1
|
Post-translational activation of Mmp2 correlates with patterns of active collagen degradation during the development of the zebrafish tail. Dev Biol 2021; 477:155-163. [PMID: 34058190 DOI: 10.1016/j.ydbio.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022]
Abstract
Matrix metalloproteinase-2 (a.k.a. Gelatinase A, or Mmp2 in zebrafish) is known to have roles in pathologies such as arthritis, in which its function is protective, as well as in cancer metastasis, in which it is activated as part of the migration and invasion of metastatic cells. It is also required during development and the regeneration of tissue architecture after wound healing, but its roles in tissue remodelling are not well understood. Gelatinase A is activated post-translationally by proteolytic cleavage, making information about its transcription and even patterns of protein accumulation difficult to relate to biologically relevant activity. Using a transgenic reporter of endogenous Mmp2 activation in zebrafish, we describe its accumulation and post-translational proteolytic activation during the embryonic development of the tail. Though Mmp2 is expressed relatively ubiquitously, it seems to be active only at specific locations and times. Mmp2 is activated robustly in the neural tube and in maturing myotome boundaries. It is also activated in the notochord during body axis straightening, in patches scattered throughout the epidermal epithelium, in the gut, and on cellular protrusions extending from mesenchymal cells in the fin folds. The activation of Mmp2 in the notochord, somite boundaries and fin folds associates with collagen remodelling in the notochord sheath, myotome boundary ECM and actinotrichia respectively. Mmp2 is likely an important effector of ECM remodelling during the morphogenesis of the notochord, a driving structure in vertebrate development. It also appears to function in remodelling the ECM associated with growing epithelia and the maturation of actinotrichia in the fin folds, mediated by mesenchymal cell podosomes.
Collapse
|
2
|
Kalev-Altman R, Hanael E, Zelinger E, Blum M, Monsonego-Ornan E, Sela-Donenfeld D. Conserved role of matrix metalloproteases 2 and 9 in promoting the migration of neural crest cells in avian and mammalian embryos. FASEB J 2020; 34:5240-5261. [PMID: 32067275 DOI: 10.1096/fj.201901217rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) are a unique embryonic cell population that initially reside at the dorsal neural tube but later migrate in the embryo and differentiate into multiple types of derivatives. To acquire motility, NCCs undergo epithelial-to-mesenchymal transition and invade the surrounding extracellular matrix (ECM). Matrix metalloproteases (MMPs) are a large family of proteases which regulate migration of various embryonic and adult cells via ECM remodeling. The gelatinase's subgroup of MMPs is the most studied one due to its key role in metastasis. As it is composed of only two proteases, MMP2 and MMP9, it is important to understand whether each is indispensable or redundant in its biological function. Here we explored the role of the gelatinases in executing NCC migration, by determining whether MMP2 and/or MMP9 regulate migration across species in singular, combined, or redundant manners. Chick and mouse embryos were utilized to compare expression and activity of both MMPs using genetic and pharmacological approaches in multiple in vivo and ex vivo assays. Both MMPs were found to be expressed and active in mouse and chick NCCs. Inhibition of each MMP was sufficient to prevent NCC migration in both species. Yet, NCC migration was maintained in MMP2-/- or MMP9-/- mouse mutants due to compensation between the gelatinases, but reciprocal pharmacological inhibition in each mutant prevented NCC migration. This study reveals for the first time that both gelatinases are expressed in avian and mammalian NCCs, and demonstrates their fundamental and conserved role in promoting embryonic cell migration.
