1
|
Cruz Tleugabulova M, Melo SP, Wong A, Arlantico A, Liu M, Webster JD, Lau J, Lechner A, Corak B, Hodgins JJ, Garlapati VS, De Simone M, Korin B, Avraham S, Lund J, Jeet S, Reiss A, Bender H, Austin CD, Darmanis S, Modrusan Z, Brightbill H, Durinck S, Diamond MS, Schneider C, Shaw AS, Nitschké M. Induction of a distinct macrophage population and protection from lung injury and fibrosis by Notch2 blockade. Nat Commun 2024; 15:9575. [PMID: 39505846 PMCID: PMC11541919 DOI: 10.1038/s41467-024-53700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Macrophages are pleiotropic and diverse cells that populate all tissues of the body. Besides tissue-specific resident macrophages such as alveolar macrophages, Kupffer cells, and microglia, multiple organs harbor at least two subtypes of other resident macrophages at steady state. During certain circumstances, like tissue insult, additional subtypes of macrophages are recruited to the tissue from the monocyte pool. Previously, a recruited macrophage population marked by expression of Spp1, Cd9, Gpnmb, Fabp5, and Trem2, has been described in several models of organ injury and cancer, and has been linked to fibrosis in mice and humans. Here, we show that Notch2 blockade, given systemically or locally, leads to an increase in this putative pro-fibrotic macrophage in the lung and that this macrophage state can only be adopted by monocytically derived cells and not resident alveolar macrophages. Using a bleomycin and COVID-19 model of lung injury and fibrosis, we find that the expansion of these macrophages before lung injury does not promote fibrosis but rather appears to ameliorate it. This suggests that these damage-associated macrophages are not, by themselves, drivers of fibrosis in the lung.
Collapse
Affiliation(s)
- Mayra Cruz Tleugabulova
- Department of Cancer Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Sandra P Melo
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Aaron Wong
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Joshua D Webster
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Julia Lau
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Antonie Lechner
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Basak Corak
- Department of Physiology, University of Zürich, Zürich, Switzerland
| | - Jonathan J Hodgins
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Venkata S Garlapati
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Marco De Simone
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Ben Korin
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Shimrit Avraham
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Alexander Reiss
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hannah Bender
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Cary D Austin
- Department of Research Pathology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Spyros Darmanis
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Steffen Durinck
- Department of Bioinformatics, Genentech Research and Early Development, South San Francisco, CA, 94080, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Andrey S Shaw
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| | - Maximilian Nitschké
- Department of Research Biology, Genentech Research and Early Development, South San Francisco, CA, 94080, USA.
| |
Collapse
|
2
|
Inia JA, Attema J, de Ruiter C, Menke AL, Caspers MPM, Verschuren L, Wilson M, Arlantico A, Brightbill HD, Jukema JW, van den Hoek AM, Princen HMG, Chen MZ, Morrison MC. Therapeutic effects of FGF21 mimetic bFKB1 on MASH and atherosclerosis in Ldlr-/-.Leiden mice. FASEB J 2024; 38:e70087. [PMID: 39463193 PMCID: PMC11580715 DOI: 10.1096/fj.202401397r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).Leiden mice received a high-fat diet for 20 weeks, followed by treatment with an isotype control antibody or bFKB1 for 12 weeks. Effects on plasma risk markers and (histo)pathology of liver, adipose tissue, and heart were evaluated alongside hepatic transcriptomics analysis. bFKB1 lowered body weight (-21%) and adipose tissue mass (-22%) without reducing food intake. The treatment also improved plasma insulin (-80%), cholesterol (-48%), triglycerides (-76%), alanine transaminase (ALT: -79%), and liver weight (-43%). Hepatic steatosis and inflammation were strongly reduced (macrovesicular steatosis -34%; microvesicular steatosis -100%; inflammation -74%) and while the total amount of fibrosis was not affected, bFKB1 did decrease new collagen formation (-49%). Correspondingly, hepatic transcriptomics and pathway analysis revealed the mechanistic background underlying these histological improvements, demonstrating broad inactivation of inflammatory and profibrotic transcriptional programs by bFKB1. In epididymal white adipose tissue, bFKB1 reduced adipocyte size (-16%) and inflammation (-52%) and induced browning, signified by increased uncoupling protein-1 (UCP1) protein expression (8.5-fold increase). In the vasculature, bFKB1 had anti-atherogenic effects, lowering total atherosclerotic lesion area (-38%). bFKB1 has strong beneficial metabolic effects associated with a reduction in hepatic steatosis, inflammation, and atherosclerosis. Analysis of new collagen formation and profibrotic transcriptional programs indicate that bFKB1 treatment may have antifibrotic potential in a longer treatment duration as well.
