1
|
Therien AM, Majumder JA, Joasil AS, Fodera DM, Myers KM, Chen X, Hendon CP. Hyperspectral Imaging of Uterine Fibroids. JOURNAL OF BIOPHOTONICS 2025; 18:e202400499. [PMID: 40000231 DOI: 10.1002/jbio.202400499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Uterine fibroids are non-cancerous growths of the uterus that affect nearly 70%-80% of women in their lifetimes. Fibroids can cause severe pain, bleeding, and infertility. The main risk of recurrence is smaller fibroids, which are notoriously hard to detect, being missed during a surgical removal procedure, only to enlarge afterwards. In this work, hyperspectral imaging (HSI) datasets were acquired from samples from 10 patients after receiving a hysterectomy. Optical properties including absorption, scattering, and spectral morphology were extracted and fed into machine learning to classify regions as fibroid and myometrium. Top extracted optical features had significant contrast between fibroid and myometrium (p < 0.0001) and were used to train Random Forest (AUC: 0.9985 ± 0.001, Sensitivity: 0.9534 ± 0.019, Specificity: 0.9936 ± 0.009) and Logistic Regression (AUC: 0.9397 ± 0.013, Sensitivity: 0.8405 ± 0.023, Specificity: 0.8895 ± 0.032) with strong performance across testing splits. With HSI, there is contrast between fibroid and myometrium in the human uterus.
Collapse
Affiliation(s)
- Aidan M Therien
- Department of Electrical Engineering, Columbia University, New York, New York, USA
| | - Jonah A Majumder
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Arielle S Joasil
- Department of Electrical Engineering, Columbia University, New York, New York, USA
| | - Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, New York, USA
| | - Xiaowei Chen
- Irving Medical Center, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Christine P Hendon
- Department of Electrical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Sun P, Zhang C, Wang W, Ma H. Mechanism of Endometrial Receptivity Affected by Fibroids. Am J Reprod Immunol 2024; 92:e70022. [PMID: 39625040 PMCID: PMC11613313 DOI: 10.1111/aji.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
Fibroids are the most common benign tumors of the female reproductive system. Most patients with fibroids are asymptomatic, but the presence of fibroids can still cause some abnormal clinical symptoms, such as increased menstrual volume, abnormal uterine bleeding, pelvic pain, urinary tract and gastrointestinal tract compression symptoms, etc. The impact of fibroids on pregnancy is worth discussing. At present, it is believed that submucosal myoma and intramural myoma affecting uterine cavity shape affect the pregnancy outcome of patients, while the impact of type III intramural myoma on pregnancy is still controversial. A number of studies have found that in addition to direct contact with the endometrial compression, uterine myoma also affects the endometrial flexibility through other ways. In this review, we summarized the effects of fibroids on endometrial receptivity and discussed in depth the mechanisms of such effects, including secretion of cytokines, changes in endometrial blood flow and angiogenesis, effects on endometrial peristalsis and mechanical stress conduction, changes in uterine microecological environment, and abnormal signal transduction pathways. Understanding the mechanism of endometrial receptivity affected by fibroids is significant for exploring the treatment of fibroids, improving the pregnancy outcome of patients with fibroids and increasing the clinical pregnancy rate.
Collapse
Affiliation(s)
- Ping Sun
- Center of Reproductive Medicine, Weifang People's HospitalWeifangChina
| | - Chunyan Zhang
- Gynecology DepartmentShouguang Hospital of Traditional Chinese MedicineWeifangChina
| | - Weisha Wang
- Gynecology DepartmentShouguang Hospital of Traditional Chinese MedicineWeifangChina
| | - Huagang Ma
- Center of Reproductive Medicine, Weifang People's HospitalWeifangChina
| |
Collapse
|
3
|
Ponomarchuk E, Tsysar S, Kvashennikova A, Chupova D, Pestova P, Danilova N, Malkov P, Buravkov S, Khokhlova V. Pilot Study on Boiling Histotripsy Treatment of Human Leiomyoma Ex Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1255-1261. [PMID: 38762389 DOI: 10.1016/j.ultrasmedbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVE As an alternative to surgical excision and magnetic resonance-guided thermal high-intensity focused ultrasound ablation of uterine leiomyoma, this work was aimed at pilot feasibility demonstration of use of ultrasound-guided boiling histotripsy for non-invasive non-thermal fractionation of human uterine leiomyoma ex vivo. METHODS A custom-made sector ultrasound transducer of 1.5-MHz operating frequency and nominal f-number F# = 0.75 was used to produce a volumetric lesion (two layers of 5 × 5 foci with a 1 mm step) in surgically resected human leiomyoma ex vivo. A sequence of 10 ms pulses (P+/P-/As = 157/-25/170 MPa in situ) with 1% duty cycle was delivered N = 30 times per focus under B-mode guidance. The treatment outcome was evaluated via B-mode imaging and histologically with hematoxylin and eosin and Masson's trichrome staining. RESULTS The treatment was successfully performed in less than 30 min and resulted in formation of a rectangular lesion visualized on B-mode images during the sonication as an echogenic region, which sustained for about 10 min post-treatment. Histology revealed loss of cellular structure, necrotic debris and globules of degenerated collagen in the target volume surrounded by injured smooth muscle cells. CONCLUSION The pilot experiment described here indicates that boiling histotripsy is feasible for non-invasive mechanical disintegration of human uterine leiomyoma ex vivo under B-mode guidance, encouraging further investigation and optimization of this potential clinical application of boiling histotripsy.
Collapse
Affiliation(s)
| | - Sergey Tsysar
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | | | - Daria Chupova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Pestova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Danilova
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Pavel Malkov
- Lomonosov Moscow State University, Medical Research and Educational Center, Moscow, Russia
| | - Sergey Buravkov
- Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, Russia
| | - Vera Khokhlova
- Physics Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Fodera DM, Russell SR, Jackson JLL, Fang S, Chen X, Vink J, Oyen ML, Myers KM. Material properties of nonpregnant and pregnant human uterine layers. J Mech Behav Biomed Mater 2024; 151:106348. [PMID: 38198930 PMCID: PMC11588393 DOI: 10.1016/j.jmbbm.2023.106348] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
The uterus has critical biomechanical functions in pregnancy and undergoes dramatic material growth and remodeling from implantation to parturition. The intrinsic material properties of the human uterus and how they evolve in pregnancy are poorly understood. To address this knowledge gap and assess the heterogeneity of these tissues, the time-dependent material properties of all human uterine layers were measured with nanoindentation. The endometrium-decidua layer was found to be the least stiff, most viscous, and least permeable layer of the human uterus in nonpregnant and third-trimester pregnant tissues. In pregnancy, the endometrium-decidua becomes stiffer and less viscous with no material property changes observed in the myometrium or perimetrium. Additionally, uterine material properties did not significantly differ between third-trimester pregnant tissues with and without placenta accreta. The foundational data generated by this study will facilitate the development of physiologically accurate models of the human uterus to investigate gynecologic and obstetric disorders.
Collapse
Affiliation(s)
- Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Serena R Russell
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Johanna L L Jackson
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Xiaowei Chen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joy Vink
- Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michelle L Oyen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Yang Q, Vafaei S, Falahati A, Khosh A, Bariani MV, Omran MM, Bai T, Siblini H, Ali M, He C, Boyer TG, Al-Hendy A. Bromodomain-Containing Protein 9 Regulates Signaling Pathways and Reprograms the Epigenome in Immortalized Human Uterine Fibroid Cells. Int J Mol Sci 2024; 25:905. [PMID: 38255982 PMCID: PMC10815284 DOI: 10.3390/ijms25020905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai 505262, United Arab Emirates;
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Tao Bai
- Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA;
| | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.K.); (T.G.B.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA; (S.V.); (M.V.B.); (M.M.O.); (H.S.); (M.A.); (A.A.-H.)
| |
Collapse
|
6
|
Fodera DM, Russell SR, Lund-Jackson JL, Fang S, Chen X, Vink JSY, Oyen ML, Myers KM. Material Properties of Nonpregnant and Pregnant Human Uterine Layers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.551726. [PMID: 37609213 PMCID: PMC10441310 DOI: 10.1101/2023.08.07.551726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The uterus has critical biomechanical functions in pregnancy and undergoes dramatic material growth and remodeling from implantation to parturition. The intrinsic material properties of the human uterus and how they evolve in pregnancy are poorly understood. To address this knowledge gap and assess the heterogeneity of these tissues, the time-dependent material properties of all human uterine layers were measured with nanoindentation. The endometrium-decidua layer was found to be the least stiff, most viscous, and least permeable layer of the human uterus in nonpregnant and third-trimester pregnant tissues. In pregnancy, endometrium-decidua becomes stiffer and less viscous with no material property changes observed in the myometrium or perimetrium. Additionally, uterine material properties did not significantly differ between third-trimester pregnant tissues with and without placenta accreta. The foundational data generated by this study will facilitate the development of physiologically accurate models of the human uterus to investigate gynecologic and obstetric disorders.
Collapse
Affiliation(s)
- Daniella M. Fodera
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Serena R. Russell
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Xiaowei Chen
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joy-Sarah Y. Vink
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle L. Oyen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristin M. Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Schutte SC, Ghosh D, Moset Zupan A, Warwar R, Dawson MR. Differential Response to Mechanical Cues in Uterine Fibroid Versus Paired Myometrial Cells. Reprod Sci 2023; 30:3305-3314. [PMID: 37253935 DOI: 10.1007/s43032-023-01267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
Uterine leiomyomas, or fibroids, are common, benign tumors for which hysterectomy is the only definitive treatment. The extracellular matrix of fibroids is disorganized and stiffer than the surrounding myometrial tissue. To understand how stiffness affects fibroid cells, patient-matched fibroid and myometrial cells were cultured on substrates with stiffnesses varying from 0.2 to 150 kPa. Fibroid cells grew more slowly than myometrial cells overall, and only the myometrial cells altered their growth rate in response to stiffness. In both cell types, cell proliferation decreased with inhibition of PI3K and increased with inhibition of IGF-1. The cellular area was greater for the fibroid cells. The only significant effect of stiffness on the cell area was between the 0.2 and 64 kPa substrates, and this was true for both cell types. To investigate intracellular stiffness, intracellular particle tracking microrheology was used. Fibroid cells exhibited a more than 100-fold increase in elastic modulus at a frequency of 1 Hz in response to the addition of external stress, while myometrial cells showed little change in elastic modulus. Overall, the responses of both cells followed similar trends in response to stiffness and inhibitors, although the response was attenuated in the fibroid cells. The changes that were demonstrated by the change in intracellular stiffness with response to compression suggest that other mechanical forces may provide insight into differences in the two cell types.
Collapse
Affiliation(s)
- S C Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| | - D Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - A Moset Zupan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - R Warwar
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - M R Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Warwar R, Zupan AM, Nietupski C, Manzanares M, Hurley EG, Schutte SC. Uterine fibroid cell cytoskeletal organization is affected by altered G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase signaling. F&S SCIENCE 2023; 4:327-338. [PMID: 37797815 DOI: 10.1016/j.xfss.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE To determine whether cyclic strain affects fibroid cell cytoskeletal organization, proliferation, and collagen synthesis differently than myometrial cells. DESIGN A basic science study using primary cultures of patient-matched myometrial and fibroid cells. SETTING Academic laboratory. PATIENT(S) Premenopausal women undergoing myomectomy or hysterectomy for the treatment of symptomatic uterine fibroids. INTERVENTION(S) Application of uniaxial strain patterns mimicking periovulation, menses, or dysmenorrhea using the Flexcell tension system or static control. Secondarily, inhibition of G protein-coupled estrogen receptor-1 and phosphatidylinositol 3-kinase. MAIN OUTCOME MEASURE(S) Cell alignment, cell number, and collagen content. RESULT(S) Menses-strained cells demonstrated the most variation in cell alignment, cell proliferation, and procollagen content between myometrial and fibroid cells. Procollagen content decreased in myometrial cells with increasing strain amplitude and decreasing frequency. G protein-coupled estrogen receptor-1 inhibition decreases cellular alignment in the presence of strain. CONCLUSION(S) Mechanotransduction affecting cytoskeletal arrangement through the G protein-coupled estrogen receptor-1-phosphatidylinositol 3-kinase pathway is altered in fibroid cells. These results highlight the importance of incorporating mechanical stimulation into the in vitro study of fibroid pathology.