Collapse
Affiliation(s)
- Rotem Kalev-Altman
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel.,The Institute of Biochemistry and Nutrition, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Erez Hanael
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Einat Zelinger
- Core Facility Unit, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Efrat Monsonego-Ornan
- The Institute of Biochemistry and Nutrition, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University, Rehovot, Israel
| |
Collapse
|
3
|
Small CD, el-Khoury M, Deslongchamps G, Benfey TJ, Crawford BD. Matrix Metalloproteinase 13 Activity is Required for Normal and Hypoxia-Induced Precocious Hatching in Zebrafish Embryos. J Dev Biol 2020; 8:jdb8010003. [PMID: 32023839 PMCID: PMC7151336 DOI: 10.3390/jdb8010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia induces precocious hatching in zebrafish, but we do not have a clear understanding of the molecular mechanisms regulating the activation of the hatching enzyme or how these mechanisms trigger precocious hatching under unfavorable environmental conditions. Using immunohistochemistry, pharmacological inhibition of matrix metalloproteinase 13 (Mmp13), and in vivo zymography, we show that Mmp13a is present in the hatching gland just as embryos become hatching competent and that Mmp13a activity is required for both normal hatching and hypoxia-induced precocious hatching. We conclude that Mmp13a likely functions in activating the hatching enzyme zymogen and that Mmp13a activity is necessary but not sufficient for hatching in zebrafish. This study highlights the broad nature of MMP function in development and provides a non-mammalian example of extra-embryonic processes mediated by MMP activity.
Collapse
Affiliation(s)
- Christopher D. Small
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | - Megan el-Khoury
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | | | - Tillmann J. Benfey
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
| | - Bryan D. Crawford
- Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; (C.D.S.); (M.e.-K.); (T.J.B.)
- Correspondence:
| |
Collapse
|
4
|
Matchett EF, Wang S, Crawford BD. Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. J Dev Biol 2019; 7:jdb7040022. [PMID: 31816958 PMCID: PMC6955687 DOI: 10.3390/jdb7040022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) of the myotendinous junction (MTJ) undergoes dramatic physical and biochemical remodeling during the first 48 h of development in zebrafish, transforming from a rectangular fibronectin-dominated somite boundary to a chevron-shaped laminin-dominated MTJ. Matrix metalloproteinase 11 (Mmp11, a.k.a. Stromelysin-3) is both necessary and sufficient for the removal of fibronectin at the MTJ, but whether this protease acts directly on fibronectin and how its activity is regulated remain unknown. Using immunofluorescence, we show that both paralogues of Mmp11 accumulate at the MTJ during this time period, but with Mmp11a present early and later replaced by Mmp11b. Moreover, Mmp11a also accumulates intracellularly, associated with the Z-discs of sarcomeres within skeletal muscle cells. Using the epitope-mediated MMP activation (EMMA) assay, we show that despite having a weaker paired basic amino acid motif in its propeptide than Mmp11b, Mmp11a is activated by furin, but may also be activated by other mechanisms intracellularly. One or both paralogues of tissue inhibitors of metalloproteinase-4 (Timp4) are also present at the MTJ throughout this process, and yeast two-hybrid assays reveal distinct and specific interactions between various domains of these proteins. We propose a model in which Mmp11a activity is modulated (but not inhibited) by Timp4 during early MTJ remodeling, followed by a phase in which Mmp11b activity is both inhibited and spatially constrained by Timp4 in order to maintain the structural integrity of the mature MTJ.
Collapse
|
5
|
Ou Y, Wilson RE, Weber SG. Methods of Measuring Enzyme Activity Ex Vivo and In Vivo. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:509-533. [PMID: 29505726 PMCID: PMC6147230 DOI: 10.1146/annurev-anchem-061417-125619] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Enzymes catalyze a variety of biochemical reactions in the body and, in conjunction with transporters and receptors, control virtually all physiological processes. There is great value in measuring enzyme activity ex vivo and in vivo. Spatial and temporal differences or changes in enzyme activity can be related to a variety of natural and pathological processes. Several analytical approaches have been developed to meet this need. They can be classified broadly as methods either based on artificial substrates, with the goal of creating images of diseased tissue, or based on natural substrates, with the goal of understanding natural processes. This review covers a selection of these methods, including optical, magnetic resonance, mass spectrometry, and physical sampling approaches, with a focus on creative chemistry and method development that make ex vivo and in vivo measurements of enzyme activity possible.