Collapse
Affiliation(s)
- José A. Inia
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
- Department of CardiologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
| | - Joline Attema
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Aswin L. Menke
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | | | - Lars Verschuren
- Department of Microbiology and Systems BiologyTNOLeidenThe Netherlands
| | | | | | | | - J. Wouter Jukema
- Department of CardiologyLeiden University Medical Centre (LUMC)LeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLUMCLeidenThe Netherlands
- Netherlands Heart InstituteUtrechtThe Netherlands
| | - Anita M. van den Hoek
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Hans M. G. Princen
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| | - Mark Z. Chen
- Translational ImmunologyGenentech Inc.South San FranciscoCaliforniaUSA
| | - Martine C. Morrison
- Department of Metabolic Health ResearchThe Netherlands Organisation for Applied Scientific Research (TNO)LeidenThe Netherlands
| |
Collapse
|
3
|
Nakasuka F, Hirayama A, Makinoshima H, Yano S, Soga T, Tabata S. The role of cytidine 5'-triphosphate synthetase 1 in metabolic rewiring during epithelial-to-mesenchymal transition in non-small-cell lung cancer. FEBS Open Bio 2024; 14:1570-1583. [PMID: 39030877 PMCID: PMC11492420 DOI: 10.1002/2211-5463.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) contributes to the poor prognosis of patients with cancer by promoting distant metastasis and anti-cancer drug resistance. Several distinct metabolic alterations have been identified as key EMT phenotypes. In the present study, we further characterize the role of transforming growth factor-β (TGF-β)-induced EMT in non-small-cell lung cancer. Our study revealed that TGF-β plays a role in EMT functions by upregulation of cytidine 5'-triphosphate synthetase 1 (CTPS), a vital enzyme for CTP biosynthesis in the pyrimidine metabolic pathway. Both knockdown and enzymatic inhibition of CTPS reduced TGF-β-induced changes in EMT marker expression, chemoresistance and migration in vitro. Moreover, CTPS knockdown counteracted the TGF-β-mediated downregulation of UDP-glucuronate, glutarate, creatine, taurine and nicotinamide. These findings indicate that CTPS plays a multifaceted role in EMT metabolism, which is crucial for the malignant transformation of cancer through EMT, and underline its potential as a promising therapeutic target for preventing drug resistance and metastasis in non-small-cell lung cancer.
Collapse
Affiliation(s)
- Fumie Nakasuka
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Systems Biology Program, Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
- Department of Molecular Pathology, Graduate School of MedicineThe University of TokyoJapan
| | - Akiyoshi Hirayama
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Systems Biology Program, Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
| | - Hideki Makinoshima
- Tsuruoka Metabolomics LaboratoryNational Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| | - Seiji Yano
- Department of Medical Oncology, Kanazawa University Cancer Research InstituteKanazawa UniversityJapan
| | - Tomoyoshi Soga
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Systems Biology Program, Graduate School of Media and GovernanceKeio UniversityFujisawaJapan
| | - Sho Tabata
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
- Tsuruoka Metabolomics LaboratoryNational Cancer CenterTsuruokaJapan
- Shonai Regional Industry Promotion CenterTsuruokaJapan
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
| |
Collapse
|
4
|
Virgincar RS, Wong AK, Barck KH, Webster JD, Hung J, Caplazi P, Choy MK, Forrest WF, Bell LC, de Crespigny AJ, Dunlap D, Jones C, Kim DE, Weimer RM, Shaw AS, Brightbill HD, Xie L. Diffusion tensor MRI is sensitive to fibrotic injury in a mouse model of oxalate-induced chronic kidney disease. Am J Physiol Renal Physiol 2024; 327:F235-F244. [PMID: 38867676 DOI: 10.1152/ajprenal.00099.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation and fibrosis in the kidney. Renal biopsies and estimated glomerular filtration rate (eGFR) remain the standard of care, but these endpoints have limitations in detecting the stage, progression, and spatial distribution of fibrotic pathology in the kidney. MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo both in clinical and preclinical studies. However, these imaging studies have not systematically identified fibrosis particularly deeper in the kidney where biopsy sampling is limited, or completed an extensive analysis of whole organ histology, blood biomarkers, and gene expression to evaluate the relative strengths and weaknesses of MRI for evaluating renal fibrosis. In this study, we performed