Collapse
Affiliation(s)
- Rachel Warwar
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Andreja Moset Zupan
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Carolyn Nietupski
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Maricela Manzanares
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Emily G Hurley
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stacey C Schutte
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
9
|
Maxey AP, Travis JM, McCain ML. Regulation of oxytocin-induced calcium transients and gene expression in engineered myometrial tissues by tissue architecture and matrix rigidity. Curr Res Physiol 2023; 6:100108. [PMID: 38107790 PMCID: PMC10724203 DOI: 10.1016/j.crphys.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
The uterus is susceptible to benign tumors known as fibroids, which have been associated with many pregnancy complications, including preterm labor. However, the impact of fibrotic tissue remodeling on the physiology of the myometrium, the smooth muscle layer of the uterus, is poorly understood, in large part due to a lack of model systems. In this study, we engineered healthy-like and fibrotic-like myometrium by culturing human myometrial smooth muscle cells on polyacrylamide hydrogels micropatterned with fibronectin to independently tune matrix rigidity and tissue alignment, respectively. We then evaluated calcium transients in response to oxytocin stimulation. Isotropic myometrial tissues on stiff substrates (representing fibrotic myometrium) had shorter calcium transients due to shorter decay time compared to aligned myometrial tissues on soft substrates (representing healthy myometrium). Calcium transients in aligned tissues had longer response times and longer decay times than isotropic tissues, irrespective of substrate stiffness. The amplitude of calcium transients was also higher on soft substrates compared to stiff substrates, irrespective of tissue alignment. We also performed RNA sequencing to detect differentially expressed genes between healthy- and fibrotic-like tissues, which revealed that a bitter taste receptor shown to induce smooth muscle relaxation, TAS2R31, was down-regulated in fibrotic-like tissues. Finally, we measured oxytocin-induced calcium transients in response to pre-treatment with progesterone, caffeine, thrombin, and nifedipine to demonstrate applications for our model system in drug screening. Both progesterone and caffeine caused a decrease in calcium transient duration, as expected, while thrombin and nifedipine had less impact. Collectively, our engineered model of the myometrium enables new insights into myometrial mechanobiology and can be extended to identify or screen novel drug targets.
Collapse
Affiliation(s)
- Antonina P. Maxey
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Jaya M. Travis
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Megan L. McCain
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ali M, Bariani MV, Vafaei S, Omran MM, Yang Q, Madueke-Laveaux OS, Al-Hendy A. Prevention of Uterine Fibroids: molecular mechanisms and potential clinical application. JOURNAL OF ENDOMETRIOSIS AND UTERINE DISORDERS 2023; 1:100018. [PMID: 37637856 PMCID: PMC10451784 DOI: 10.1016/j.jeud.2023.100018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Uterine fibroids (UFs; leiomyoma) are the most common benign neoplastic threat to women worldwide, exacting an immense personal burden on female health and a monetary expense to the healthcare system estimated in the hundreds of billions of dollars every year globally. With no long-term non-invasive treatment option currently available to treat UFs, deeper insights regarding tumor etiology are the key for developing newer therapies. Accordingly, in this review, we discuss new mechanistic paradigm to explain UF tumor development through an exquisite model involving developmental reprogramming of myometrial stem cells due to early life endocrine disruptors exposure, inflammation, fibrosis, DNA damage, and eventually tissue stiffness. Further, we propose to utilize shear wave elastography as a potential screening tool for the early identification of women at risk for developing UFs who can benefit from several simple preventive strategies, including the consumption of natural compounds such as vitamin D and green tea as a safe fertility friendly non-hormonal modality to delay or even arrest or reverse UF progression.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maria Victoria Bariani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
| | - Mervat M. Omran
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
| | - Obianuju Sandra Madueke-Laveaux
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA Chicago, IL 60637, USA
| |
Collapse
|
11
|
Viitala A, Gabriel M, Joronen K, Komar G, Perheentupa A, Sainio T, Huvila J, Pikander P, Taimen P, Blanco Sequeiros R. Histological findings in resected leiomyomas following MR-HIFU treatment, single-institution data from seven patients with unfavorable focal therapy. Int J Hyperthermia 2023; 40:2234666. [PMID: 37487574 DOI: 10.1080/02656736.2023.2234666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Magnetic resonance - high-intensity focused ultrasound (MR-HIFU) is a noninvasive treatment option for symptomatic uterine leiomyomas. Currently, pretreatment MRI is used to assess tissue characteristics and predict the most likely therapeutic response for individual patients. However, these predictions still entail significant uncertainties. The impact of tissue properties on therapeutic outcomes remains poorly understood and detailed knowledge of the histological effects of ultrasound ablation is lacking. Investigating these aspects could aid in optimizing patient selection, enhancing treatment effects and improving treatment outcomes. METHODS AND MATERIALS We present seven patients who underwent MR-HIFU treatment for leiomyoma followed by second-line surgical treatment. Tissue samples obtained during the surgery were stained with hematoxylin and eosin, Masson's trichrome and Herovici to evaluate general morphology, fibrosis and collagen deposition of leiomyomas. Immunohistochemical CD31, Ki-67 and MMP-2 stainings were performed to study vascularization, proliferation and matrix metalloproteinase-2 protein expression in leiomyomas, respectively. RESULTS The clinical characteristics and radiological findings of the leiomyomas prior to treatment as well as qualitative histological findings after the treatment are presented and discussed in the context of current literature. A tentative model for volume reduction is presented. CONCLUSION These findings provide insights into potential factors contributing to suboptimal therapeutic outcomes and the variability in histological changes following treatment.
Collapse
Affiliation(s)
- Antti Viitala
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Michael Gabriel
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kirsi Joronen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Gaber Komar
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Perheentupa
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Teija Sainio
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Jutta Huvila
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Pikander
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | | |
Collapse
|
12
|
Celik O, Celik N, Gungor ND, Celik S, Arslan L, Morciano A, Tinelli A. Biomechanical Forces Determine Fibroid Stem Cell Transformation and the Receptivity Status of the Endometrium: A Critical Appraisal. Int J Mol Sci 2022; 23:ijms232214201. [PMID: 36430682 PMCID: PMC9692870 DOI: 10.3390/ijms232214201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Myometrium cells are an important reproductive niche in which cyclic mechanical forces of a pico-newton range are produced continuously at millisecond and second intervals. Overproduction and/or underproduction of micro-forces, due to point or epigenetic mutation, aberrant methylation, and abnormal response to hypoxia, may lead to the transformation of fibroid stem cells into fibroid-initiating stem cells. Fibroids are tumors with a high modulus of stiffness disturbing the critical homeostasis of the myometrium and they may cause unfavorable and strong mechanical forces. Micro-mechanical forces and soluble-chemical signals play a critical role in transcriptional and translational processes' maintenance, by regulating communication between the cell nucleus and its organelles. Signals coming from the external environment can stimulate cells in the format of both soluble biochemical signals and mechanical ones. The shape of the cell and the plasma membrane have a significant character in sensing electro-chemical signals, through specialized receptors and generating responses, accordingly. In order for mechanical signals to be perceived by the cell, they must be converted into biological stimuli, through a process called mechanotransduction. Transmission of fibroid-derived mechanical signals to the endometrium and their effects on receptivity modulators are mediated through a pathway known as solid-state signaling. It is not sufficiently clear which type of receptors and mechanical signals impair endometrial receptivity. However, it is known that biomechanical signals reaching the endometrium affect epithelial sodium channels, lysophosphatidic acid receptors or Rho GTPases, leading to conformational changes in endometrial proteins. Translational changes in receptivity modulators may disrupt the selectivity and receptivity functions of the endometrium, resulting in failed implantation or early pregnancy loss. By hypermethylation of the receptivity genes, micro-forces can also negatively affect decidualization and implantation. The purpose of this narrative review is to summarize the state of the art of the biomechanical forces which can determine fibroid stem cell transformation and, thus, affect the receptivity status of the endometrium with regard to fertilization and pregnancy.
Collapse
Affiliation(s)
- Onder Celik
- Department of Obstetrics and Gynecology, Private Clinic, Usak 64000, Turkey
| | - Nilufer Celik
- Department of Biochemistry, Behcet Uz Children’s Hospital, Izmir 35210, Turkey
| | - Nur Dokuzeylul Gungor
- Department of Obstetrics and Gynecology, School of Medicine, Bahcesehir University, Istanbul 34732, Turkey
| | - Sudenaz Celik
- Medical Faculty, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| | - Liya Arslan
- Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Andrea Morciano
- Department of Obstetrics and Gynecology, “Cardinal Panico” General Hospital, 73020 Lecce, Italy
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (Centro di RIcerca Clinica SALentino), “Veris Delli Ponti Hospital”, 73020 Lecce, Italy
- Correspondence:
| |
Collapse
|
13
|
Yang Q, Ciebiera M, Bariani MV, Ali M, Elkafas H, Boyer TG, Al-Hendy A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr Rev 2022; 43:678-719. [PMID: 34741454 PMCID: PMC9277653 DOI: 10.1210/endrev/bnab039] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common tumors in women worldwide. To date, no long-term or noninvasive treatment option exists for hormone-dependent uterine fibroids, due to the limited knowledge about the molecular mechanisms underlying the initiation and development of uterine fibroids. This paper comprehensively summarizes the recent research advances on uterine fibroids, focusing on risk factors, development origin, pathogenetic mechanisms, and treatment options. Additionally, we describe the current treatment interventions for uterine fibroids. Finally, future perspectives on uterine fibroids studies are summarized. Deeper mechanistic insights into tumor etiology and the complexity of uterine fibroids can contribute to the progress of newer targeted therapies.
Collapse
Affiliation(s)
- Qiwei Yang
- Qiwei Yang, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, M167, Billings, Chicago, IL 60637, USA.
| | - Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809, Warsaw, Poland
| | | | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hoda Elkafas
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Toxicology, Egyptian Drug Authority, formerly National Organization for Drug Control and Research, Cairo 35521, Egypt
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Ayman Al-Hendy
- Correspondence: Ayman Al-Hendy, MD, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, N112, Peck Pavilion, Chicago, IL 60637. USA.
| |
Collapse
|
14
|
Hanuman S, Nune M. Design and Characterization of Maltose-Conjugated Polycaprolactone Nanofibrous Scaffolds for Uterine Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose
Uterine anomalies are prevalent in women, and the major treatment assisted to them is hysterectomy as donor availability is extremely low. To overcome this, engineering uterine myometrium smooth muscle tissue has become very important. Several studies have shown that polycaprolactone (PCL) nanofibers are very effective in engineering smooth muscles, as this type of scaffold has structural similarities to the extracellular matrices of the cells. Here, we hypothesize that by electrospinning PCL nanofibers, they form a suitable scaffold for uterine tissue engineering.
Methods
Polycaprolactone nanofibrous scaffolds were fabricated, and surface modification was performed following two step wet chemistry method. First step is aminolysis which introduces the primary amine groups on the PCL scaffolds following which maltose is conjugated on the scaffolds. This was confirmed by the ninhydrin assay for the presence of amine groups. This was followed by ELLA assay where the presence of maltose on the scaffold was quantified. Modified scaffolds were further characterized by scanning electron microscope (SEM), contact angle analysis and Fourier transform infrared spectroscopy (FTIR). MTT assay, live-dead assay and actin staining were performed on the maltose immobilization to study the improvement of the cell attachment and proliferation rates on the modified scaffolds.
Results
Human uterine fibroblast (HUF) cells displayed significant proliferation on the maltose-modified PCL scaffolds, and they also exhibited appropriate morphology indicating that these modified fibers are highly suitable for uterine cell growth.
Conclusion
Our results indicate that the fabricated maltose PCL (MPCL) scaffolds would be a potential biomaterial to treat uterine injuries and promote regeneration.
Lay Summary and Future Work
Uterine anomalies are prevalent in women, and the major treatment is hysterectomy as donor availability is extremely low. Over the past few years, considerable efforts have been directed towards uterine tissue regeneration. This study is to design a tissue engineered scaffold that could act as a human uterine myometrial patch. We propose to create uterine fibroblast-based synthetic scaffolds that act in a condition similar to the intrauterine microenvironment where the embryos are embedded in the uterine wall. For understanding of the efficiency of the myometrial patch, functional characterization will be performed to study the effects of estrogen and prostaglandins on myometrial activity of the designed patch. Results from these experiments will assist a deeper understanding of how to construct a total bioengineered uterus which can substitute the uterus transplantation procedure, which nonetheless is in its initial stages of development.