Collapse
Affiliation(s)
| | - Rachael E Wilson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| | - Stephen G Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA;
| |
Collapse
|
6
|
Jeffrey EJ, Crawford BD. The epitope-mediated MMP activation assay: detection and quantification of the activation of Mmp2 in vivo in the zebrafish embryo. Histochem Cell Biol 2018; 149:277-286. [PMID: 29350268 DOI: 10.1007/s00418-018-1634-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Matrix remodeling is a consequence of tightly regulated matrix metalloproteinase (MMP) activity. MMPs are synthesized as inactive precursors with auto-inhibitory N-terminal propeptides, the proteolytic removal of which exposes the catalytic zinc ion, rendering the protease active. The regulation of MMP activation has been investigated primarily in tissue culture and biochemical assays that lack important biological context. Here we present the epitope-mediated MMP activation (EMMA) assay and use it to observe the activation of Mmp2 (gelatinase A) by endogenous mechanisms in the intact zebrafish embryo. The hemagglutinin (HA) and GFP-tagged reporter construct becomes activated on the surface of specific cells and this activation is abolished by broad-spectrum inhibition of metalloproteinase activity, consistent with existing models of gelatinase A activation. The mechanism(s) acting on the construct are spatially restricted, metalloproteinase-dependent and replacing the HA tag with mCherry abolishes activation, showing that the mechanism(s) are sensitive to the structure of the N-terminal domain. The construct is activated strongly in maturing myotome boundaries, but also intracellularly within myofibrils, consistent with reports implicating this protease in muscle development and function. In addition to general-purpose tools for the production of "EMMAed" MMPs and other proteins, we have established a transgenic line of zebrafish expressing EMMAedMmp2 under control of an inducible promoter to facilitate further investigation into the regulation of this ubiquitous ECM-remodeling protease in vivo.
Collapse
Affiliation(s)
- Emma J Jeffrey
- Matrix Dynamics Lab, Biology Department, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada
| | - Bryan D Crawford
- Matrix Dynamics Lab, Biology Department, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
7
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
8
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
9
|
Abstract
Zymography, the detection, identification, and even quantification of enzyme activity fractionated by gel electrophoresis, has received increasing attention in the last years, as revealed by the number of articles published. A number of enzymes are routinely detected by zymography, especially with clinical interest. This introductory chapter reviews the major principles behind zymography. New advances of this method are basically focused towards two-dimensional zymography and transfer zymography as will be explained in the rest of the chapters. Some general considerations when performing the experiments are outlined as well as the major troubleshooting and safety issues necessary for correct development of the electrophoresis.
Collapse
|
10
|
Experimental Dissection of Metalloproteinase Inhibition-Mediated and Toxic Effects of Phenanthroline on Zebrafish Development. Int J Mol Sci 2016; 17:ijms17091503. [PMID: 27618022 PMCID: PMC5037780 DOI: 10.3390/ijms17091503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/25/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022] Open
Abstract
Metalloproteinases are zinc-dependent endopeptidases that function as primary effectors of tissue remodeling, cell-signaling, and many other roles. Their regulation is ferociously complex, and is exquisitely sensitive to their molecular milieu, making in vivo studies challenging. Phenanthroline (PhN) is an inexpensive, broad-spectrum inhibitor of metalloproteinases that functions by chelating the catalytic zinc ion, however its use in vivo has been limited due to suspected off-target effects. PhN is very similar in structure to phenanthrene (PhE), a well-studied poly aromatic hydrocarbon (PAH) known to cause toxicity in aquatic animals by activating the aryl hydrocarbon receptor (AhR). We show that zebrafish are more sensitive to PhN than PhE, and that PhN causes a superset of the effects caused by PhE. Morpholino knock-down of the AhR rescues the effects of PhN that are shared with PhE, suggesting these are due to PAH toxicity. The effects of PhN that are not shared with PhE (specifically disruption of neural crest development and angiogenesis) involve processes known to depend on metalloproteinase activity. Furthermore these PhN-specific effects are not rescued by AhR knock-down, suggesting that these are bona fide effects of metalloproteinase inhibition, and that PhN can be used as a broad spectrum metalloproteinase inhibitor for studies with zebrafish in vivo.
