1
|
Chen J, Sun T, Lin B, Wu B, Wu J. The Essential Role of Proteoglycans and Glycosaminoglycans in Odontogenesis. J Dent Res 2024; 103:345-358. [PMID: 38407002 DOI: 10.1177/00220345231224228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Tooth development and regeneration are regulated through a complex signaling network. Previous studies have focused on the exploration of intracellular signaling regulatory networks, but the regulatory roles of extracellular networks have only been revealed recently. Proteoglycans, which are essential components of the extracellular matrix (ECM) and pivotal signaling molecules, are extensively involved in the process of odontogenesis. Proteoglycans are composed of core proteins and covalently attached glycosaminoglycan chains (GAGs). The core proteins exhibit spatiotemporal expression patterns during odontogenesis and are pivotal for dental tissue formation and periodontium development. Knockout of core protein genes Biglycan, Decorin, Perlecan, and Fibromodulin has been shown to result in structural defects in enamel and dentin mineralization. They are also closely involved in the development and homeostasis of periodontium by regulating signaling transduction. As the functional component of proteoglycans, GAGs are negatively charged unbranched polysaccharides that consist of repeating disaccharides with various sulfation groups; they provide binding sites for cytokines and growth factors in regulating various cellular processes. In mice, GAG deficiency in dental epithelium leads to the reinitiation of tooth germ development and the formation of supernumerary incisors. Furthermore, GAGs are critical for the differentiation of dental stem cells. Inhibition of GAGs assembly hinders the differentiation of ameloblasts and odontoblasts. In summary, core proteins and GAGs are expressed distinctly and exert different functions at various stages of odontogenesis. Given their unique contributions in odontogenesis, this review summarizes the roles of proteoglycans and GAGs throughout the process of odontogenesis to provide a comprehensive understanding of tooth development.
Collapse
Affiliation(s)
- J Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - T Sun
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - B Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - B Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
- Southern Medical University-Shenzhen Stomatology Hospital (Pingshan), ShenZhen, China
| | - J Wu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Raza M, Ahmed A, Abdul-Ghafar J, Ahmed R, Din NU. Hybrid odontogenic lesions: A case series of a rare entity. Heliyon 2023; 9:e16221. [PMID: 37251860 PMCID: PMC10208946 DOI: 10.1016/j.heliyon.2023.e16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Background The occurrence of hybrid odontogenic lesions with two or more morphologically distinct components is a rare phenomenon and poses a diagnostic challenge. We aimed to study the clinical, radiological, and pathological features and behavior of hybrid odontogenic lesions, to enhance awareness about these rare lesions. Method Hematoxylin and Eosin slides of hybrid odontogenic lesions diagnosed between January 01, 2012 and December 31, 2020, were reviewed. Demographic and radiological information were obtained from the patient's medical records. Results 8 cases were diagnosed with a mean age of 19.1 years and male to female ratio of 1:1.7. Involvement of mandible was more common (n = 5) as compared to maxilla (n = 3). All patients presented with swelling for an average of 9.75 months (3-25 months) duration. Bleeding, loose teeth, pain and facial asymmetry were reported in 5,3, 3, and 2 cases, respectively. Radiologically, 7 cases were well demarcated, 75% cases (n = 6) were radiolucent, and average radiological size was 4.8 cm. All patients were managed with surgery alone. 5 cases (62.5%) underwent enucleation and curettage, while local excision, en-block resection and segmental mandibulectomy were performed in 1 case each. Histologically, ossifying fibroma/cemento-ossifyiong fibroma were the most lesion, occurring in 5 cases (62%), followed by giant cell granuloma like lesions (GCG) i.e., central and peripheral giant cell granuloma (n = 3), Adenomatoid Odontogenic tumor (AOT) (n = 2), and DC (n = 2), ameloblastic fibroma (AF) (n = 1), Ameloblastoma (n = 1), calcifying odontogenic cyst (COC) (n = 1), and complex odontoma (n = 1). No evidence of recurrence was noted after 4-99 months of surgery (mean: 32.9) in cases with available data (n = 7). Long-term complaints included facial asymmetry (n = 2) and pain (n = 1). Conclusion Most hybrid odontogenic lesions affect young females in the second decade of life and commonly show COF and OF as hybrid components. A conservative approach to management appears adequate.