DTI in the sodium oxalate mouse model of CKD. The DTI parameters fractional anisotropy, apparent diffusion coefficient, and axial diffusivity were compared between the control and oxalate groups with region of interest (ROI) analysis to determine changes in the cortex and medulla. In addition, voxel-based analysis (VBA) was implemented to systematically identify local regions of injury over the whole kidney. DTI parameters were found to be significantly different in the medulla by both ROI analysis and VBA, which also spatially matched with collagen III immunohistochemistry (IHC). The DTI parameters in this medullary region exhibited moderate to strong correlations with histology, blood biomarkers, hydroxyproline, and gene expression. Our results thus highlight the sensitivity of DTI to the heterogeneity of renal fibrosis and importance of whole kidney noninvasive imaging.NEW & NOTEWORTHY Chronic kidney disease (CKD) can be characterized by inflammation and fibrosis of the kidney. Although standard of care methods have been limited in scope, safety, and spatial distribution, MRI diffusion tensor imaging (DTI) has emerged as a promising noninvasive technology to evaluate renal fibrosis in vivo. In this study, we performed DTI in an oxalate mouse model of CKD to systematically identify local kidney injury. DTI parameters strongly correlated with histology, blood biomarkers, hydroxyproline, and gene expression.
Collapse
Affiliation(s)
- Rohan S Virgincar
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Aaron K Wong
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Kai H Barck
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Joshua D Webster
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Jeffrey Hung
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Patrick Caplazi
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Man Kin Choy
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - William F Forrest
- Bioinformatics, Genentech, South San Francisco, California, United States
| | - Laura C Bell
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Alex J de Crespigny
- Clinical Imaging Group, Genentech, South San Francisco, California, United States
| | - Debra Dunlap
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Charles Jones
- Research Pathology, Genentech, South San Francisco, California, United States
| | - Dong Eun Kim
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Robby M Weimer
- Translational Imaging, Genentech, South San Francisco, California, United States
| | - Andrey S Shaw
- Research Biology, Genentech, South San Francisco, California, United States
| | - Hans D Brightbill
- Translational Immunology, Genentech, South San Francisco, California, United States
| | - Luke Xie
- Translational Imaging, Genentech, South San Francisco, California, United States
| |
Collapse
|
5
|
Wei J, Zhan J, Ji H, Xu Y, Xu Q, Zhu X, Liu Y. Fibroblast Upregulation of Vitamin D Receptor Represents a Self-Protective Response to Limit Fibroblast Proliferation and Activation during Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1634. [PMID: 37627629 PMCID: PMC10451996 DOI: 10.3390/antiox12081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of vitamin D receptor (VDR) is implicated in chronic obstructive pulmonary disease. However, whether VDR dysregulation contributes to the development of pulmonary fibrosis remains largely unknown. Analysis of bulk and single-cell RNA profiling datasets revealed VDR upregulation in lung fibroblasts from patients with pulmonary fibrosis or fibrotic mice, which was validated in lung fibroblasts from bleomycin-exposed mice and bleomycin-treated fibroblasts. Stable VDR knockdown promoted, whereas the VDR agonist paricalcitol suppressed lung fibroblast proliferation and activation. Gene set enrichment analysis (GSEA) showed that the JAK/STAT pathway and unfolded protein response (UPR), a process related to endoplasmic reticulum (ER) stress, were enriched in lung fibroblasts of fibrotic lungs. Stable VDR knockdown stimulated, but paricalcitol suppressed ER stress and JAK1/STAT3 activation in lung fibroblasts. The STAT3 inhibitor blocked bleomycin- or stable VDR knockdown-induced ER stress. Paricalcitol inhibited the bleomycin-induced enrichment of STAT3 to the ATF6 promoter, thereby suppressing ATF6 expression in fibroblasts. Paricalcitol or intrapulmonary VDR overexpression inactivated JAK1/STAT3 and suppressed ER stress in bleomycin-treated mice, thus resulting in the inhibition of fibroblast proliferation and activation. Collectively, this study suggests that fibroblast VDR upregulation may be a self-protective response to limit fibroblast proliferation and activation during pulmonary fibrosis by suppressing the JAK1/STAT3/ER stress pathway.
