaetes showed opposite patterns and ascidians did not vary with treatments. These results suggest that microtexture and colour can facilitate colonisation of some taxa. The context-dependency of the results shows that inclusion of these factors into marine infrastructure designs needs to be carefully considered.
Collapse
Affiliation(s)
- Nina Schaefer
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - Melanie J Bishop
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ana B Bugnot
- CSIRO Environment, St Lucia, Queensland, Australia
| | - Brett Herbert
- Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory, Australia
| | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Mariana Mayer-Pinto
- Centre for Marine Science and Innovation, Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Cian Foster-Thorpe
- Department of Agriculture, Fisheries and Forestry, Canberra, Australian Capital Territory, Australia
| | | | - Katherine A Dafforn
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
6
|
O'Shaughnessy KA, Knights AM, Hawkins SJ, Hanley ME, Lunt P, Thompson RC, Firth LB. Metrics matter: Multiple diversity metrics at different spatial scales are needed to understand species diversity in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164958. [PMID: 37331387 DOI: 10.1016/j.scitotenv.2023.164958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Worldwide, natural habitats are being replaced by artificial structures due to urbanisation. Planning of such modifications should strive for environmental net gain that benefits biodiversity and ecosystems. Alpha (α) and gamma (γ) diversity are often used to assess 'impact' but are insensitive metrics. We test several diversity measures across two spatial scales to compare species diversity in natural and artificial habitats. We show γ-diversity indicates equivalency in biodiversity between natural and artificial habitats, but natural habitats support greater taxon (α) and functional richness. Within-site β-diversity was also greater in natural habitats, but among-site β-diversity was greater in artificial habitats, contradicting the commonly held view that urban ecosystems are more biologically homogenous than natural ecosystems. This study suggests artificial habitats may in fact provide novel habitat for biodiversity, challenges the applicability of the urban homogenisation concept and highlights a significant limitation of using just α-diversity (i.e., multiple metrics are needed and recommended) for assessing environmental net gain and attaining biodiversity conservation goals.
Collapse
Affiliation(s)
- Kathryn A O'Shaughnessy
- School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, United Kingdom; APEM Ltd, Heaton Mersey, Stockport, United Kingdom.
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| | - Stephen J Hawkins
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom; School of Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, United Kingdom; The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom.
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| | - Paul Lunt
- School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, United Kingdom.
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|