Collapse
Affiliation(s)
- Muhammad Raza
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Arsalan Ahmed
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Jamshid Abdul-Ghafar
- Department of Pathology and Clinical Laboratory, French Medical Institute for Mothers and Children (FMIC), Kabul, Afghanistan
| | - Rashida Ahmed
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| |
Collapse
|
3
|
Chen J, Sun T, You Y, Lin B, Wu B, Wu J. Genome-wide identification of potential odontogenic genes involved in the dental epithelium-mesenchymal interaction during early odontogenesis. BMC Genomics 2023; 24:163. [PMID: 37013486 PMCID: PMC10069120 DOI: 10.1186/s12864-023-09140-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Epithelium-mesenchymal interactions are involved in odontogenic processes. Previous studies have focused on the intracellular signalling regulatory network in tooth development, but the functions of extracellular regulatory molecules have remained unclear. This study aims to explore the gene profile of extracellular proteoglycans and their glycosaminoglycan chains potentially involved in dental epithelium-mesenchymal interactions using high-throughput sequencing to provide new understanding of early odontogenesis. RESULTS Whole transcriptome profiles of the mouse dental epithelium and mesenchyme were investigated by RNA sequencing (RNA-seq). A total of 1,281 and 1,582 differentially expressed genes were identified between the dental epithelium and mesenchyme at E11.5 and E13.5, respectively. Enrichment analysis showed that extracellular regions and ECM-receptor interactions were significantly enriched at both E11.5 and E13.5. Polymerase chain reaction analysis confirmed that the extracellular proteoglycan family exhibited distinct changes during epithelium-mesenchymal interactions. Most proteoglycans showed higher transcript levels in the dental mesenchyme, whereas only a few were upregulated in the epithelium at both stages. In addition, 9 proteoglycans showed dynamic expression changes between these two tissue compartments. Gpc4, Sdc2, Spock2, Dcn and Lum were expressed at higher levels in the dental epithelium at E11.5, whereas their expression was significantly higher in the dental mesenchyme at E13.5, which coincides with the odontogenic potential shift. Moreover, the glycosaminoglycan biosynthetic enzymes Ext1, Hs3st1/5, Hs6st2/3, Ndst3 and Sulf1 also exhibited early upregulation in the epithelium but showed markedly higher expression in the mesenchyme after the odontogenic potential shift. CONCLUSION This study reveals the dynamic expression profile of extracellular proteoglycans and their biosynthetic enzymes during the dental epithelium-mesenchymal interaction. This study offers new insight into the roles of extracellular proteoglycans and their distinct sulfation underlying early odontogenesis.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Tianyu Sun
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yan You
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Binbin Lin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- School of Stomatology, Southern Medical University, Guangzhou, 510515, China.
- Southern Medical University- Shenzhen Stomatology Hospital (Pingshan), ShenZhen, 518118, China.
| | - Jingyi Wu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Wu J, Li H, Han L, Sun T, Tian Y, Wang X. The spatiotemporal expression pattern of Syndecans in murine embryonic teeth. Gene Expr Patterns 2020; 36:119109. [PMID: 32220631 DOI: 10.1016/j.gep.2020.119109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/05/2023]
Abstract
The hierarchical interactions between the dental epithelium and dental mesenchyme represent a common paradigm for organogenesis. During tooth development, various morphogens interact with extracellular components in the extracellular matrix and on the cell surfaces to transmit regulatory signaling into cells. We recently found pivotal roles of FAM20B-catalyzed proteoglycans in the control of murine tooth number at embryonic stages. However, the expression pattern of proteoglycans in embryonic teeth has not been well understood. We extracted total RNA from E14.5 murine tooth germs for semi-quantitative RT-PCR analysis of 29 proteoglycans, and identified 23 of them in the embryonic teeth. As a major subfamily of FAM20B-catalyzed proteoglycans, Syndecans are important candidates being potentially involved in the tooth development of mice. We examined the expression pattern of Syndecans in embryonic teeth using in situ hybridization (ISH) and immunohistochemistry (IHC) approaches. Syndecan-1 is mainly present in the dental mesenchyme at early embryonic stages. Subsequently, its expression expands to both dental epithelium and dental mesenchyme. Syndecan-2 is strongly expressed in the dental mesenchyme at early embryonic stages, then shifts to the stratum intermedium and inner dental epithelium at cap stages. Syndecan-3 shows a gradually increased expression that initially in the dental epithelium of both incisors and molars and then in the inner dental epithelium and stratum intermedium in molars alone. Syndecan-4 is localized in the dental epithelium in incisors and the dental follicle mesenchyme in molars at early cap stage. The spatiotemporal expression pattern of Syndecans in murine embryonic teeth suggest potential roles of these proteoglycans in murine tooth morphogenesis.