Collapse
|
11
|
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016; 36:1481-507. [PMID: 27323783 PMCID: PMC5012524 DOI: 10.1177/0271678x16655551] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/26/2016] [Indexed: 02/01/2023]
Abstract
Matrix metalloproteinases are versatile endopeptidases with many different functions in the body in health and disease. In the brain, matrix metalloproteinases are critical for tissue formation, neuronal network remodeling, and blood-brain barrier integrity. Many reviews have been published on matrix metalloproteinases before, most of which focus on the two best studied matrix metalloproteinases, the gelatinases MMP-2 and MMP-9, and their role in one or two diseases. In this review, we provide a broad overview of the role various matrix metalloproteinases play in brain disorders. We summarize and review current knowledge and understanding of matrix metalloproteinases in the brain and at the blood-brain barrier in neuroinflammation, multiple sclerosis, cerebral aneurysms, stroke, epilepsy, Alzheimer's disease, Parkinson's disease, and brain cancer. We discuss the detrimental effects matrix metalloproteinases can have in these conditions, contributing to blood-brain barrier leakage, neuroinflammation, neurotoxicity, demyelination, tumor angiogenesis, and cancer metastasis. We also discuss the beneficial role matrix metalloproteinases can play in neuroprotection and anti-inflammation. Finally, we address matrix metalloproteinases as potential therapeutic targets. Together, in this comprehensive review, we summarize current understanding and knowledge of matrix metalloproteinases in the brain and at the blood-brain barrier in brain disorders.
Collapse
Affiliation(s)
- Ralf G Rempe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Small CD, Crawford BD. Matrix metalloproteinases in neural development: a phylogenetically diverse perspective. Neural Regen Res 2016; 11:357-62. [PMID: 27127457 PMCID: PMC4828983 DOI: 10.4103/1673-5374.179030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases originally characterized as secreted proteases responsible for degrading extracellular matrix proteins. Their canonical role in matrix remodelling is of significant importance in neural development and regeneration, but emerging roles for MMPs, especially in signal transduction pathways, are also of obvious importance in a neural context. Misregulation of MMP activity is a hallmark of many neuropathologies, and members of every branch of the MMP family have been implicated in aspects of neural development and disease. However, while extraordinary research efforts have been made to elucidate the molecular mechanisms involving MMPs, methodological constraints and complexities of the research models have impeded progress. Here we discuss the current state of our understanding of the roles of MMPs in neural development using recent examples and advocate a phylogenetically diverse approach to MMP research as a means to both circumvent the challenges associated with specific model organisms, and to provide a broader evolutionary context from which to synthesize an understanding of the underlying biology.
Collapse
Affiliation(s)
- Christopher D Small
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 6E1, Canada
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 6E1, Canada
| |
Collapse
|
13
|
Crawford BD, Po MD, Saranyan PV, Forsberg D, Schulz R, Pilgrim DB. Mmp25β facilitates elongation of sensory neurons during zebrafish development. Genesis 2014; 52:833-48. [PMID: 25074687 DOI: 10.1002/dvg.22803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 02/04/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large and complex family of zinc-dependent endoproteinases widely recognized for their roles in remodeling the extracellular matrix (ECM) during embryonic development, wound healing, and tissue homeostasis. Their misregulation is central to many pathologies, and they have therefore been the focus of biomedical research for decades. These proteases have also recently emerged as mediators of neural development and synaptic plasticity in vertebrates, however, understanding of the mechanistic basis of these roles and the molecular identities of the MMPs involved remains far from complete. We have identified a zebrafish orthologue of mmp25 (a.k.a. leukolysin; MT6-MMP), a membrane-type, furin-activated MMP associated with leukocytes and invasive carcinomas, but which we find is expressed by a subset of the sensory neurons during normal embryonic development. We detect high levels of Mmp25β expression in the trigeminal, craniofacial, and posterior lateral line ganglia in the hindbrain, and in Rohon-Beard cells in the dorsal neural tube during the first 48 h of embryonic development. Knockdown of Mmp25β expression with morpholino oligonucleotides results in larvae that are uncoordinated and insensitive to touch, and which exhibit defects in the development of sensory neural structures. Using in vivo zymography, we observe that Mmp25β morphant embryos show reduced Type IV collagen degradation in regions of the head traversed by elongating axons emanating from the trigeminal ganglion, suggesting that Mmp25β may play a pivotal role in mediating ECM remodeling in the vicinity of these elongating axons.