Graphical Abstract
Collapse
|
15
|
Winter A, Salamonsen LA, Evans J. Modelling fibroid pathology: development and manipulation of a myometrial smooth muscle cell macromolecular crowding model to alter extracellular matrix deposition. Mol Hum Reprod 2021; 26:498-509. [PMID: 32449756 DOI: 10.1093/molehr/gaaa036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Current treatment options for uterine fibroids are limited to hormonal manipulation or surgical intervention. We aimed to develop an in vitro model to mirror collagen deposition and extracellular matrix (ECM) formation, the principal features of uterine fibroids, to enable testing of novel therapeutics. Macromolecular crowding with Ficoll 400 and Ficoll 70 in cultures of human uterine myometrial smooth muscle cells containing ascorbic acid, provided the basis for this model. These culture conditions mimic the 'crowded' nature of the in vivo extracellular environment by incorporating neutral, space-filling macromolecules into conventional cell cultures. This method of culture facilitates appropriate ECM deposition, thus closely representing the in vivo fibrotic phenotype of uterine fibroids. Macromolecular crowding in Ficoll cultures containing ascorbic acid reduced myometrial smooth muscle cell proliferation and promoted collagen production. Under these conditions, collagen was processed for extracellular deposition as demonstrated by C-propeptide cleavage from secreted procollagen. The fibrosis marker activin was increased relative to its natural inhibitor, follistatin, in crowded culture conditions while addition of exogenous follistatin reduced collagen (Col1A1) gene expression. This in vitro model represents a promising development for the testing of therapeutic interventions for uterine fibroids. However, it does not recapitulate the full in vivo pathology which can include specific genetic and epigenetic alterations that have not been identified in the myometrial smooth muscle (hTERT-HM) cell line. Following screening of potential therapeutics using the model, the most promising compounds will require further assessment in the context of individual subjects including those with genetic changes implicated in fibroid pathogenesis.
Collapse
Affiliation(s)
- Ann Winter
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Jemma Evans
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
16
|
Carbonnel M, Pirtea P, de Ziegler D, Ayoubi JM. Uterine factors in recurrent pregnancy losses. Fertil Steril 2021; 115:538-545. [PMID: 33712099 DOI: 10.1016/j.fertnstert.2020.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 12/29/2022]
Abstract
Congenital and acquired uterine anomalies are associated with recurrent pregnancy loss (RPL). Relevant congenital Müllerian tract anomalies include unicornuate, bicornuate septate, and arcuate uterus. Recurrent pregnancy loss has also been associated with acquired uterine abnormalities that distort the uterine cavity such as, notably, intrauterine adhesions, polyps, and submucosal myomas. Initial evaluation of women with RPLs should include an assessment of the uterine anatomy. Even if proof of efficacy of surgical management of certain uterine anomalies is often lacking for managing RPLs, surgery should be encouraged in certain circumstances for improving subsequent pregnancy outcome. Uterine anomalies such as uterine septa, endometrial polyps, intrauterine adhesions, and submucosal myomas are the primary surgical indications for managing RPLs.
Collapse
Affiliation(s)
- Marie Carbonnel
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hopital Foch, Faculté de Médecine Paris Ouest, Suresnes, France
| | - Paul Pirtea
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hopital Foch, Faculté de Médecine Paris Ouest, Suresnes, France
| | - Dominique de Ziegler
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hopital Foch, Faculté de Médecine Paris Ouest, Suresnes, France.
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hopital Foch, Faculté de Médecine Paris Ouest, Suresnes, France
| |
Collapse
|
17
|
Cross CI, Driggers PH, McCarthy BE, Diab M, Brennan J, Segars JH. A-kinase anchoring protein 13 interacts with the vitamin D receptor to alter vitamin D-dependent gene activation in uterine leiomyoma cells. F&S SCIENCE 2021; 2:303-314. [PMID: 35560280 DOI: 10.1016/j.xfss.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine if A-kinase anchoring protein 13 (AKAP13) interacts with the vitamin D receptor (VDR) to alter vitamin D-dependent signaling in fibroid cells. Uterine leiomyomas (fibroids) are characterized by a fibrotic extracellular matrix and are associated with vitamin D deficiency. Treatment with vitamin D (1,25-dihydroxyvitamin D3) reduces fibroid growth and extracellular matrix gene expression. A-kinase anchoring protein 13 is overexpressed in fibroids and interacts with nuclear hormone receptors, but it is not known whether AKAP13 may interact with the VDR to affect vitamin D signaling in fibroids. DESIGN Laboratory studies. SETTING Translational science laboratory. INTERVENTION(S) Human immortalized fibroid or myometrial cells were treated with 1,25-hydroxyvitamin D3 (1,25(OH)2D3) and transfected using expression constructs for AKAP13 or AKAP13 mutants, RhoQL, C3 transferase, or small interfering ribonucleic acids (RNAs). MAIN OUTCOME MEASURE(S) Messenger ribonucleic acid (mRNA) levels of AKAP13, fibromodulin, and versican as measured by quantitative real-time polymerase chain reaction. Glutathione S-transferase-binding assays. Vitamin D-dependent gene activation as measured by luciferase assays. RESULT(S) 1,25(OH)2D3 resulted in a significant reduction in mRNA levels encoding AKAP13, versican, and fibromodulin. Small interfering RNA silencing of AKAP13 decreased both fibromodulin and versican mRNA levels. Glutathione S-transferase-binding assays revealed that AKAP13 bound to the VDR through its nuclear receptor interacting region. Cotransfection of AKAP13 and VDR significantly reduced vitamin D-dependent gene activation. RhoA pathway inhibition partially relieved repression of vitamin D-dependent gene activation by AKAP13. CONCLUSION(S) These data suggest that AKAP13 inhibited the vitamin D receptor activation by a mechanism that required, at least in part, RhoA activation.
Collapse
Affiliation(s)
- Chantel I Cross
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Paul H Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Breanne E McCarthy
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maya Diab
- BS, American University of Beirut Medical Center, Beirut, Lebanon
| | - Joshua Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences and Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Islam MS, Afrin S, Singh B, Jayes FL, Brennan JT, Borahay MA, Leppert PC, Segars JH. Extracellular matrix and Hippo signaling as therapeutic targets of antifibrotic compounds for uterine fibroids. Clin Transl Med 2021; 11:e475. [PMID: 34323413 PMCID: PMC8255059 DOI: 10.1002/ctm2.475] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Uterine fibroids are highly prevalent, collagen-rich, mechanically stiff, fibrotic tumors for which new therapeutic options are needed. Increased extracellular matrix (ECM) stiffness activates mechanical signaling and Hippo/YAP promoting fibroid growth, but no prior studies have tested either as a therapeutic target. We tested the hypothesis that injection of a purified form of collagenase Clostridium histolyticum (CCH) that selectively digests type I and type III collagens would alter ECM stiffness, Hippo signaling, and selectively reduce fibroid cell growth. We also used two FDA-approved drugs, verteporfin and nintedanib, to elucidate the role of Hippo/YAP signaling in uterine fibroid and myometrial cells. METHODS The clinical trial was registered (NCT02889848). Stiffness of samples was measured by rheometry. Protein expression in surgical samples was analyzed via immunofluorescence. Protein and gene expression in uterine fibroid or myometrial cell lines were measured by real time PCR and western blot, and immunofluorescence. RESULTS Injection of CCH at high doses (0.1-0.2 mg/cm3 ) into fibroids resulted in a 46% reduction in stiffness in injected fibroids compared to controls after 60 days. Levels of the cell proliferation marker proliferative cell nuclear antigen (PCNA) were decreased in fibroids 60 days after injection at high doses of CCH. Key Hippo signaling factors, specifically the transcriptionally inactive phosphorylated YAP (p-YAP), was increased at high CCH doses, supporting the role of YAP in fibroid growth. Furthermore, inhibition of YAP via verteporfin (YAP inhibitor) decreased cell proliferation, gene and protein expression of key factors promoting fibrosis and mechanotransduction in fibroid cells. Additionally, the anti-fibrotic drug, nintedanib, inhibited YAP and showed anti-fibrotic effects. CONCLUSIONS This is the first report that in vivo injection of collagenase into uterine fibroids led to a reduction in Hippo/YAP signaling and crucial genes and pathways involved in fibroid growth. These results indicate that targeting ECM stiffness and Hippo signaling might be an effective strategy for uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Friederike L. Jayes
- Department of Obstetrics and GynecologyDuke UniversityDurhamNorth CarolinaUSA
| | - Joshua T. Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| | - Phyllis C. Leppert
- Department of Obstetrics and GynecologyDuke UniversityDurhamNorth CarolinaUSA
| | - James H. Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health ResearchJohns Hopkins MedicineBaltimoreMarylandUSA
| |
Collapse
|
19
|
Navarro A, Bariani MV, Yang Q, Al-Hendy A. Understanding the Impact of Uterine Fibroids on Human Endometrium Function. Front Cell Dev Biol 2021; 9:633180. [PMID: 34113609 PMCID: PMC8186666 DOI: 10.3389/fcell.2021.633180] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Uterine fibroids (leiomyomas) are the most common benign gynecological tumors in women of reproductive age worldwide. They cause heavy menstrual bleeding, usually leading to severe anemia, pelvic pain/pressure, infertility, and other debilitating morbidities. Fibroids are believed to be monoclonal tumors arising from the myometrium, and recent studies have demonstrated that fibroids actively influence the endometrium globally. Studies suggest a direct relationship between the number of fibroids removed and fertility problems. In this review, our objective was to provide a complete overview of the origin of uterine fibroids and the molecular pathways and processes implicated in their development and growth, which can directly affect the function of a healthy endometrium. One of the most common characteristics of fibroids is the excessive production of extracellular matrix (ECM) components, which contributes to the stiffness and expansion of fibroids. ECM may serve as a reservoir of profibrotic growth factors such as the transforming growth factor β (TGF-β) and a modulator of their availability and actions. Fibroids also elicit mechanotransduction changes that result in decreased uterine wall contractility and increased myometrium rigidity, which affect normal biological uterine functions such as menstrual bleeding, receptivity, and implantation. Changes in the microRNA (miRNA) expression in fibroids and myometrial cells appear to modulate the TGF-β pathways and the expression of regulators of ECM production. Taken together, these findings demonstrate an interaction among the ECM components, TGF-β family signaling, miRNAs, and the endometrial vascular system. Targeting these components will be fundamental to developing novel pharmacotherapies that not only treat uterine fibroids but also restore normal endometrial function.
Collapse
Affiliation(s)
| | | | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Singh B, Sims H, Trueheart I, Simpson K, Wang KC, Patzkowsky K, Wegman T, Soma JM, Dixon R, Jayes F, Voegltine K, Yenokyan G, Su SC, Leppert P, Segars JH. A Phase I Clinical Trial to Assess Safety and Tolerability of Injectable Collagenase in Women with Symptomatic Uterine Fibroids. Reprod Sci 2021; 28:2699-2709. [PMID: 33914296 PMCID: PMC8346429 DOI: 10.1007/s43032-021-00573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
Uterine fibroids feature excessive deposition of types I and III collagen. Previous ex vivo studies showed an FDA-approved collagenase (EN3835)-digested types I and III collagen fibers in fibroid tissues; however, collagenase had not been evaluated in vivo for effects on uterine fibroids. The objective was to assess the safety and tolerability of collagenase injection directly into uterine fibroids. This was a prospective, open label, dose escalation study. The study participants were fifteen women aged 35-50 years with symptomatic uterine fibroids planning to undergo hysterectomy. Three subjects received saline and methylene blue, three subjects received a fixed dose of EN3835, and 9 subjects received stepped, increasing dosages of EN3835, all by transvaginal, ultrasound-guided injections. Primary outcome measures were safety and tolerability of the injection and change in collagen content between treated and control tissues. There were no significant adverse events following injection of EN3835 into uterine fibroids. Masson's trichrome stains revealed a 39% reduction in collagen content in treated samples compared to controls (p <0.05). Second harmonic generation (SHG) analysis showed treated samples to have a 21% reduction in density of collagen compared to controls. Picrosirius-stained collagenase-treated fibroids showed collagen fibers to be shorter and less dense compared to controls. Subjects reported a decrease in fibroid-related pain on the McGill Pain Questionnaire after study drug injection in Group 2 at both 4-8 days and 60-90 days post-injection. The findings indicated that injection of collagenase was safe and well tolerated. These results support further clinical investigation of collagenase as a minimally invasive treatment of uterine fibroids. NCT0289848.