Collapse
Affiliation(s)
- Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Junhui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Yitong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Qingfeng Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| |
Collapse
|
6
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
7
|
Fayçal CA, Oszwald A, Feilen T, Cosenza-Contreras M, Schilling O, Loustau T, Steinbach F, Schachner H, Langer B, Heeringa P, Rees AJ, Orend G, Kain R. An adapted passive model of anti-MPO dependent crescentic glomerulonephritis reveals matrix dysregulation and is amenable to modulation by CXCR4 inhibition. Matrix Biol 2022; 106:12-33. [PMID: 35032611 DOI: 10.1016/j.matbio.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2021] [Revised: 12/18/2021] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are severe inflammatory disorders that often involve focal necrotizing glomerulonephritis (FNGN) and consequent glomerular scarring, interstitial fibrosis, and chronic kidney disease. Robust murine models of scarring in FNGN that may help to further our understanding of deleterious processes are still lacking. Here, we present a murine model of severe FNGN based on combined administration of antibodies against the glomerular basement membrane (GBM) and myeloperoxidase (MPO), and bacterial lipopolysaccharides (LPS), that recapitulates acute injury and was adapted to investigate subsequent glomerular and interstitial scarring. Hematuria without involvement of other organs occurs consistently and rapidly, glomerular necrosis and crescent formation are evident at 12 days, and consequent glomerular and interstitial scarring at 29 days after initial treatment. Using mass-spectrometric proteome analysis, we provide a detailed overview of matrisomal and cellular changes in our model. We observed increased expression of the matrisome including collagens, fibronectin, tenascin-C, in accordance with human AAV as deduced from analysis of gene expression microarrays and tissue staining. Moreover, we observed tissue infiltration by neutrophils, macrophages, T cells and myofibroblasts upon injury. Experimental inhibition of CXCR4 using AMD3100 led to a sustained histological presence of fibrin extravasate, reduced chemokine expression and leukocyte activation, but did not markedly affect ECM composition. Altogether, we demonstrate an adapted FNGN model that enables the study of matrisomal changes both in disease and upon intervention, as exemplified via CXCR4 inhibition.
Collapse
Affiliation(s)
- Chérine Abou Fayçal
- INSERM U1109, The Tumor Microenvironment Laboratory, Strasbourg, France; Université Strasbourg, Hopital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; These authors (CAF and AO) contributed equally to this work
| | - Andre Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria; These authors (CAF and AO) contributed equally to this work
| | - Tobias Feilen
- Institute of Surgical Pathology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Miguel Cosenza-Contreras
- Institute of Surgical Pathology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Thomas Loustau
- INSERM U1109, The Tumor Microenvironment Laboratory, Strasbourg, France; Université Strasbourg, Hopital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Fanny Steinbach
- INSERM U1109, The Tumor Microenvironment Laboratory, Strasbourg, France; Université Strasbourg, Hopital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Helga Schachner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Brigitte Langer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew J Rees
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gertraud Orend