Collapse
Affiliation(s)
- Bryan D Crawford
- Department of Biology, University of New Brunswick, New Brunswick, Canada; Department of Biological Sciences, University of Alberta, Alberta, Canada; Department of Pharmacology, University of Alberta, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Wang C, Zhan CL, Cai QF, Du CH, Liu GM, Su WJ, Cao MJ. Expression and characterization of common carp (Cyprinus carpio) matrix metalloproteinase-2 and its activity against type I collagen. J Biotechnol 2014; 177:45-52. [DOI: 10.1016/j.jbiotec.2014.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/19/2014] [Accepted: 02/26/2014] [Indexed: 01/05/2023]
|
15
|
Zymography methods for visualizing hydrolytic enzymes. Nat Methods 2013; 10:211-20. [PMID: 23443633 DOI: 10.1038/nmeth.2371] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/11/2013] [Indexed: 12/12/2022]
Abstract
Zymography is a technique for studying hydrolytic enzymes on the basis of substrate degradation. It is a powerful, but often misinterpreted, tool yielding information on potential hydrolytic activities, enzyme forms and the locations of active enzymes. In this Review, zymography techniques are compared in terms of advantages, limitations and interpretations. With in gel zymography, enzyme forms are visualized according to their molecular weights. Proteolytic activities are localized in tissue sections with in situ zymography. In vivo zymography can pinpoint proteolytic activity to sites in an intact organism. Future development of novel substrate probes and improvement in detection and imaging methods will increase the applicability of zymography for (reverse) degradomics studies.
Collapse
|
16
|
Keow JY, Pond ED, Cisar JS, Cravatt BF, Crawford BD. Activity-based labeling of matrix metalloproteinases in living vertebrate embryos. PLoS One 2012; 7:e43434. [PMID: 22952682 PMCID: PMC3429480 DOI: 10.1371/journal.pone.0043434] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 07/23/2012] [Indexed: 12/25/2022] Open
Abstract
Extracellular matrix (ECM) remodeling is a physiologically and developmentally essential process mediated by a family of zinc-dependent extracellular proteases called matrix metalloproteinases (MMPs). In addition to complex transcriptional control, MMPs are subject to extensive post-translational regulation. Because of this, classical biochemical, molecular and histological techniques that detect the expression of specific gene products provide useful but limited data regarding the biologically relevant activity of MMPs. Using benzophenone-bearing hydroxamate-based probes that interact with the catalytic zinc ion in MMPs, active proteases can be covalently ‘tagged’ by UV cross-linking. This approach has been successfully used to tag MMP-2 in vitro in tissue culture supernatants, and we show here that this probe tags proteins with mobilities consistent with known MMPs and detectable gelatinolytic activity in homogenates of zebrafish embryos. Furthermore, because of the transparency of the zebrafish embryo, UV-photocroslinking can be accomplished in vivo, and rhodamated benzophenone probe is detected in striking spatial patterns consistent with known distributions of active matrix remodeling in embryos. Finally, in metamorphosing Xenopus tadpoles, this probe can be used to biotinylate active MMP-2 by injecting it and cross-linking it in vivo, allowing the protein to be subsequently extracted and biochemically identified.
Collapse
Affiliation(s)
- Jonathan Y. Keow
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Eric D. Pond
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Justin S. Cisar
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Benjamin F. Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Bryan D. Crawford
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
- * E-mail:
| |
Collapse
|
17
|
Quick RE, Dunlap JA, Jessen JR. Expression analysis of zebrafish membrane type-2 matrix metalloproteinases during embryonic development. Gene Expr Patterns 2012; 12:254-60. [DOI: 10.1016/j.gep.2012.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 12/22/2022]
|