Collapse
Affiliation(s)
- Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Holly Sims
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Irene Trueheart
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Khara Simpson
- Department of Gynecology and Obstetrics, Minimally Invasive Gynecologic Surgeons, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen C Wang
- Department of Gynecology and Obstetrics, Minimally Invasive Gynecologic Surgeons, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristin Patzkowsky
- Department of Gynecology and Obstetrics, Minimally Invasive Gynecologic Surgeons, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Wegman
- BioSpecifics Technologies Corporation, Lynbrook, NY, USA
| | | | - Rosina Dixon
- BioSpecifics Technologies Corporation, Lynbrook, NY, USA
| | - Friederike Jayes
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Kristin Voegltine
- Biostatistics, Epidemiology and Data Management Core, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gayane Yenokyan
- Johns Hopkins School of Public Health, Biostatistics Center, Baltimore, MD, USA
| | - Szu-Chi Su
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Phyllis Leppert
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Cordeiro Mitchell CN, Islam MS, Afrin S, Brennan J, Psoter KJ, Segars JH. Mechanical stiffness augments ligand-dependent progesterone receptor B activation via MEK 1/2 and Rho/ROCK-dependent signaling pathways in uterine fibroid cells. Fertil Steril 2021; 116:255-265. [PMID: 33676751 DOI: 10.1016/j.fertnstert.2020.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To test whether mechanical substrate stiffness would influence progesterone receptor B (PRB) signaling in fibroid cells. Uterine fibroids feature an excessive extracellular matrix, increased stiffness, and altered mechanical signaling. Fibroid growth is stimulated by progestins and opposed by anti-progestins, but a functional interaction between progesterone action and mechanical signaling has not been evaluated. DESIGN Laboratory studies. SETTING Translational science laboratory. PATIENT(S)/ANIMAL(S) Human fibroid cell lines and patient-matched fibroid and myometrial cell lines. INTERVENTION(S) Progesterone receptor B-dependent reporter assays and messenger RNA quantitation in cells cultured on stiff polystyrene plates (3GPa) or soft silicone plates (930KPa). Pharmacologic inhibitors of extracellular signal-related protein kinase (ERK) kinase 1/2 (MEK 1/2; PD98059), p38 mitogen-activated protein kinase (SB202190), receptor tyrosine kinases (RTKs; nintedanib), RhoA (A13), and Rho-associated coiled-coil kinase (ROCK; Y27632). MAIN OUTCOME MEASURE(S) Progesterone-responsive reporter activation. RESULT(S) Fibroid cells exhibited higher PRB-dependent reporter activity with progesterone (P4) in cells cultured on stiff vs. soft plates. Mechanically induced PRB activation with P4 was decreased 62% by PD98059, 78% by nintedanib, 38% by A13, and 50% by Y27632. Overexpression of the Rho-guanine nucleotide exchange factor (Rho-GEF), AKAP13, significantly increased PRB-dependent reporter activity. Collagen 1 messenger RNA levels were higher in fibroid cells grown on stiff vs. soft plates with P4. CONCLUSION(S) Cells cultured on mechanically stiff substrates had enhanced PRB activation via a mechanism that required MEK 1/2 and AKAP13/RhoA/ROCK signaling pathways. These studies provide a framework to explore the mechanisms by which mechanical stiffness affects progesterone receptor activation.
Collapse
Affiliation(s)
- Christina N Cordeiro Mitchell
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology & Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Kevin J Psoter
- Department of Pediatrics, Division of General Pediatrics and Adolescent Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology & Infertility, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, Baltimore, Maryland.
| |
Collapse
|
22
|
Maxey AP, McCain ML. Tools, techniques, and future opportunities for characterizing the mechanobiology of uterine myometrium. Exp Biol Med (Maywood) 2021; 246:1025-1035. [PMID: 33554648 DOI: 10.1177/1535370221989259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The myometrium is the smooth muscle layer of the uterus that generates the contractions that drive processes such as menstruation and childbirth. Aberrant contractions of the myometrium can result in preterm birth, insufficient progression of labor, or other difficulties that can lead to maternal or fetal complications or even death. To investigate the underlying mechanisms of these conditions, the most common model systems have conventionally been animal models and human tissue strips, which have limitations mostly related to relevance and scalability, respectively. Myometrial smooth muscle cells have also been isolated from patient biopsies and cultured in vitro as a more controlled experimental system. However, in vitro approaches have focused primarily on measuring the effects of biochemical stimuli and neglected biomechanical stimuli, despite the extensive evidence indicating that remodeling of tissue rigidity or excessive strain is associated with uterine disorders. In this review, we first describe the existing approaches for modeling human myometrium with animal models and human tissue strips and compare their advantages and disadvantages. Next, we introduce existing in vitro techniques and assays for assessing contractility and summarize their applications in elucidating the role of biochemical or biomechanical stimuli on human myometrium. Finally, we conclude by proposing the translation of "organ on chip" approaches to myometrial smooth muscle cells as new paradigms for establishing their fundamental mechanobiology and to serve as next-generation platforms for drug development.
Collapse
Affiliation(s)
- Antonina P Maxey
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Leppert PC, Al-Hendy A, Baird DD, Bulun S, Catherino W, Dixon D, Ducharme M, Harmon QE, Jayes FL, Paul E, Perucho AM, Segars J, Simón C, Stewart EA, Teixeira J, Tinelli A, Tschumperlin D, Zota AR. Summary of the Proceedings of the Basic Science of Uterine Fibroids Meeting: New Developments February 28, 2020. F&S SCIENCE 2021; 2:88-100. [PMID: 34124698 PMCID: PMC8192074 DOI: 10.1016/j.xfss.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Scientists from multiple basic disciplines and an international group of physician-scientists from the field of obstetrics and gynecology presented recent studies and discussed new and evolving theories of uterine fibroid etiology, growth and development at The Basic Science of the Uterine Fibroids meeting, sponsored by the Campion Fund and the National Institute of Environmental Health Sciences. The purpose was to share up-to date knowledge and to stimulate new concepts regarding the basic molecular biology and pathophysiology of uterine fibroids, and to promote future collaborations. The meeting was held at the National Institute of Environmental Health Sciences in North Carolina on February 28, 2020. Speakers reviewed recent advances in cellular and molecular processes that contribute to fibroid growth and new opportunities for treatment. At the conclusion of the conference, attendees identified important new directions for future research.
Collapse
Affiliation(s)
- Phyllis C. Leppert
- Campion Fund of the Phyllis and Mark Leppert Foundation for Fertility Research, Salt Lake City, Utah
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Illinois
| | - Donna D. Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Serdar Bulun
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, Il
| | - William Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Darlene Dixon
- National Toxicology Program, National Institutes of Environmental Health Sciences, National Institutes of Health. Research Triangle Park, NC
| | - Merrick Ducharme
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Quaker E. Harmon
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Friederike L. Jayes
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC
| | - Emmanuel Paul
- Grand Rapids Research Center, Michigan State University, Grand Rapids, MI
| | | | - James Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD
| | - Carlos Simón
- IgenomixFoundation, INCLIVA Health Research Institute, Valencia, Spain
- Department of Obstetrics and Gynecology, Valencia University, Valencia
- Harvard University, Boston MA
| | - Elizabeth A. Stewart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic
| | - Jose Teixeira
- Grand Rapids Research Center, Michigan State University, Grand Rapids, MI
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology, Vitto Fazzi Hospital, Lecce, Italy
| | - Daniel Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Ami R. Zota
- Department of Environmental and Occupational Health, George Washington University, Milken School of Public Health
| |
Collapse
|
24
|
Tinelli A, Kosmas IP, Mynbaev OA, Malvasi A, Sparic R, Vergara D. The Biological Impact of Ulipristal Acetate on Cellular Networks Regulating Uterine Leiomyoma Growth. Curr Pharm Des 2020; 26:310-317. [PMID: 31987017 DOI: 10.2174/1381612826666200121141533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Uterine Fibroids (UFs), or leiomyomas, represent the most frequent pelvic tumor in reproductive-aged women. Although of benign origin, UFs decrease fertility and cause significant reproductive dysfunctions. Compared to normal myometrium, UFs are characterized by a clinical and molecular heterogeneity as demonstrated by the presence of multiple genetic alterations and altered signaling pathways. Recently, selective progesteronereceptor modulators (SPRM), as ulipristal acetate (UPA), have demonstrated their clinical benefits by reducing tumor growth and extracellular matrix deposition. For these reasons, UPA is used in the clinical practice as an intermittent treatment for women symptomatic for UFs or, sometimes, before a myomectomy. However, drug effects on signaling pathways frequently upregulated in UFs remain largely unknown. In fact, the mechanisms of action of the UPA on UFs and on the surrounding areas are not yet understood. To learn more about UPA molecular mechanisms, UF samples were treated ex vivo with UPA and profiled for drug effects on selected markers. During this preliminary ex vivo UPA administration, significant changes were observed in the expression levels of proteins related to cell cycle regulation, cytoskeleton remodeling, and drug resistance. The UPA administration reduced cofilin, Erk and Src phosphorylation, p27 and ezrin protein levels, but not Akt phosphorylation and cyclin D1 and β-catenin levels. This preliminary ex vivo biological analysis provided new insights into the mechanism of action of UPA in the treatment of UFs, which could better explain the biological functioning of the drug on UFs.
Collapse
Affiliation(s)
- Andrea Tinelli
- Department of Obstetrics and Gynecology, Division of Experimental Endoscopic Surgery, Imaging, Technology and Minimally Invasive Therapy, Vito Fazzi Hospital, P.zza Muratore, Lecce, Italy
| | - Ioannis P Kosmas
- Ioannina State General Hospital G. Hatzikosta, Department of Obstetrics and Gynecology, University of Ioannina, Greece
| | - Ospan A Mynbaev
- Laboratory of Human Physiology, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| | - Antonio Malvasi
- Department of Obstetrics & Gynecology, Santa Maria Hospital, GVM Care & Research, Bari, Italy
| | - Radmila Sparic
- Clinic of Gynecology and Obstetrics, Clinical Center of Serbia, Višegradska 26, 11000 Belgrade, Serbia
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
25
|
Afrin S, Islam MS, Patzkowsky K, Malik M, Catherino WH, Segars JH, Borahay MA. Simvastatin ameliorates altered mechanotransduction in uterine leiomyoma cells. Am J Obstet Gynecol 2020; 223:733.e1-733.e14. [PMID: 32417359 DOI: 10.1016/j.ajog.2020.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/18/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Uterine leiomyomas, the most common tumors of the female reproductive system, are characterized by excessive deposition of disordered stiff extracellular matrix and fundamental alteration in the mechanical signaling pathways. Specifically, these alterations affect the normal dynamic state of responsiveness to mechanical cues in the extracellular environment. These mechanical cues are converted through integrins, cell membrane receptors, to biochemical signals including cytoskeletal signaling pathways to maintain mechanical homeostasis. Leiomyoma cells overexpress β1 integrin and other downstream mechanical signaling proteins. We previously reported that simvastatin, an antihyperlipidemic drug, has antileiomyoma effects through cellular, animal model, and epidemiologic studies. OBJECTIVE This study aimed to examine the hypothesis that simvastatin might influence altered mechanotransduction in leiomyoma cells. STUDY DESIGN This is a laboratory-based experimental study. Primary leiomyoma cells were isolated from 5 patients who underwent hysterectomy at the Department of Gynecology and Obstetrics of the Johns Hopkins University Hospital. Primary and immortalized human uterine leiomyoma cells were treated with simvastatin at increasing concentrations (0.001, 0.01, 0.1, and 1 μM, or control) for 48 hours. Protein and mRNA levels of β1 integrin and extracellular matrix components involved in mechanical signaling were quantified by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. In addition, we examined the effect of simvastatin on the activity of Ras homolog family member A using pull-down assay and gel contraction. RESULTS We found that simvastatin significantly reduced the protein expression of β1 integrin by 44% and type I collagen by 60% compared with untreated leiomyoma cells. Simvastatin-treated cells reduced phosphorylation of focal adhesion kinase down to 26%-60% of control, whereas it increased total focal adhesion kinase protein expression. Using a Ras homolog family member A pull-down activation assay, we observed reduced levels of active Ras homolog family member A in simvastatin-treated cells by 45%-85% compared with control. Consistent with impaired Ras homolog family member A activation, simvastatin treatment reduced tumor gel contraction where gel area was 122%-153% larger than control. Furthermore, simvastatin treatment led to reduced levels of mechanical signaling proteins involved in β1 integrin downstream signaling, such as A-kinase anchor protein 13, Rho-associated protein kinase 1, myosin light-chain kinase, and cyclin D1. CONCLUSION The results of this study suggest a possible therapeutic role of simvastatin in restoring the altered state of mechanotransduction signaling in leiomyoma. Collectively, these findings are aligned with previous epidemiologic studies and other reports and support the need for clinical trials.