- INSERM U1109, The Tumor Microenvironment Laboratory, Strasbourg, France; Université Strasbourg, Hopital Civil, Institut d'Hématologie et d'Immunologie, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Kou W, Li B, Shi Y, Zhao Y, Yu Q, Zhuang J, Xu Y, Peng W. High complement protein C1q levels in pulmonary fibrosis and non-small cell lung cancer associated with poor prognosis. BMC Cancer 2022; 22:110. [PMID: 35078421 PMCID: PMC8790889 DOI: 10.1186/s12885-021-08912-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common type of interstitial pneumonia. Lung cancer, mainly non-small cell lung cancer (NSCLC), is a complication of idiopathic pulmonary fibrosis. IPF is also an independent risk factor of lung cancer. Some studies have shown that the complement system can promote the progression of interstitial pulmonary fibrosis. In addition, C1q has also demonstrated to exert a tumor-promoting effect in many tumors. However, the role of C1q in idiopathic pulmonary fibrosis and lung cancer still remain unclear. METHODS We selected common differentially expressed genes in IPF and non-small cell lung cancer using datasets from GEO, and investigated common hub gene. The hub genes were validated in IPF by establishing mouse model of IPF and using another four datasets from the GEO. Multiple databases were analyzed including those of Kaplan-Meier Plotter, Tumor Immune Estimation Resource (TIMER2.0) and the Human Protein Atlas (HPA) for NSCLC. RESULTS In this study, 37 common DEGs were identified in IPF and NSCLC including 32 up-regulated genes and 5 down-regulated genes, and C1q was identified as common hub gene. The methylation status of C1q decreased and the expression levels of C1q increased in both lung cancer and idiopathic pulmonary fibrosis. The prognosis of non-small cell lung cancer and IPF patients with high levels of C1q is poor. CONCLUSIONS These results show that C1q participates in pulmonary fibrosis and non-small cell lung cancer, and may be a potential diagnostic / prognostic biomarker or a therapeutic target.
Collapse
Affiliation(s)
- Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yeifei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
9
|
Sun T, Huang Z, Liang WC, Yin J, Lin WY, Wu J, Vernes JM, Lutman J, Caplazi P, Jeet S, Wong T, Wong M, DePianto DJ, Morshead KB, Sun KH, Modrusan Z, Vander Heiden JA, Abbas AR, Zhang H, Xu M, N'Diaye EN, Roose-Girma M, Wolters PJ, Yadav R, Sukumaran S, Ghilardi N, Corpuz R, Emson C, Meng YG, Ramalingam TR, Lupardus P, Brightbill HD, Seshasayee D, Wu Y, Arron JR. TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis. Sci Transl Med 2021; 13:13/605/eabe0407. [PMID: 34349032 DOI: 10.1126/scitranslmed.abe0407] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2020] [Revised: 12/19/2020] [Accepted: 06/06/2021] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGFβ) is a key driver of fibrogenesis. Three TGFβ isoforms (TGFβ1, TGFβ2, and TGFβ3) in mammals have distinct functions in embryonic development; however, the postnatal pathological roles and activation mechanisms of TGFβ2 and TGFβ3 have not been well characterized. Here, we show that the latent forms of TGFβ2 and TGFβ3 can be activated by integrin-independent mechanisms and have lower activation thresholds compared to TGFβ1. Unlike TGFB1, TGFB2 and TGFB3 expression is increased in human lung and liver fibrotic tissues compared to healthy control tissues. Thus, TGFβ2 and TGFβ3 may play a pathological role in fibrosis. Inducible conditional knockout mice and anti-TGFβ isoform-selective antibodies demonstrated that TGFβ2 and TGFβ3 are independently involved in mouse fibrosis models in vivo, and selective TGFβ2 and TGFβ3 inhibition does not lead to the increased inflammation observed with pan-TGFβ isoform inhibition. A cocrystal structure of a TGFβ2-anti-TGFβ2/3 antibody complex reveals an allosteric isoform-selective inhibitory mechanism. Therefore, inhibiting TGFβ2 and/or TGFβ3 while sparing TGFβ1 may alleviate fibrosis without toxicity concerns associated with pan-TGFβ blockade.