Collapse
Affiliation(s)
- Jingyi Wu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Hong Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Lu Han
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Tianyu Sun
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ye Tian
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246; West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA, 75246.
| |
Collapse
|
5
|
Menditti D, Laino L, DI Domenico M, Troiano G, Guglielmotti M, Sava S, Mezzogiorno A, Baldi A. Cysts and Pseudocysts of the Oral Cavity: Revision of the Literature and a New Proposed Classification. In Vivo 2018; 32:999-1007. [PMID: 30150421 DOI: 10.21873/invivo.11340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/16/2018] [Accepted: 06/21/2018] [Indexed: 01/19/2023]
Abstract
This article includes a comprehensive and up-to-date review on the cysts of the oral cavity. Several classifications of odontogenic (OC) and non-odontogenic (non-OC) oral cysts and the surrounding regions have been proposed. We suggest a new critical classification based on an established relationship between anatomical area, histological origin and clinical behavior (frequency, rate of recurrence, malignant potential). Moreover, the differential cytokeratin (CKs) expression of the various cysts is reported as epithelium-specific markers of differential diagnosis. Finally, issues related to differential diagnosis and therapeutic approaches of the cysts included in the two groups are described.
Collapse
Affiliation(s)
- Dardo Menditti
- Department of Dentistry, Orthodontics and Oral Surgery, University of Campania, Naples, Italy
| | - Luigi Laino
- Department of Clinical and Experimental Medicine, University of Campania, Naples, Italy
| | - Marina DI Domenico
- Department of General Pathology and Biochemistry, University of Campania, Naples, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Campania, Naples, Italy
| | - Mario Guglielmotti
- Department of Dentistry, Orthodontics and Oral Surgery, University of Campania, Naples, Italy
| | - Sara Sava
- Department of Dentistry, Orthodontics and Oral Surgery, University of Campania, Naples, Italy
| | - Antonio Mezzogiorno
- Department of Mental Health and Physics, Preventive Medicine, University of Campania, Naples, Italy
| | - Alfonso Baldi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania, Naples, Italy
| |
Collapse
|
6
|
Craniofacial abnormality with skeletal dysplasia in mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase-1. Sci Rep 2018; 8:17134. [PMID: 30459452 PMCID: PMC6244165 DOI: 10.1038/s41598-018-35412-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/02/2018] [Indexed: 02/03/2023] Open
Abstract
Chondroitin sulfate (CS) proteoglycan is a major component of the extracellular matrix and plays an important part in organogenesis. To elucidate the roles of CS for craniofacial development, we analyzed the craniofacial morphology in CS N-acetylgalactosaminyltransferase-1 (T1) gene knockout (KO) mice. T1KO mice showed the impaired intramembranous ossification in the skull, and the final skull shape of adult mice included a shorter face, higher and broader calvaria. Some of T1KO mice exhibited severe facial developmental defect, such as eye defects and cleft lip and palate, causing embryonic lethality. At the postnatal stages, T1KO mice with severely reduced CS amounts showed malocclusion, general skeletal dysplasia and skin hyperextension, closely resembling Ehlers-Danlos syndrome-like connective tissue disorders. The production of collagen type 1 was significantly downregulated in T1KO mice, and the deposition of CS-binding molecules, Wnt3a, was decreased with CS in extracellular matrices. The collagen fibers were irregular and aggregated, and connective tissues were dysorganized in the skin and calvaria of T1KO mice. These results suggest that CS regulates the shape of the craniofacial skeleton by modulating connective tissue organization and that the remarkable reduction of CS induces hypoplasia of intramembranous ossification and cartilage anomaly, resulting in skeletal dysplasia.