Collapse
|
26
|
Critchley HOD, Babayev E, Bulun SE, Clark S, Garcia-Grau I, Gregersen PK, Kilcoyne A, Kim JYJ, Lavender M, Marsh EE, Matteson KA, Maybin JA, Metz CN, Moreno I, Silk K, Sommer M, Simon C, Tariyal R, Taylor HS, Wagner GP, Griffith LG. Menstruation: science and society. Am J Obstet Gynecol 2020; 223:624-664. [PMID: 32707266 PMCID: PMC7661839 DOI: 10.1016/j.ajog.2020.06.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation-a fast, scarless healing process in healthy individuals-will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, "Menstruation: Science and Society" with an aim to "identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field." Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration-and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids-to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent "menstrual equity" and "period poverty" movements spreading across high-income countries.
Collapse
Affiliation(s)
- Hilary O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom.
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Iolanda Garcia-Grau
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - Peter K Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | | | | | | | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI
| | - Kristen A Matteson
- Division of Research, Department of Obstetrics and Gynecology, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jacqueline A Maybin
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Inmaculada Moreno
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain
| | - Kami Silk
- Department of Communication, University of Delaware, Newark, DE
| | - Marni Sommer
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Carlos Simon
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain; Beth Israel Deaconess Medical Center, Harvard University, Boston, MA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, Systems Biology Institute, Yale University, New Haven, CT; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
27
|
Malik M, Britten J, DeAngelis A, Catherino WH. Cross-talk between Janus kinase-signal transducer and activator of transcription pathway and transforming growth factor beta pathways and increased collagen1A1 production in uterine leiomyoma cells. F&S SCIENCE 2020; 1:206-220. [PMID: 35559929 DOI: 10.1016/j.xfss.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/31/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To characterize the potential interaction between interleukin-6 (IL6), Janus kinase (JAK)-signal transducer and activator of transcription (STAT)-3 (JAK/STAT3) pathway, and Transforming growth factor beta (TGFβ)-3 , and to determine whether such cross-talk was a contributing factor in the dysregulation of type I collagen production in leiomyomas. DESIGN Laboratory study. SETTING University research laboratory. PATIENTS None. INTERVENTIONS Exposure of leiomyoma and myometrial cell lines to IL6 and STAT3 activators/inhibitors. Western immunoblot analysis and immunohistochemistry. MAIN OUTCOME MEASURES Expression of STAT3, pSTAT3, SOCS3, COL1A1, and TGFb3. RESULTS We observed that IL6 increased pSTAT3 as well as collagen1A1 in uterine leiomyoma cells. Direct activation of the JAK/STAT3 pathway increased collagen1A1 production in leiomyoma cells, whereas inhibition of the pathway significantly decreased collagen1A1 production. We further observed that modulation of the JAK/STAT3 pathway also increased the expression of TGFβ3 protein. Leiomyoma cells exposed to TGFβ3 demonstrated a significant decrease in pSTAT3 protein. Myometrial cells demonstrated a less sensitive response to STAT3 modulation and collagen production. CONCLUSION Cross-talk between the TGFβ pathway and JAK/STAT3 pathway contributes to the fibrotic nature of uterine leiomyomas.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Anthony DeAngelis
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
28
|
Purdy MP, Ducharme M, Haak AJ, Ravix J, Tan Q, Sicard D, Prakash YS, Tschumperlin DJ, Stewart EA. YAP/TAZ are Activated by Mechanical and Hormonal Stimuli in Myometrium and Exhibit Increased Baseline Activation in Uterine Fibroids. Reprod Sci 2020; 27:1074-1085. [PMID: 32056132 DOI: 10.1007/s43032-019-00106-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023]
Abstract
Uterine fibroids (UFs) are benign myometrial neoplasms. The mechanical environment activates signaling through the Hippo pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) in other fibrotic disorders. Here, we assess the differences in YAP/TAZ responsiveness to signals in UF compared with myometrium (Myo). Matched samples of UF and Myo were collected. Atomic force microscopy (AFM) was used to determine in situ stiffness. Cells were plated sparsely on hydrogels or at confluence. Ten nanomolars of estradiol (E2) and 100 nM progesterone (P4) were used. Immunostaining for YAP/TAZ and extracellular matrix (ECM) proteins was performed. Cells were incubated with control or YAP1 (YAP)/WWTR1 (TAZ) small interfering RNA (siRNA). Real time qPCR was completed for connective tissue growth factor (CTGF). Cells were treated with verteporfin (a YAP inhibitor) or Y27632 (a ROCK inhibitor), and ECM gene expression was analyzed. Paired t test and Wilcoxon sign-rank test were used. AFM-measured tissue stiffness and YAP/TAZ nuclear localization in situ and in confluent cells were higher in UF compared with Myo (p < 0.05). Decreasing substrate stiffness reduced YAP/TAZ nuclear localization for both Myo and UF (p = 0.05). Stimulating cells with E2 or P4 increased YAP/TAZ nuclear localization, but only in Myo (p = 0.01). UFs had increased FN, COLI, and COLIII deposition. Following siRNA targeting, CTGF was found to be statistically decreased. Verteporfin treatment reduced cell survival and reduced FN deposition. Treatment with Y27632 demonstrated better cell tolerance and a reduction in ECM deposition. The mechanosensitive pathway may be linked to YAP/TAZ function and involved in transducing fibroid growth.
Collapse
Affiliation(s)
- MacKenzie P Purdy
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA.
| | - Merrick Ducharme
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Jovanka Ravix
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| | - Elizabeth A Stewart
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| |
Collapse
|
29
|
Andan C, Aksin Ş. Culdotomy in laparoscopic myomectomy and its limits. Eur J Obstet Gynecol Reprod Biol 2020; 247:49-54. [PMID: 32062318 DOI: 10.1016/j.ejogrb.2020.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine the results and limits of culdotomy method for removal of myoma from the abdomen while preserving its integrity in laparoscopic myomectomy. To determine if this is a good option for tissue extraction. DESIGN Retrospective analysis of data collected prospectively. SETTING A gynecology and obstetrics training and research hospital. PATIENTS A total of 102 patients who underwent laparoscopic myomectomy with culdotomy for tissue extraction. RESULTS A total of 102 patients underwent laparoscopic myomectomy between September 2017 and April 2019, and tissues were taken from the abdomen by culdotomy. The mean myoma diameter was 7.7 ± 2.4 cm (4-15 cm) and the mean weight was 161 ± 120 g (20-602 g). The mean duration of surgery was 95 ± 41 min (36-214 min). All myomas were extracted with preservation of their integrity, except in 2 patients. In 87 patients, the myoma was less than 10 cm, and all myomas in this group could be easily extracted from the vagina. The myoma was between 11 and 13 cm in 13 patients. Of these, 8 were extracted without difficulty, 5 could barely be extracted, and superficial vaginal lacerations occurred in 4 of these patients. Due to the inability to extract myomas intact in 2 patients (14 and 15 cm), vaginal mechanical morcellation was performed. In terms of vaginal births, 34 patients (33.3 %) had never had vaginal births, and 68 patients (66.7 %) had a history of vaginal birth. The largest myoma extracted from a woman who had not given birth was 12 cm (345 g). The largest myoma extracted from a woman who had given birth was 13 cm (490 g). None had major complications. No signs of infection were detected on the 7th and 30th postoperative days, and no operative dyspareunia was detected at 6-month follow-up. CONCLUSION In the present study, it was seen that myomas up to 13 cm (490 g) in multiparous and 12 cm (350 g) in nulliparous could be removed from the culdotomy while maintaining their integrity. Culdotomy is a safe, inexpensive and effective method for myoma extraction.
Collapse
Affiliation(s)
- Cengiz Andan
- TC Ministry of Health, Health Sciences University, Gazi Yasargil Diyarbakır Training and Research Hospital, Obstetrics and Gynecology, Diyarbakir, Turkey.
| | - Şerif Aksin
- TC Ministry of Health, Health Sciences University, Gazi Yasargil Diyarbakır Training and Research Hospital, Obstetrics and Gynecology, Diyarbakir, Turkey
| |
Collapse
|
30
|
NAV3, a Tumor Suppressor Gene, Is Decreased in Uterine Leiomyoma Tissue and Cells. Reprod Sci 2020; 27:925-934. [PMID: 32046415 DOI: 10.1007/s43032-019-00096-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022]
Abstract
NAV 3 is a tumor suppressor of unknown function in leiomyomas. The objective of this study is to assess NAV3 expression and its potential role in human uterine leiomyomas. NAV3 protein expression was examined in patient leiomyoma and patient-matched myometrial tissue samples by Western blot and immunohistochemistry. NAV3 mRNA and protein expression was assessed in leuprolide acetate- and cetrorelix-treated cell line leiomyoma samples. RNAseq analysis of placebo-treated leiomyoma compared with myometrium demonstrated the presence of transcripts encoding for several neuronal proteins. For NAV3, RNA sequence analysis demonstrated decreased expression in leiomyoma as compared with myometrium (0.86 ± 0.03 fold). Presence of NAV3 mRNA was also decreased in leiomyoma surgical samples (0.43 fold ± 0.05, p = 0.026) compared with patient-matched myometrium. Confirmatory qRT-PCR results on immortalized leiomyoma and myometrial cell lines similarly demonstrated a decrease in expression of NAV3 in leiomyomas (0.28 ± 0.02, p = 0.00075). Immunohistochemical analysis demonstrated a significant decrease in NAV 3 protein in leiomyomas (H-score 154.7 ± 6.2) as compared with myometrium (H-score; 312.5 ± 14.7, p < 0.0001). Leuprolide acetate-treated leiomyoma cells demonstrated an increase in NAV 3 mRNA expression (1.53 ± 0.13, p < 0.0001). Similarly, Western blot analysis on leuprolide-treated leiomyoma cells showed a non-significant increase in NAV 3 protein expression (1.26 ± 0.09, p = 0.063). NAV 3, a tumor suppressor in numerous cancers, is decreased in leiomyoma cells and tissue compared with myometrium, and increased by GnRH analog treatment, suggesting that NAV3 may mediate steroid hormone-independent leiomyoma regulation by GnRH analogs.
Collapse
|
31
|
Anjum S, Sahar T, Nigam A, Wajid S. Transcriptome Analysis of mRNA in Uterine Leiomyoma Using Next-generation RNA Sequencing. Anticancer Agents Med Chem 2019; 19:1703-1718. [DOI: 10.2174/1871520619666190409102855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Background:
Uterine leiomyoma is a benign smooth muscle tumor of monoclonal nature in the
female reproductive tract and is one of the major health problems. More than 70% of the female population
suffers from uterine leiomyoma in their lifetime and in the advanced condition, it is associated with pregnancy
complications and infertility.
Objective:
Characterization and relative expression of mRNA transcripts through transcriptome profiling in
uterine leiomyoma and adjacent normal myometrium.
Methods:
Uterine leiomyoma tissue of an Indian female, age 32 years, with a family history of leiomyoma
(evident from mother’s hysterectomy for the same pathology) was used. Patient showed 9 multiple large lesions
appearing heterogeneously, deforming the uterine contour and causing distortion and splaying of the endometrial
cavity showing disease aggressiveness was taken for Next-generation sequencing (NGS) to develop
whole transcriptome profile along with the adjacent normal myometrium as control. The validation of the
relative expression of the selective transcripts was done using Real-Time PCR.