Collapse
Affiliation(s)
- Tianhe Sun
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei Yu Lin
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jia Wu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jean-Michel Vernes
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jeff Lutman
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tiffany Wong
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Manda Wong
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Daryle J DePianto
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Katrina B Morshead
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kai-Hui Sun
- Department of Protein Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Protein Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Vander Heiden
- Department of OMNI Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander R Abbas
- Department of OMNI Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Min Xu
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elsa-Noah N'Diaye
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Racquel Corpuz
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Y Gloria Meng
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thirumalai R Ramalingam
- Department of Biomarker Discovery OMNI, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Lupardus
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
10
|
TGF-β-induced α-SMA expression is mediated by C/EBPβ acetylation in human alveolar epithelial cells. Mol Med 2021; 27:22. [PMID: 33663392 PMCID: PMC7934236 DOI: 10.1186/s10020-021-00283-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although the morbidity and mortality rates associated with idiopathic pulmonary fibrosis (IPF) are high, there is still lack of powerful and precise therapeutic options for IPF. OBJECT Through in vitro model, this study sought to determine whether binding of acetylated CCAAT/enhancer binding protein β (C/EBPβ) to alpha-smooth muscle actin (α-SMA) promoter could affect the activity of the latter as well as assess if it is essential for epithelial-to-mesenchymal transition (EMT) and extracellular matrix deposition in IPF. METHODS The expression of EMT and C/EBPβ in A549 cells treated with transforming growth factor-beta (TGF-β) as pulmonary fibrotic model was detected by western blotting and qPCR. Collagen-I expression using ELISA was performed. The luciferase activity was used to examine the activity of C/EBPβ. Knockdown of C/EBPβ was performed by siRNA. We also investigated the effect of deacetylation of C/EBPβ on EMT using sirtuin 1 (SIRT1). The binding ability of C/EBPβ with α-SMA promoter was affirmed via chromatin immunoprecipitation (ChIP) and electrophoresis mobility shift assay (EMSA). The relationship between α-SMA and acetylated C/EBPβ was determined with co-immunoprecipitation (Co-IP). SiRNA-mediated knockdown of C/EBPβ in A549 cells attenuated TGF-β1-induced myofibroblast differentiation and ECM deposition. The extent of association between acetylated C/EBPβ and α-SMA promoter was dynamically monitored. RESULTS It was confirmed that deacetylation of C/EBPβ in A549 cells successfully ameliorated TGF-β1-induced EMT, as shown by reduction in α-SMA expression and excessive collagen-I accumulation. CONCLUSION The EMT and fibrotic effect of TGF-β1 is dependent on acetylated C/EBPβ-mediated regulation of α-SMA gene activity. Thus, C/EBPβ acetylation may play a central role in pulmonary fibrosis.
Collapse
|
11
|
Zhang ZQ, Tian HT, Liu H, Xie R. The role of macrophage-derived TGF-β1 on SiO 2-induced pulmonary fibrosis: A review. Toxicol Ind Health 2021; 37:240-250. [PMID: 33588701 DOI: 10.1177/0748233721989896] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Silicosis is an occupational fibrotic lung disease caused by inhaling large amounts of crystalline silica dust. Transforming growth factor-β1 (TGF-β1), which is secreted from macrophages, has an important role in the development of this disease. Macrophages can recognize and capture silicon dust, undergo M2 polarization, synthesize TGF-β1 precursors, and secrete them out of the cell where they are activated. Activated TGF-β1 induces cells from different sources, transforming them into myofibroblasts through autocrine and paracrine mechanisms, ultimately causing silicosis. These processes involve complex molecular events, which are not yet fully understood. This systematic summary may further elucidate the location and development of pulmonary fibrosis in the formation of silicosis. In this review, we discussed the proposed cellular and molecular mechanisms of production, secretion, activation of TGF-β1, as well as the mechanisms through which TGF-β1 induces cells from three different sources into myofibroblasts during the pathogenesis of silicosis. This study furthers the medical understanding of the pathogenesis and theoretical basis for diagnosing silicosis, thereby promoting silicosis prevention and treatment.
Collapse
Affiliation(s)
- Zhao-Qiang Zhang
- Department of Public Health, 74496Jining Medical University, Jining, China
| | - Hai-Tao Tian
- Department of Public Health, 74496Jining Medical University, Jining, China.,Jining No. 1 People's Hospital, Jining, China
| | - Hu Liu
- Department of Public Health, 74496Jining Medical University, Jining, China
| | - Ruining Xie
- Department of Public Health, 74496Jining Medical University, Jining, China
| |
Collapse
|
12
|
Abstract
Molecular magnetic resonance (MR) imaging utilizes molecular probes to provide added biochemical or cellular information to what can already be achieved with anatomical and functional MR imaging. This review provides an overview of molecular MR and focuses specifically on molecular MR contrast agents that provide contrast by shortening the T1 time. We describe the requirements for a successful molecular MR contrast agent and the challenges for clinical translation. The review highlights work from the last 5 years and places an emphasis on new contrast agents that have been validated in multiple preclinical models. Applications of molecular MR include imaging of inflammation, fibrosis, fibrogenesis, thromboembolic disease, and cancers. Molecular MR is positioned to move beyond detection of disease to the quantitative staging of disease and measurement of treatment response.