Collapse
|
7
|
Dubail J, Huber C, Chantepie S, Sonntag S, Tüysüz B, Mihci E, Gordon CT, Steichen-Gersdorf E, Amiel J, Nur B, Stolte-Dijkstra I, van Eerde AM, van Gassen KL, Breugem CC, Stegmann A, Lekszas C, Maroofian R, Karimiani EG, Bruneel A, Seta N, Munnich A, Papy-Garcia D, De La Dure-Molla M, Cormier-Daire V. SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects. Nat Commun 2018; 9:3087. [PMID: 30082715 PMCID: PMC6078967 DOI: 10.1038/s41467-018-05191-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. The majority of skeletal dysplasia are caused by pathogenic variants in genes required for glycosaminoglycan (GAG) metabolism. Here, Dubail et al. identify genetic variants in the solute carrier family protein SLC10A7 in families with skeletal dysplasia and amelogenesis imperfecta that disrupt GAG synthesis.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Céline Huber
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Sandrine Chantepie
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | | | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Ercan Mihci
- Akdeniz University Paediatric Genetic Deaprtment, 07059 Antalya, Turkey
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | | | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Banu Nur
- Department of Pediatric Genetics, Cerrahpasa Medicine School, Istanbul University, 34290 Istanbul, Turkey
| | - Irene Stolte-Dijkstra
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9700 Groningen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Koen L van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, 3508 Utrecht, The Netherlands
| | - Corstiaan C Breugem
- Division of Paediatric Plastic Surgery, Wilhelmina Children´s Hopsital, 3584 Utrecht, The Netherlands
| | - Alexander Stegmann
- Department of Human Genetics, Radboud University Medical Center, 6525 Nijmegen, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center, 6202 Maastricht, The Netherlands
| | - Caroline Lekszas
- Institute of Human Genetics, Julius Maximilians University Würzburg, 97074 Würzburg, Germany
| | - Reza Maroofian
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.,Next Generation Genetic Clinic, 9175954353 Mashhad, Iran.,Razavi Cancer Research Center, Razavi Hospital, Imam Reza International University, 9198613636 Mashhad, Iran
| | - Arnaud Bruneel
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Nathalie Seta
- AP-HP, Biochimie Métabolique et cellulaire, Hôpital Bichat, 75018 Paris, France
| | - Arnold Munnich
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France
| | - Dulce Papy-Garcia
- Cell Growth and Tissue Repair CRRET Laboratory, Université Paris-Est Créteil, EA 4397 CNRS 9215, Créteil, F-94010, France
| | - Muriel De La Dure-Molla
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.,Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, INSERM UMRS 1138, University Paris-Descartes, University Pierre et Marie Curie-Paris, 75006 Paris, France
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, AP-HP, Hôpital Necker Enfants Malades, 75015 Paris, France.
| |
Collapse
|
8
|
Yukita A, Hara M, Hosoya A, Nakamura H. Relationship between localization of proteoglycans and induction of neurotrophic factors in mouse dental pulp. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
LGR4 is required for sequential molar development. Biochem Biophys Rep 2016; 8:174-183. [PMID: 28955954 PMCID: PMC5613770 DOI: 10.1016/j.bbrep.2016.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/30/2016] [Accepted: 08/14/2016] [Indexed: 12/20/2022] Open
Abstract
Tooth development requires proliferation, differentiation, and specific migration of dental epithelial cells, through well-organized signaling interactions with mesenchymal cells. Recently, it has been reported that leucine-rich repeat-containing G protein coupled receptor 4 (LGR4), the receptor of R-spondins, is expressed in many epithelial cells in various organs and tissues and is essential for organ development and stem cell maintenance. Here, we report that LGR4 contributes to the sequential development of molars in mice. LGR4 expression in dental epithelium was detected in SOX2+ cells in the posterior end of the second molar (M2) and the early tooth germ of the third molar (M3). In keratinocyte-specific Lgr4-deficient mice (Lgr4K5 KO), the developmental defect became obvious by postnatal day 14 (P14) in M3. Lgr4K5 KO adult mice showed complete absence or the dwarfed form of M3. In M3 development in Lgr4K5 KO mice, at Wnt/β-catenin signal activity was down-regulated in the dental epithelium at P3, as indicated by lymphoid enhancer-binding factor-1 (LEF1) expression. We also confirmed the decrease, in dental epithelium of Lgr4K5 KO mice, of the number of SOX2+ cells and the arrest of cell proliferation at P7, and observed abnormal differentiation at P14. Our data demonstrated that LGR4 controls the sequential development of molars by maintaining SOX2+ cells in the dental epithelium, which have the ability to form normal molars. LGR4 expression was observed in the dental epithelium after birth and moved posteriorly during molar development. Keratin5-Cre Tg specific deletion of Lgr4 impaired the development of the third molar. LGR4 maintained SOX2 positive and proliferative cells in the dental epithelium of molars.
Collapse
|
10
|
Coulson-Thomas VJ. The role of heparan sulphate in development: the ectodermal story. Int J Exp Pathol 2016; 97:213-29. [PMID: 27385054 DOI: 10.1111/iep.12180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/24/2016] [Indexed: 12/27/2022] Open
Abstract
Heparan sulphate (HS) is ubiquitously expressed and is formed of repeating glucosamine and glucuronic/iduronic acid units which are generally highly sulphated. HS is found in tissues bound to proteins forming HS proteoglycans (HSPGs) which are present on the cell membrane or in the extracellular matrix. HSPGs influence a variety of biological processes by interacting with physiologically important proteins, such as morphogens, creating storage pools, generating morphogen gradients and directly mediating signalling pathways, thereby playing vital roles during development. This review discusses the vital role HS plays in the development of tissues from the ectodermal lineage. The ectodermal layer differentiates to form the nervous system (including the spine, peripheral nerves and brain), eye, epidermis, skin appendages and tooth enamel.