Results:
The transcriptome profile indicated 128 genes up-regulated and 98 down-regulated, with the Log2 fold
change ≥ 2 and P ≤ 0.05, highlighting the molecular network closely associated with focal adhesion, hyaluronan
and MAPK-signaling pathways. The mean relative fold change obtained from quantitative PCR as well as the
P-values of 10 selected transcripts evaluated from student’s t-test were as follows: BCAN: 7.93 fold (p-value
=0.0013); AAK1: 2.2 fold (p-value =0.0036); PCBP3: 3.4 fold (p-value =0.0197); MOV10L1: 3.4 fold (p-value
=0.0062); TWISTNB: 1.8 fold (p-value =0.006); TMSB15A: 2.1 fold (p-value =0.0023); SMAD1: 0.8 fold
(p-value =0.0112); ANXA1: 0.6 fold (p-value =0.0012); FOS: 0.6 fold (p-value =0.0191); SLFN11: 0.56 fold
(p-value =0.0001).
Conclusion:
The present study provides a roadmap, towards the analysis of genes and their roles in corresponding
pathways throwing light on their possible involvement in the pathology of the disease.
Collapse
Affiliation(s)
- Shadab Anjum
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Tahreem Sahar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Aruna Nigam
- Department of Obstetrics and Gynecology, HIMSR and HAH Centenary Hospital, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
32
|
Munro MG. Uterine polyps, adenomyosis, leiomyomas, and endometrial receptivity. Fertil Steril 2019; 111:629-640. [PMID: 30929720 DOI: 10.1016/j.fertnstert.2019.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Endometrial polyps, adenomyosis, and leiomyomas are commonly encountered abnormalities frequently found in both fertile women and those with infertility. The clinician is frequently challenged to determine which of these entities, when found, is likely to impair fertility, and which are "innocent bystanders" unrelated to the problem at hand. Although removing an endometrial polyp may be seen as a relatively benign and safe intervention, myomectomy, and in particular adenomyomectomy, can be substantive surgical procedures, associated with their own potential for disrupting fertility. One of the mechanisms thought to be involved when these entities are contributing to infertility is an adverse impact on endometrial receptivity. Indeed polyps, adenomyosis, and leiomyomas have all been associated with an increased likelihood of abnormal endometrial molecular expressions thought to impair implantation and early embryo development. This review is designed to examine the relationship of these common entities to endometrial receptivity and to identify evidence gaps that should be considered when strategizing research initiatives. It is apparent that we have the tools necessary to fill these gaps, but it will be necessary to approach the issue in a strategic and coordinated fashion. It is likely that we will have to recognize the limitations of imaging alone and look to the evidence-based addition of molecular analysis to provide the individualized phenotyping of disease necessary for patient-specific treatment decisions.
Collapse
Affiliation(s)
- Malcolm G Munro
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Obstetrics and Gynecology, Kaiser-Permanente, Los Angeles Medical Center, Los Angeles, California.
| |
Collapse
|
33
|
Braný D, Dvorská D, Grendár M, Ňachajová M, Szépe P, Lasabová Z, Žúbor P, Višňovský J, Halášová E. Different methylation levels in the KLF4, ATF3 and DLEC1 genes in the myometrium and in corpus uteri mesenchymal tumours as assessed by MS-HRM. Pathol Res Pract 2019; 215:152465. [PMID: 31176573 DOI: 10.1016/j.prp.2019.152465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal tumours of the corpus uteri comprise common benign lesions - leiomyomas and very rare malignant variants - sarcomas. It can be difficult to distinguish between the particular types of mesenchymal tumours pre-surgically. Primarily, leiomyomas and the very aggressive leiomyosarcomas can be easily misdiagnosed when using only imaging devices. Therefore, a reliable non-invasive marker for these tumour types would provide greater certitude for patients that the lesion remains benign. Our collection comprises 76 native leiomyomas, an equal number of healthy myometrium samples and 49 FFPE samples of various types of sarcomas. The methylation level was assessed by MS-HRM method and we observed differences in the methylation level between healthy, benign and (semi)malignant tissues in the KLF4 and DLEC1 genes. The mean methylation levels of leiomyomas compared to myometrium and leiomyosarcomas were 70.7% vs. 6.5% vs. 39.6 % (KLF4) and 66.1% vs. 14.08% vs. 37.5% (DLEC1). The ATF3 gene was differentially methylated in leiomyomatous and myometrial tissues with 98.1% compared to 76.6%. The AUC values of the predictive logistic regression model for discrimination between leiomyomas and leiomyosarcomas based on methylation levels were 0.7829 (KLF4) and 0.7719 (DLEC1). Finally, our results suggest that there should be distinct models for the methylation events in benign leiomyomas and sarcomas, and that the KLF4 and DLEC1 genes can be considered potential methylation biomarkers for uterine leiomyomas.
Collapse
Affiliation(s)
- Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Marcela Ňachajová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Peter Szépe
- Department of Pathological Anatomy, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Pavol Žúbor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Jozef Višňovský
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava
| | - Erika Halášová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
34
|
Jayes FL, Liu B, Feng L, Aviles-Espinoza N, Leikin S, Leppert PC. Evidence of biomechanical and collagen heterogeneity in uterine fibroids. PLoS One 2019; 14:e0215646. [PMID: 31034494 PMCID: PMC6488189 DOI: 10.1371/journal.pone.0215646] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/07/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Uterine fibroids (leiomyomas) are common benign tumors of the myometrium but their molecular pathobiology remains elusive. These stiff and often large tumors contain abundant extracellular matrix (ECM), including large amounts of collagen, and can lead to significant morbidities. After observing structural multiformities of uterine fibroids, we aimed to explore this heterogeneity by focusing on collagen and tissue stiffness. Methods For 19 fibroids, ranging in size from 3 to 11 centimeters, from eight women we documented gross appearance and evaluated collagen content by Masson trichrome staining. Collagen types were determined in additional samples by serial extraction and gel electrophoresis. Biomechanical stiffness was evaluated by rheometry. Results Fibroid slices displayed different gross morphology and some fibroids had characteristics of two or more patterns: classical whorled (n = 8); nodular (n = 9); interweaving trabecular (n = 9); other (n = 1). All examined fibroids contained at least 37% collagen. Tested samples included type I, III, and V collagen of different proportions. Fibroid stiffness was not correlated with the overall collagen content (correlation coefficient 0.22). Neither stiffness nor collagen content was correlated with fibroid size. Stiffness among fibroids ranged from 3028 to 14180 Pa (CV 36.7%; p<0.001, one-way ANOVA). Stiffness within individual fibroids was also not uniform and variability ranged from CV 1.6 to 42.9%. Conclusions The observed heterogeneity in structure, collagen content, and stiffness highlights that fibroid regions differ in architectural status. These differences might be associated with variations in local pressure, biomechanical signaling, and altered growth. We conclude the design of all fibroid studies should account for such heterogeneity because samples from different regions have different characteristics. Our understanding of fibroid pathophysiology will greatly increase through the investigation of the complexity of the chemical and biochemical signaling in fibroid development, the correlation of collagen content and mechanical properties in uterine fibroids, and the mechanical forces involved in fibroid development as affected by the various components of the ECM.
Collapse
Affiliation(s)
- Friederike L. Jayes
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| | - Betty Liu
- Department of Orthopedics, Duke University School of Medicine and Duke University School of Engineering, Durham, North Carolina, United States of America
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nydea Aviles-Espinoza
- Bone and Matrix Biology in Development and Disease, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Sergey Leikin
- Bone and Matrix Biology in Development and Disease, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Phyllis C. Leppert
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
35
|
Malik M, Britten J, Borahay M, Segars J, Catherino WH. Simvastatin, at clinically relevant concentrations, affects human uterine leiomyoma growth and extracellular matrix production. Fertil Steril 2019; 110:1398-1407.e1. [PMID: 30503138 DOI: 10.1016/j.fertnstert.2018.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To observe the antifibroid effects of therapeutic concentrations of simvastatin, which interferes with cholesterol biosynthesis, a known precursor of five major classes of steroid hormones, including progesterone and estrogen, which play a major role in the development and growth of uterine leiomyomas. DESIGN Two-dimensional and three-dimensional cell culture study of immortalized human leiomyoma and patient-matched myometrium cells treated with simvastatin. SETTING University laboratory. PATIENT(S) None. INTERVENTIONS(S) None. MAIN OUTCOME MEASURE(S) Cell proliferation, alteration in apoptotic signaling pathways, and extracellular matrix (ECM) protein production. RESULT(S) Simvastatin demonstrated a concentration-dependent antiproliferative effect on both the leiomyoma cells and the patient-matched myometrium cells, but a higher inhibitory effect at lower concentrations of simvastatin was observed in leiomyoma cells. Simvastatin also regulated leiomyoma cell apoptosis through a concentration-dependent increase in activity of caspase-3. Simvastatin significantly inhibited expression of major ECM proteins collagen I, collagen III, fibronectin, versican, and brevican in leiomyoma cells at concentrations as low as 10-9 mol/L within 48 hours of exposure. CONCLUSION(S) Simvastatin induces apoptosis in uterine leiomyoma cells at low concentrations, as evidenced by increased active caspase levels. Furthermore, inhibited production of the ECM proteins may lead to reduction in tumor size. Simvastatin may represent a novel therapeutic treatment strategy for uterine leiomyomas.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mostafa Borahay
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, Baltimore, Maryland
| | - James Segars
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, Baltimore, Maryland
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
36
|
Ng SSM, Jorge S, Malik M, Britten J, Su SC, Armstrong CR, Brennan JT, Chang S, Baig KM, Driggers PH, Segars JH. A-Kinase Anchoring Protein 13 (AKAP13) Augments Progesterone Signaling in Uterine Fibroid Cells. J Clin Endocrinol Metab 2019; 104:970-980. [PMID: 30239831 PMCID: PMC6365770 DOI: 10.1210/jc.2018-01216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 01/11/2023]
Abstract
CONTEXT Uterine leiomyomata (fibroids) are prevalent sex hormone‒dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood. OBJECTIVE Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to altered mechanotransduction in fibroids. Because AKAP13 augmented nuclear receptor signaling in other tissues, we sought to determine whether AKAP13 might influence PR signaling in fibroids. METHODS AND RESULTS Fibroid samples from patients treated with ulipristal acetate or placebo were examined for AKAP13 expression by using immunohistochemistry. In immortalized uterine fibroid cell lines and COS-7 cells, we observed that AKAP13 increased ligand-dependent PR activation of luciferase reporters and endogenous progesterone-responsive genes for PR-B but not PR-A. Inhibition of ERK reduced activation of PR-dependent signaling by AKAP13, but inhibition of p38 MAPK had no effect. In addition, glutathione S-transferase‒binding assays revealed that AKAP13 was bound to PR-B through its carboxyl terminus. CONCLUSION These data suggest an intersection of mechanical signaling and PR signaling involving AKAP13 through ERK. Further elucidation of the integration of mechanical and hormonal signaling pathways in fibroids may provide insight into fibroid development and suggest new therapeutic strategies for treatment.
Collapse
Affiliation(s)
- Sinnie Sin Man Ng
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Soledad Jorge
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Szu-Chi Su
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Charles R Armstrong
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Joshua T Brennan
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sydney Chang
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of OBGYN and Reproductive Science, Mount Sinai School of Medicine, New York, New York
| | - Kimberlyn Maravet Baig
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Section on Reproductive Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul H Driggers
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
- Correspondence and Reprint Requests: James H. Segars, MD, Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Ross Building 624, 720 Rutland Avenue, Baltimore, Maryland 21205. E-mail address:
| |
Collapse
|
37
|
New and Emerging Applications of Magnetic Resonance Elastography of Other Abdominal Organs. Top Magn Reson Imaging 2019; 27:335-352. [PMID: 30289829 DOI: 10.1097/rmr.0000000000000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing clinical experience and ongoing research in the field of magnetic resonance elastography (MRE) is leading to exploration of its applications in other abdominal organs. In this review, the current research progress of MRE in prostate, uterus, pancreas, spleen, and kidney will be discussed. The article will describe patient preparation, modified technical approach including development of passive drivers, modification of sequences, and inversion. The potential clinical application of MRE in the evaluation of several disease processes affecting these organs will be discussed. In an era of increasing adoption of multiparametric magnetic resonance imaging approaches for solving complex abdominal problems, abdominal MRE as a biomarker may be seamlessly incorporated into a standard magnetic resonance imaging examination to provide a rapid, reliable, and comprehensive imaging evaluation at a single patient appointment in the future.