Collapse
|
11
|
Hasegawa M, Cheng J, Maruyama S, Yamazaki M, Abé T, Babkair H, Saito C, Saku T. Differential immunohistochemical expression profiles of perlecan-binding growth factors in epithelial dysplasia, carcinoma in situ, and squamous cell carcinoma of the oral mucosa. Pathol Res Pract 2016; 212:426-36. [PMID: 26965914 DOI: 10.1016/j.prp.2016.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/15/2016] [Accepted: 02/14/2016] [Indexed: 01/18/2023]
Abstract
The intercellular deposit of perlecan, a basement-membrane type heparan sulfate proteoglycan, is considered to function as a growth factor reservoir and is enhanced in oral epithelial dysplasia and carcinoma in situ (CIS). However, it remains unknown which types of growth factors function in these perlecan-enriched epithelial conditions. The aim of this study was to determine immunohistochemically which growth factors were associated with perlecan in normal oral epithelia and in different epithelial lesions from dysplasia and CIS to squamous cell carcinoma (SCC). Eighty-one surgical tissue specimens of oral SCC containing different precancerous stages, along with ten of normal mucosa, were examined by immunohistochemistry for growth factors. In normal epithelia, perlecan and growth factors were not definitely expressed. In epithelial dysplasia, VEGF, SHH, KGF, Flt-1, and Flk-1were localized in the lower half of rete ridges (in concordance with perlecan, 33-100%), in which Ki-67 positive cells were densely packed. In CIS, perlecan and those growth factors/receptors were more strongly expressed in the cell proliferating zone (63-100%). In SCC, perlecan and KGF disappeared from carcinoma cells but emerged in the stromal space (65-100%), while VEGF, SHH, and VEGF receptors remained positive in SCC cells (0%). Immunofluorescence showed that the four growth factors were shown to be produced by three oral SCC cell lines and that their signals were partially overlapped with perlecan signals. The results indicate that perlecan and its binding growth factors are differentially expressed and function in specific manners before (dysplasia/CIS) and after (SCC) invasion of dysplasia/carcinoma cells.
Collapse
Affiliation(s)
- Mayumi Hasegawa
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Cheng
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan
| | - Manabu Yamazaki
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan
| | - Hamzah Babkair
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Chikara Saito
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Saku
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan.
| |
Collapse
|
12
|
Tian Y, Ma P, Liu C, Yang X, Crawford DM, Yan W, Bai D, Qin C, Wang X. Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors. Eur J Oral Sci 2015; 123:396-402. [PMID: 26465965 DOI: 10.1111/eos.12222] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Tooth formation is tightly regulated by epithelial-mesenchymal interactions via hierarchic cascades of signaling molecules. The glycosaminoglycan (GAG) chains covalently attached to the core protein of proteoglycans (PGs) provide docking sites for signaling molecules and their receptors during the morphogenesis of tissues and organs. Although PGs are believed to play important roles in tooth formation, little is known about their exact functions in this developmental process and the relevant molecular basis. Family with sequence similarity member 20-B (FAM20B) is a newly identified kinase that phosphorylates the xylose in the common linkage region connecting the GAG with the protein core of PGs. The phosphorylation of xylose is essential for elongation of the common linkage region and the subsequent GAG assembly. In this study, we generated a Fam20B-floxed allele in mice and found that inactivating Fam20B in the dental epithelium leads to supernumerary maxillary and mandibular incisors. This finding highlights the pivotal role of PGs in tooth morphogenesis and opens a new window for understanding the regulatory mechanism of PG-mediated signaling cascades during tooth formation.