Collapse
|
38
|
Jamaluddin MFB, Nahar P, Tanwar PS. Proteomic Characterization of the Extracellular Matrix of Human Uterine Fibroids. Endocrinology 2018; 159:2656-2669. [PMID: 29788081 DOI: 10.1210/en.2018-00151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 01/04/2023]
Abstract
Uterine leiomyomas (fibroids) are the most common benign tumors that are associated with increased production of extracellular matrix (ECM). Excessive ECM deposition plays a major role in the enlargement and stiffness of these tumors and contributes to clinical symptoms, such as abnormal bleeding and abdominal pain. However, no study so far has explored the global composition of the ECM of fibroids and normal myometrium. In this study, we performed a systematic ECM enrichment procedure and comparative proteomic analyses to profile the ECM composition of genetically annotated different-sized fibroids (small, medium, and large) and adjacent normal myometrium (ANM). Our matrisome analysis identified a combined total of 108, 126, 126, and 130 unique ECM and ECM-associated proteins with a confidence corresponding to a false discovery rate <1% in ANM and in small, medium, and large fibroids, respectively. The majority of fibroid ECM proteins belong to the core matrisome that includes glycoproteins, collagens, and proteoglycans. Considering that the small-sized fibroids represent the initial stages of leiomyogenesis, we highlighted some of the most abundant and important upregulated ECM proteins in small fibroids (i.e., POSTN, TNC, COL3A1, COL24A1, and ASPN). Furthermore, we revealed 30 unique ECM proteins that exist only in fibroids but that are not present in ANM regardless of MED12 mutation. We propose that some of the proteins identified represent potential novel ECM drug targets that may change the paradigm of fibroid treatment.
Collapse
Affiliation(s)
- M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Pravin Nahar
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Maternity and Gynecology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
39
|
Jondal DE, Wang J, Chen J, Gorny KR, Felmlee J, Hesly G, Laughlin-Tommaso S, Stewart EA, Ehman R, Woodrum DA. Uterine fibroids: correlations between MRI appearance and stiffness via magnetic resonance elastography. Abdom Radiol (NY) 2018; 43:1456-1463. [PMID: 28952003 DOI: 10.1007/s00261-017-1314-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE AND OBJECTIVES Magnetic resonance elastography has proven to be a valuable tool in the diagnosis of liver fibrosis, breast and cervical cancer, but its application in uterine fibroids requires further characterization. The aim of the present study was to examine the relationship between uterine fibroid stiffness by MRE and MR imaging characteristics. MATERIALS AND METHODS An IRB-approved, HIPAA compliant review was performed of prospectively collected pelvic MRI and 2D-MRE data in patients with symptomatic uterine fibroids (N = 102). T1 and T2 weighted pelvic MRI with gadolinium enhancement were performed. In a small patient subset, fibroid stiffness was assessed by both 2D and 3D MRE. Fibroid stiffness by modality or imaging characteristics was analyzed using one-way analysis of variance followed by Student t test. RESULTS Four fibroid groups were identified based on T2 appearance: Isointense (N = 7), bright (N = 6), dark with minimal heterogeneity (N = 69), and dark with substantial heterogeneity (N = 20). Mean fibroid stiffness was 4.81 ± 2.12 kPa. Comparison of fibroid stiffness by T2 signal intensity showed that T2 bright fibroids were significantly less stiff than fibroids appearing T2 dark with minimal heterogeneity (mean stiffness difference = 2.38 kPa; p < 0.05) and T2 dark fibroids with substantial heterogeneity were significantly less stiff than T2 dark fibroids with minimal heterogeneity (mean difference = 1.25 kPa; p < 0.05). There was no significant association between fibroid stiffness and T1 signal characteristics or gadolinium enhancement. There was no significant difference in stiffness values obtained by either 2D vs. 3D MRE. CONCLUSIONS These data suggest differences in fibroid stiffness are associated with different T2 imaging characteristics with less stiff fibroids being T2 bright and more stiff fibroids being T2 dark. Further studies are needed to determine if fibroid stiffness by MRE may serve as an imaging biomarker to help predict MR-guided treatment response.
Collapse
Affiliation(s)
- Danielle E Jondal
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jin Wang
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Jun Chen
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Krzysztof R Gorny
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Joel Felmlee
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Gina Hesly
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shannon Laughlin-Tommaso
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elizabeth A Stewart
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Richard Ehman
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David A Woodrum
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
40
|
Islam MS, Akhtar MM, Segars JH, Castellucci M, Ciarmela P. Molecular targets of dietary phytochemicals for possible prevention and therapy of uterine fibroids: Focus on fibrosis. Crit Rev Food Sci Nutr 2018; 57:3583-3600. [PMID: 28609115 DOI: 10.1080/10408398.2016.1245649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Uterine fibroids (myomas or leiomyomas) are common benign tumors of reproductive aged women. Fibroids are clinically apparent in 20-50% of women, and cause abnormal uterine bleeding, abdominal pain and discomfort, pregnancy complications and infertility. Unfortunately, limited numbers of medical treatment are available but no effective preventive strategies exist. Moreover, the benefits of medical treatments are tempered by lack of efficacy or serious adverse side effects. Fibrosis has recently been recognized as a key pathological event in leiomyoma development and growth. It is defined by the excessive deposition of extracellular matrix (ECM). ECM plays important role in making bulk structure of leiomyoma, and ECM-rich rigid structure is believed to be a cause of abnormal bleeding and pelvic pain/pressure. Dietary phytochemicals are known to regulate fibrotic process in different biological systems, and being considered as potential tool to manage human health. At present, very few dietary phytochemicals have been studied in uterine leiomyoma, and they are mostly known for their antiproliferative effects. Therefore, in this review, our aim was to introduce some dietary phytochemicals that could target fibrotic processes in leiomyoma. Thus, this review could serve as useful resource to develop antifibrotic drugs for possible prevention and treatment of uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,b Biotechnology and Microbiology Laboratory, Department of Botany , University of Rajshahi , Rajshahi , Bangladesh
| | - Most Mauluda Akhtar
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,c Department of Clinical and Molecular Sciences , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - James H Segars
- d Howard W. and Georgeanna Seegar Jones Division of Reproductive Sciences, Department of Gynecology and Obstetrics , Johns Hopkins School of Medicine , Baltimore , Maryland , USA
| | - Mario Castellucci
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy
| | - Pasquapina Ciarmela
- a Department of Experimental and Clinical Medicine , Faculty of Medicine, Università Politecnica delle Marche , Ancona , Italy.,e Department of Information Engineering , Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
41
|
Fertility impairment associated with uterine fibroids - a review of literature. MENOPAUSE REVIEW 2017; 16:137-140. [PMID: 29483857 PMCID: PMC5824684 DOI: 10.5114/pm.2017.72759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
Uterine fibroids (also known as leiomyomas or myomas) are the most common benign tumors affecting reproductive organs in women. They are monoclonal tumors of the uterine smooth muscle, which spring from myometrium. It is estimated that they occur in 50-60% of the female population and rise to 70% by the age of 50. While mostly asymptomatic, myomas can be connected with several conditions, including abnormal bleeding with subsequent anemia, pelvic masses, pelvic pain, bulk symptoms, unfavorable impact on fertility and obstetric complications. Factors, which predispose the emergence of fibroids are: hormones, Afro-American ethnicity, age, obesity, adverse pregnancy outcome history, early menarche, genetic factors, alcohol, caffeine or eating too much red meat. On the other hand, there are factors, which can decrease this risk: pregnancy, early menopause and tobacco smoking. There are several mechanisms of fertility impairment in females with fibroids: alternations in uterus function (flawed blood supply, increased contractility), changes in the normal uterus anatomy, local hormonal changes induced by fibroids. In this review the connection between fibroids and infertility is analyzed.
Collapse
|
42
|
Odejinmi F, Oliver R, Mallick R. Is ulipristal acetate the new drug of choice for the medical management of uterine fibroids? Res ipsa loquitur? ACTA ACUST UNITED AC 2017; 13:98-105. [PMID: 29105584 PMCID: PMC7789028 DOI: 10.1177/1745505717740218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ulipristal acetate (Esmya©) has been hailed the new wonder drug with regard to the medical management of uterine fibroids, and many postulate that it will remove the need for surgical treatment in the future. While the results from the PEARL studies are certainly promising and its amenorrhoeic rates and reduction in fibroid size are unquestionable, there is still a paucity of data with regard to its long-term effects, the effects on its usage prior to surgery and its variable efficacy in different ethnic populations. To facilitate our knowledge further, independent studies with clear outcome measures evaluating the long-term effects of the drug in a wider, more representative, ethnic minority population as well as assessing its true cost-effectiveness compared to surgery are needed. The aim of this article is to review the historical aspects with regard to the management of uterine fibroids to gain an understanding of where we are now and to evaluate the wider use of ulipristal acetate, both its benefits and limitations and postulate where to go in the future in order to allow our women to make safe and informed choices regarding their treatment options.
Collapse
Affiliation(s)
- Funlayo Odejinmi
- Department of Gynaecology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| | - Reeba Oliver
- Department of Gynaecology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| | - Rebecca Mallick
- Department of Gynaecology, Whipps Cross University Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
43
|
Zeng L, Yang K, Liu H, Zhang G. A network pharmacology approach to investigate the pharmacological effects of Guizhi Fuling Wan on uterine fibroids. Exp Ther Med 2017; 14:4697-4710. [PMID: 29201170 PMCID: PMC5704263 DOI: 10.3892/etm.2017.5170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
To investigate the pharmacological mechanism of Guizhi Fuling Wan (GFW) in the treatment of uterine fibroids, a network pharmacology approach was used. Information on GFW compounds was collected from traditional Chinese medicine (TCM) databases, and input into PharmMapper to identify the compound targets. Genes associated with uterine fibroids genes were then obtained from the GeneCards and Online Mendelian Inheritance in Man databases. The interaction data of the targets and other human proteins was also collected from the STRING and IntAct databases. The target data were input into the Database for Annotation, Visualization and Integrated Discovery for gene ontology (GO) and pathway enrichment analyses. Networks of the above information were constructed and analyzed using Cytoscape. The following networks were compiled: A compound-compound target network of GFW; a herb-compound target-uterine fibroids target network of GWF; and a compound target-uterine fibroids target-other human proteins protein-protein interaction network, which were subjected to GO and pathway enrichment analyses. According to this approach, a number of novel signaling pathways and biological processes underlying the effects of GFW on uterine fibroids were identified, including the negative regulation of smooth muscle cell proliferation, apoptosis, and the Ras, wingless-type, epidermal growth factor and insulin-like growth factor-1 signaling pathways. This network pharmacology approach may aid the systematical study of herbal formulae and make TCM drug discovery more predictable.
Collapse
Affiliation(s)
- Liuting Zeng
- The Basic Medical Laboratory of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Kailin Yang
- The Basic Medical Laboratory of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Huiping Liu
- The Basic Medical Laboratory of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Guomin Zhang
- The Basic Medical Laboratory of Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
44
|
The Rising Phoenix-Progesterone as the Main Target of the Medical Therapy for Leiomyoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4705164. [PMID: 29312996 PMCID: PMC5615958 DOI: 10.1155/2017/4705164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/06/2017] [Indexed: 11/17/2022]
Abstract
Leiomyomas, also known as uterine fibroids, are a common benign tumor in women of reproductive age. These lesions disrupt the function of the uterus causing menorrhagia and pelvic pressure as well as reproductive disorders. These women pose a true challenge for clinicians in the attempt of choosing the suitable treatment for each patient. Patient's age, interest in fertility preservation, and leiomyoma location and size are all factors to be taken into account when deciding upon the preferable therapeutic option. For the past few decades, surgical treatment was the only reliable long-term treatment available. A variety of surgical approaches have been developed over the years but these developments have come at the expense of other treatment options. The classical medical treatment includes gonadotropin-releasing hormone (GnRH) agonists and antagonists. These agents are well known for their limited clinical effect as well as their broad spectrum of side effects, inspiring a need for new pharmacological treatments. In recent years, promising results have been reported with the use of selective progesterone receptor modulators (SPRM). Long-term clinical trials have shown a reduction in bleeding and shrinkage of leiomyoma mass. These results instill hope for women suffering from symptomatic leiomyomas seeking an effective, long-term medical option for their condition.
Collapse
|
45
|
Overhydroxylation of Lysine of Collagen Increases Uterine Fibroids Proliferation: Roles of Lysyl Hydroxylases, Lysyl Oxidases, and Matrix Metalloproteinases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5316845. [PMID: 29082249 PMCID: PMC5610812 DOI: 10.1155/2017/5316845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 11/23/2022]
Abstract
The role of the extracellular matrix (ECM) in uterine fibroids (UF) has recently been appreciated. Overhydroxylation of lysine residues and the subsequent formation of hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) cross-links underlie the ECM stiffness and profoundly affect tumor progression. The aim of the current study was to investigate the relationship between ECM of UF, collagen and collagen cross-linking enzymes [lysyl hydroxylases (LH) and lysyl oxidases (LOX)], and the development and progression of UF. Our results indicated that hydroxyl lysine (Hyl) and HP cross-links are significantly higher in UF compared to the normal myometrial tissues accompanied by increased expression of LH (LH2b) and LOX. Also, increased resistance to matrix metalloproteinases (MMP) proteolytic degradation activity was observed. Furthermore, the extent of collagen cross-links was positively correlated with the expression of myofibroblast marker (α-SMA), growth-promoting markers (PCNA; pERK1/2; FAKpY397; Ki-67; and Cyclin D1), and the size of UF. In conclusion, our study defines the role of overhydroxylation of collagen and collagen cross-linking enzymes in modulating UF cell proliferation, differentiation, and resistance to MMP. These effects can establish microenvironment conducive for UF progression and thus represent potential target treatment options of UF.
Collapse
|
46
|
Ikhena DE, Bulun SE. Literature Review on the Role of Uterine Fibroids in Endometrial Function. Reprod Sci 2017; 25:635-643. [PMID: 28826369 DOI: 10.1177/1933719117725827] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine fibroids are benign uterine smooth muscle tumors that are present in up to 8 out of 10 women by the age of 50. Many of these women experience symptoms such as heavy and irregular menstrual bleeding, early pregnancy loss, and infertility. Traditionally believed to be inert masses, fibroids are now known to influence endometrial function at the molecular level. We present a comprehensive review of published studies on the effect of uterine fibroids on endometrial function. Our goal was to explore the current knowledge about how uterine fibroids interact with the endometrium and how these interactions influence clinical symptoms. Our review shows that submucosal fibroids produce a blunted decidualization response with decreased release of cytokines critical for implantation such as leukocyte inhibitory factor and cell adhesion molecules. Furthermore, fibroids alter the expression of genes relevant for implantation, such as bone morphogenetic protein receptor type II, glycodelin, among others. With regard to heavy menstrual bleeding, fibroids significantly alter the production of vasoconstrictors in the endometrium, leading to increased menstrual blood loss. Fibroids also increase the production of angiogenic factors such as basic fibroblast growth factor and reduce the production of coagulation factors resulting in heavy menses. Understanding the crosstalk between uterine fibroids and the endometrium will provide key insights into implantation and menstrual biology and drive the development of new and innovative therapeutic options for the management of symptoms in women with uterine fibroids.
Collapse
Affiliation(s)
- Deborah E Ikhena
- 1 Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- 1 Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
47
|
Ura B, Scrimin F, Franchin C, Arrigoni G, Licastro D, Monasta L, Ricci G. Identification of proteins with different abundance associated with cell migration and proliferation in leiomyoma interstitial fluid by proteomics. Oncol Lett 2017; 13:3912-3920. [PMID: 28521489 DOI: 10.3892/ol.2017.5943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 11/06/2022] Open
Abstract
Uterine leiomyoma is the most common female reproductive tract benign tumor. Little is known about protein composition and changes in the leiomyoma interstitial fluid (IF). The present study focused on changes in protein abundance in the IF of leiomyoma. Leiomyoma IFs and adjacent myometrial IFs were obtained and analyzed by two-dimensional electrophoresis (2-DE) coupled with mass spectrometry and western blotting for 2-DE data validation. A total of 25 unique proteins were observed to change significantly (P<0.05). Of these proteins with different abundance, 22 had not been previously identified in leiomyoma IF. In silico analysis predicted that three of these proteins were secreted via classical mechanisms, while 22 were secreted via non-classical mechanisms. Ingenuity Pathway Analysis identified 17 proteins associated with cellular migration and proliferation. Among these, phosphoglycerate mutase 1 had not been previously associated with leiomyoma. The abundance of seven proteins was further validated by western blotting. A comparative proteomic approach identified a number of proteins associated with cellular migration and proliferation, with changes in abundance in IF likely to be involved in tumor development. Further studies will be required to investigate the role of these proteins in leiomyoma IF and their possible association with tumor development and growth.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy
| | - Cinzia Franchin
- Department of Biomedical Sciences, University of Padova, I-35122 Padova, Italy.,Proteomics Center, University of Padua and Padua Hospital, I-35129 Padova, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, I-35122 Padova, Italy.,Proteomics Center, University of Padua and Padua Hospital, I-35129 Padova, Italy
| | - Danilo Licastro
- Consortium for Molecular Biomedicine Genomics, Area Science Park, Basovizza, I-34149 Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', I-34137 Trieste, Italy.,Department of Medical, Surgery and Health Sciences, University of Trieste, I-34128 Trieste, Italy
| |
Collapse
|
48
|
Loss of stiffness in collagen-rich uterine fibroids after digestion with purified collagenase Clostridium histolyticum. Am J Obstet Gynecol 2016; 215:596.e1-596.e8. [PMID: 27177523 DOI: 10.1016/j.ajog.2016.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Uterine fibroids are a significant health problem. These common benign tumors occur in 70-80% of women before age 50 years and often cause bleeding and pain and can interfere considerably with daily life. Current treatment options are limited. Fibroids contain substantial amounts of altered and disordered collagens, which contribute to their bulk. Targeting these collagens directly presents a novel treatment approach. OBJECTIVES We sought to test the hypothesis that a highly purified collagenase Clostridium histolyticum will digest interstitial collagen in uterine fibroids and reduce their stiffness and thereby evaluate the feasibility that this collagenase C histolyticum can be developed into an alternative treatment for fibroids. A secondary objective was to describe the collagen content of the fibroid tissue. STUDY DESIGN Fibroid tissue cubes (1 cm3; n = 154) were cut from 17 uterine fibroids that were obtained from 7 consented subjects undergoing scheduled hysterectomies. Tissue cubes were injected with diluent, placebo, or highly purified collagenase C histolyticum (0.05, 0.1, or 0.2 mg/cube) and incubated at 37°C for 24, 48, 72, or 96 hours. At each time point, 6 noninjected control cubes were also evaluated. Tissue cubes were photographed before and after incubation. Myometrial samples (n = 21) were also evaluated. Stiffness was quantified through rheometry by measuring complex shear moduli of the tissues. Percent fibrosis was determined by computerized analysis of Masson-trichrome-stained slides. Digestion of collagen fibrils was confirmed by transmission electron microscopy. RESULTS Fibrosis in untreated fibroids ranged from 37% to 77%, reflecting the collagen-rich nature of these tumors. After treatment with collagenase for 96 hours, fibrosis ranged from 5.3% to 2.4%. Transmission electron microscopy confirmed complete digestion of collagen fibrils. Tissue stiffness was reduced with all 3 doses of collagenase treatment and at all 4 time points. Longer incubation times with collagenase caused greater reduction in stiffness, and treated cubes lost their cuboidal shape and had gelatinous/liquefied centers. At 96 hours the stiffness in tissues treated with the lowest dose was reduced to 966 ± 106 Pascal compared with the diluent-treated control at the same time (5323 ± 903 Pascal; P < .0001; by analysis of variance with Tukey-Kramer). CONCLUSION Uterine fibroids have a high content of collagen that can be effectively digested by highly purified collagenase C histolyticum, resulting in reduced tissue stiffness. Loss of stiffness may decrease bulk symptoms in vivo and possibly lead to shrinkage of fibroids through changed mechanotransduction, leading ultimately to reduced fibroid symptoms of pain and bleeding. Clinical trials are necessary to evaluate the safety and efficacy of collagenase C histolyticum including the rate of regrowth of fibroids. The data of this study provide a strong rationale for using this purified collagenase in clinical trials as a local treatment for women with fibroids.
Collapse
|
49
|
Abstract
Reproductive biologists are well-versed in many types of biochemical signaling, and indeed, there are almost innumerable examples in reproduction, including steroid and peptide hormone signaling, receptor-ligand and secondary messenger-mediated signaling, signaling regulated by membrane channels, and many others. Among reproductive scientists, a perhaps lesser-known but comparably important mode of signaling is mechanotransduction: the concept that cells can sense and respond to externally applied or internally generated mechanical forces. Given the cell shape changes and tissue morphogenesis events that are components of many phenomena in reproductive function, it should be no surprise that mechanotransduction has major impacts in reproductive health and pathophysiology. The conference on "Mechanotransduction in the Reproductive Tract" was a valuable launch pad to bring this hot issue in development, cell biology, biophysics, and tissue regeneration to the realm of reproductive biology. The goal of the meeting was to stimulate interest and increased mechanotransduction research in the reproductive field by presenting a broad spectrum of responses impacted by this process. The meeting highlighted the importance of convening expert investigators, students, fellows, and young investigators from a number of research areas resulting in cross-fertilization of ideas and suggested new avenues for study. The conference included talks on tissue engineering, stem cells, and several areas of reproductive biology, from uterus and cervix to the gametes. Specific reproductive health-relevant areas, including uterine fibroids, gestation and parturition, and breast tissue morphogenesis, received particular attention.
Collapse
Affiliation(s)
- Janice P Evans
- a Department of Biochemistry and Molecular Biology , Bloomberg School of Public Health, Johns Hopkins University , Baltimore , MD , USA
| | - Phyllis C Leppert
- b Department of Obstetrics and Gynecology , Duke University School of Medicine , Durham , NC , USA.,c The Campion Fund , Durham , NC , USA
| |
Collapse
|
50
|
Ura B, Scrimin F, Arrigoni G, Athanasakis E, Aloisio M, Monasta L, Ricci G. Abnormal expression of leiomyoma cytoskeletal proteins involved in cell migration. Oncol Rep 2016; 35:3094-100. [PMID: 26986808 DOI: 10.3892/or.2016.4688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/05/2015] [Indexed: 11/05/2022] Open
Abstract
Uterine leiomyomas are monoclonal tumors. Several factors are involved in the neoplastic transformation of the myometrium. In our study we focused on dysregulated cytoskeletal proteins in the leiomyoma as compared to the myometrium. Paired tissue samples of ten leiomyomas and adjacent myometria were obtained and analyzed by two‑dimensional gel electrophoresis (2-DE). Mass spectrometry was used for protein identification, and western blotting for 2-DE data validation. The values of ten cytoskeletal proteins were found to be significantly different: eight proteins were upregulated in the leiomyoma and two proteins were downregulated. Three of the upregulated proteins (myosin regulatory light polypeptide 9, four and a half LIM domains protein 1 and LIM and SH3 domain protein 1) are involved in cell migration, while downregulated protein transgelin is involved in replicative senescence. Myosin regulatory light polypeptide 9 (MYL9) was further validated by western blotting because it is considered to be a cell migration marker in several cancers and could play a key role in leiomyoma development. Our data demonstrate significant alterations in the expression of cytoskeletal proteins involved in leiomyoma growth. A better understanding of the involvement of cytoskeletal proteins in leiomyoma pathogenesis may contribute to the identification of new therapeutic targets and the development of new pharmacological approaches.
Collapse
Affiliation(s)
- Blendi Ura
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Federica Scrimin
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Michelangelo Aloisio
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Lorenzo Monasta
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS 'Burlo Garofolo', Trieste, Italy
| |
Collapse
|