Collapse
Affiliation(s)
- Ye Tian
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA.,Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Pan Ma
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Chao Liu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xiudong Yang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Derrick M Crawford
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Wenjuan Yan
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Ding Bai
- Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Xiaofang Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| |
Collapse
|
13
|
Maruyama S, Yamazaki M, Abé T, Babkair H, Cheng J, Saku T. Paradental cyst is an inclusion cyst of the junctional/sulcular epithelium of the gingiva: histopathologic and immunohistochemical confirmation for its pathogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:227-37. [DOI: 10.1016/j.oooo.2015.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 11/24/2022]
|
14
|
Tsuneki M, Madri JA, Saku T. Cell–extracellular matrix interactions in oral tumorigenesis: Roles of podoplanin and CD44 and modulation of Hippo pathway. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yan Z, Chen G, Yang Y, Sun L, Jiang Z, Feng L, Yu M, Guo W, Tian W. Expression and roles of syndecan-4 in dental epithelial cell differentiation. Int J Mol Med 2014; 34:1301-8. [PMID: 25174688 DOI: 10.3892/ijmm.2014.1910] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 02/05/2023] Open
Abstract
Syndecan-4 (SDC4), a transmembrane heparan sulfate proteoglycan, acts as a signal transducer. It affects the growth and differentiation of a number of tissues and organs. However, the specific mechanisms through which SDC4 regulates the differentiation of dental epithelial cells (amelogenesis) and tooth development remains largely unknown. In the present study, to identify the SDC4-regulated processes in dental epithelial cells, the SDC4 expression pattern was examined in mouse molar and postnatal incisor tooth germs during the late bell stage of development. Small interfering RNA (siRNA) was designed for this study and used to downregulate SDC4 expression in the rat dental epithelial cell line, HAT-7. The results revealed that SDC4 was mainly present in the oral epithelium, the dental epithelial cells of enamel organs in the molars and the cervical loops in the incisors. When the inner enamel epithelial cells gave rise to ameloblasts, however, the loss of SDC4 expression was evident. SDC4 was also expressed in stratum intermedium (SI) cells in the incisors and in dental mesenchymal cells adjacent to the cervical loops in molars (E18) and postnatal incisors. Fibroblast growth factor 10 (FGF10) promoted proliferation and slightly decreased cell differentiation. The knockdown of SDC4 using specific siRNA led to a decrease in cell proliferation and a highly significant increase in amelogenin, ameloblastin, kallikrein 4 and matrix metalloproteinase 20 expression, molecules that are known to participate in the formation of enamel. These effects were attenuated by FGF10, which upregulated SDC4 expression. Taken together, these results suggest that SDC4 participates in amelogenesis, and FGF10 may modulate dental epithelial cell behaviors through the regulation of SDC4 expression.
Collapse
Affiliation(s)
- Zhiling Yan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yaling Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zongting Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lian Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
Yamazaki M, Maruyama S, Abé T, Babkair H, Fujita H, Takagi R, Koyama JI, Hayashi T, Cheng J, Saku T. Hybrid ameloblastoma and adenomatoid odontogenic tumor: report of a case and review of hybrid variations in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118:e12-8. [DOI: 10.1016/j.oooo.2013.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
17
|
Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endorepellin evokes autophagy in endothelial cells. J Biol Chem 2014; 289:16114-28. [PMID: 24737315 DOI: 10.1074/jbc.m114.556530] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, possesses angiostatic activity via dual receptor antagonism, through concurrent binding to the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2). Here, we discovered that soluble endorepellin induced autophagy in endothelial cells by modulating the expression of Beclin 1, LC3, and p62, three established autophagic markers. Moreover, endorepellin evoked expression of the imprinted tumor suppressor gene Peg3 and its co-localization with Beclin 1 and LC3 in autophagosomes, suggesting a major role for this gene in endothelial cell autophagy. Mechanistically, endorepellin induced autophagy by down-regulating VEGFR2 via the two LG1/2 domains, whereas the C-terminal LG3 domain, the portion responsible for binding the α2β1 integrin, was ineffective. Endorepellin also induced transcriptional activity of the BECN1 promoter in endothelial cells, and the VEGFR2-specific tyrosine kinase inhibitor, SU5416, blocked this effect. Finally, we found a correlation between endorepellin-evoked inhibition of capillary morphogenesis and enhanced autophagy. Thus, we have identified a new role for this endogenous angiostatic fragment in inducing autophagy through a VEGFR2-dependent but α2β1 integrin-independent pathway. This novel mechanism specifically targets endothelial cells and could represent a promising new strategy to potentiate the angiostatic effect of endorepellin and perhaps other angiostatic matrix proteins.
Collapse
Affiliation(s)
- Chiara Poluzzi
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Joshua Casulli
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Atul Goyal
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas J Mercer
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas Neill
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
18
|
Maruyama S, Shimazu Y, Kudo T, Sato K, Yamazaki M, Abé T, Babkair H, Cheng J, Aoba T, Saku T. Three-dimensional visualization of perlecan-rich neoplastic stroma induced concurrently with the invasion of oral squamous cell carcinoma. J Oral Pathol Med 2014; 43:627-36. [PMID: 24697873 DOI: 10.1111/jop.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND We have demonstrated the induction of perlecan-rich stroma of oral squamous cell carcinoma (SCC) on and after its start of invasion. However, it remains unknown how such a neoplastic stroma is actually arranged in tumor tissues. METHODS To this end, tissue microarray samples, in which keratin and perlecan were contrastively labeled by immunohistochemistry, were three-dimensionally analyzed using digital images and image analysis software to demonstrate the relationship between SCC foci and the perlecan-positive stromal space or that between carcinoma in situ (CIS) and invasive SCC foci. RESULTS The three-dimensional (3D) reconstruction demonstrated three kinds of perlecan profiles for inside (I) and outside (O) areas of the carcinoma cell focus: mode 1, I(+)/O(-) ; mode 2, I(+)/O(+) ; and mode 3, I(-)/O(+). Mode 1 was seen in CIS as well as SCC tumor massifs in the surface part. Mode 2 was seen in small SCC foci, which seemed isolated in 2D sections but were mostly continuous with the tumor massif in 3D reconstructions. Mode 3 was limited to small SCC foci, which were truly segregated from the tumor massif. CONCLUSIONS The results indicated that the 2D SCC focus isolation could not be regarded as invasion but that the SCC foci surrounded by perlecan-positive stroma (modes 2 and 3) could be regarded as a more objective measure for invasion of SCC. This is the first 3D tissue-level demonstration of the neoplastic stroma space induced with oral SCC invasion, the presence of which we have predicted based on our previous 2D and tissue culture evidence.
Collapse
Affiliation(s)
- Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Maruyama S, Itagaki M, Ida-Yonemochi H, Kubota T, Yamazaki M, Abé T, Yoshie H, Cheng J, Saku T. Perlecan-enriched intercellular space of junctional epithelium provides primary infrastructure for leukocyte migration through squamous epithelial cells. Histochem Cell Biol 2014; 142:297-305. [DOI: 10.1007/s00418-014-1198-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
20
|
Oral biosciences: The annual review 2013. J Oral Biosci 2014. [DOI: 10.1016/j.job.2014.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Farach-Carson MC, Warren CR, Harrington DA, Carson DD. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol 2013; 34:64-79. [PMID: 24001398 DOI: 10.1016/j.matbio.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 12/11/2022]
Abstract
The extracellular matrix proteoglycan (ECM) perlecan, also known as heparan sulfate proteoglycan 2 or HSPG2, is one of the largest (>200 nm) and oldest (>550 M years) extracellular matrix molecules. In vertebrates, perlecan's five-domain structure contains numerous independently folding modules with sequence similarities to other ECM proteins, all connected like cars into one long, diverse complex train following a unique N-terminal domain I decorated with three long glycosaminoglycan chains, and an additional glycosaminoglycan attachment site in the C-terminal domain V. In lower invertebrates, perlecan is not typically a proteoglycan, possessing the majority of the core protein modules, but lacking domain I where the attachment sites for glycosaminoglycan chains are located. This suggests that uniting the heparan sulfate binding growth factor functions of domain I and the core protein functions of the rest of the molecule in domains II-V occurred later in evolution for a new functional purpose. In this review, we surveyed several decades of pertinent literature to ask a fundamental question: Why did nature design this protein uniquely as an extraordinarily long multifunctional proteoglycan with a single promoter regulating expression, rather than separating these functions into individual proteins that could be independently regulated? We arrived at the conclusion that the concentration of perlecan at functional borders separating tissues and tissue layers is an ancient key function of the core protein. The addition of the heparan sulfate chains in domain I likely occurred as an additional means of binding the core protein to other ECM proteins in territorial matrices and basement membranes, and as a means to reserve growth factors in an on-site depot to assist with rapid repair of those borders when compromised, such as would occur during wounding. We propose a function for perlecan that extends its role from that of an extracellular scaffold, as we previously suggested, to that of a critical agent for establishing and patrolling tissue borders in complex tissues in metazoans. We also propose that understanding these unique functions of the individual portions of the perlecan molecule can provide new insights and tools for engineering of complex multi-layered tissues including providing the necessary cues for establishing neotissue borders.
Collapse
Affiliation(s)
- Mary C Farach-Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States.
| | - Curtis R Warren
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel A Harrington
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| | - Daniel D Carson
- Department of Biochemistry and Cell Biology, Rice University W100 George R. Brown Hall P.O. Box 1892, MS-140, Houston, TX 77251-1892, United States
| |
Collapse
|
22
|
Ida-Yonemochi H, Harada H, Ohshima H, Saku T. Reciprocal expressions between α-dystroglycan and integrin β1, perlecan receptors, in the murine enamel organ development. Gene Expr Patterns 2013; 13:293-302. [PMID: 23722005 DOI: 10.1016/j.gep.2013.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 11/28/2022]
Abstract
Signals of perlecan, an extracellular matrix molecule, which accumulates within the intercellular spaces of the stellate reticulum of the enamel organ, are mediated by at least two receptors, dystroglycan (DG) and integrin β1, in a case-dependent manner in various events in embryogenesis and pathogenesis. This study aims to understand the expression profiles of these two perlecan receptors at both protein and gene levels in murine enamel organ development. Before birth, α-DG was immunolocalized in stellate reticulum cells, in which perlecan was colocalized, while integrin β1 was mainly distributed in the peripheral enamel organ cells as well as the dental mesenchymal cells. On and after postnatal Day 1, the expression of α-DG was dramatically decreased in the stellate reticulum, while integrin β1 was enhanced around blood vessels within the enamel organ. Furthermore, biosyntheses of α-DG and integrin β1 by dental epithelial and pulp mesenchymal cells were confirmed in vitro by using immunofluorescence and reverse-transcriptase polymerase chain reaction. The results suggest that DG is a perlecan receptor that specifically functions in the stellate reticulum of the embryonic stage, but that dental epithelial and mesenchymal cells are maturated by capturing perlecan signals differentially through integrin β1.
Collapse
Affiliation(s)
- Hiroko Ida-Yonemochi
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|
23
|
Yoshizaki K, Yamada Y. Gene evolution and functions of extracellular matrix proteins in teeth. ACTA ACUST UNITED AC 2013; 72:1-10. [PMID: 23539364 DOI: 10.1016/j.odw.2013.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the "core matrisome" in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins.
Collapse
Affiliation(s)
- Keigo Yoshizaki
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20814, USA
| | | |
Collapse
|
24
|
Role of perlecan, a basement membrane-type heparan sulfate proteoglycan, in enamel organ morphogenesis. J Oral Biosci 2013. [DOI: 10.1016/j.job.2012.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Metwaly H, Maruyama S, Yamazaki M, Tsuneki M, Abé T, Jen KY, Cheng J, Saku T. Parenchymal-stromal switching for extracellular matrix production on invasion of oral squamous cell carcinoma. Hum Pathol 2012; 43:1973-81. [PMID: 22575259 DOI: 10.1016/j.humpath.2012.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/05/2012] [Accepted: 02/09/2012] [Indexed: 12/25/2022]
Abstract
It is poorly understood which cell type, tumor cells, or stromal cells are responsible for the production of extracellular matrix molecules in the neoplastic stroma. We studied the expression of 4 extracellular matrix molecules at the protein and messenger RNA levels in monocellular and 2 kinds of coculture systems between human squamous cell carcinoma (ZK-1) and fibroblast (OF-1) cell lines, which may correspond to carcinoma in situ and squamous cell carcinoma, respectively. Squamous cell carcinoma and carcinoma in situ tissue sections were also investigated by immunohistochemistry and in situ hybridization for extracellular matrix. Immunohistochemically, perlecan and tenascin C were localized in carcinoma cells in carcinoma in situ, whereas they were in the stromal space in squamous cell carcinoma. In monocellular culture conditions, expression levels for perlecan, tenascin C, and laminin were more predominant in ZK-1 than in OF-1, although those for fibronectin were more enhanced in OF-1. However, these extracellular matrix expression levels of OF-1 were elevated, whereas those of ZK-1 dropped when they were in coculture conditions. The differences between ZK-1 and OF-1 were significantly more evident in direct contact (ZK-1/OF-1, 56%-22%) than in indirect contact (63%-39%). These results indicate that oral squamous cell carcinoma cells produce extracellular matrix in the absence of stromal fibroblasts (or in carcinoma in situ) and that they stop producing extracellular matrix in the presence of fibroblasts (or in squamous cell carcinoma). It is hence suggested that stromal fibroblasts after direct contact with invading squamous cell carcinoma cells are more responsible than squamous cell carcinoma cells for the formation of neoplastic stroma, whereas carcinoma in situ cells have to produce and deposit extracellular matrix by themselves to form intraepithelial microstromal spaces.
Collapse
Affiliation(s)
- Hamdy Metwaly
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Islam MN, Kawanabe N, Saito M, Kamioka H, Adachi T, Dierks T, Yamashiro T. Roles of heparan sulfate sulfation in dentinogenesis. J Biol Chem 2012; 287:12217-29. [PMID: 22351753 DOI: 10.1074/jbc.m111.332924] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.
Collapse
Affiliation(s)
- Satoru Hayano
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|