Collapse
Affiliation(s)
| | | | - Peter Caravan
- The Institute for Innovation in Imaging, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
13
|
Zhou IY, Montesi SB, Akam EA, Caravan P. Molecular Imaging of Fibrosis. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
|
14
|
Abstract
At the end of the last century, genetic studies reported that genetic information is not transmitted solely by DNA, but is also transmitted by other mechanisms, named as epigenetics. The well-described epigenetic mechanisms include DNA methylation, biochemical modifications of histones, and microRNAs. The role of altered epigenetics in the biology of various fibrotic diseases is well-established, and recent advances demonstrate its importance in the pathogenesis of pulmonary fibrosis-predominantly referring to idiopathic pulmonary fibrosis, the most lethal of the interstitial lung diseases. The deficiency in effective medications suggests an urgent need to better understand the underlying pathobiology. This review summarizes the current knowledge concerning epigenetic changes in pulmonary fibrosis and associations of these changes with several cellular pathways of known significance in its pathogenesis. It also designates the most promising substances for further research that may bring us closer to new therapeutic options.
Collapse
Affiliation(s)
- Krystian Bartczak
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland.
| | - Adam J Białas
- Department of Pathobiology of Respiratory Diseases, The Medical University of Lodz, Lodz, Poland
| | - Mateusz J Kotecki
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| | - Paweł Górski
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| | - Wojciech J Piotrowski
- Department of Pneumology and Allergology, The Medical University of Lodz, Kopcińskiego 22, 90-153, Lodz, Poland
| |
Collapse
|
15
|
Zhou IY, Catalano OA, Caravan P. Advances in functional and molecular MRI technologies in chronic liver diseases. J Hepatol 2020; 73:1241-1254. [PMID: 32585160 PMCID: PMC7572718 DOI: 10.1016/j.jhep.2020.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/25/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
MRI has emerged as the most comprehensive non-invasive diagnostic tool for liver diseases. In recent years, the value of MRI in hepatology has been significantly enhanced by a wide range of contrast agents, both clinically available and under development, that add functional information to anatomically detailed morphological images, or increase the distinction between normal and pathological tissues by targeting molecular and cellular events. Several classes of contrast agents are available for contrast-enhanced hepatic MRI, including i) conventional non-specific extracellular fluid contrast agents for assessing tissue perfusion; ii) hepatobiliary-specific contrast agents that are taken up by functioning hepatocytes and excreted through the biliary system for evaluating hepatobiliary function; iii) superparamagnetic iron oxide particles that accumulate in Kupffer cells; and iv) novel molecular contrast agents that are biochemically targeted to specific molecular/cellular processes for staging liver diseases or detecting treatment responses. The use of different functional and molecular MRI methods enables the non-invasive assessment of disease burden, progression, and treatment response in a variety of liver diseases. A high diagnostic performance can be achieved with MRI by combining imaging biomarkers.
Collapse
Affiliation(s)
- Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Institute for Innovation in Imaging (i3), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Onofrio A. Catalano
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, USA,Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; Harvard Medical School, Boston, MA, USA; Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
16
|
Baluk P, Naikawadi RP, Kim S, Rodriguez F, Choi D, Hong YK, Wolters PJ, McDonald DM. Lymphatic Proliferation Ameliorates Pulmonary Fibrosis after Lung Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2355-2375. [PMID: 33039355 DOI: 10.1016/j.ajpath.2020.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/26/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Despite many reports about pulmonary blood vessels in lung fibrosis, the contribution of lymphatics to fibrosis is unknown. We examined the mechanism and consequences of lymphatic remodeling in mice with lung fibrosis after bleomycin injury or telomere dysfunction. Widespread lymphangiogenesis was observed after bleomycin treatment and in fibrotic lungs of prospero homeobox 1-enhanced green fluorescent protein (Prox1-EGFP) transgenic mice with telomere dysfunction. In loss-of-function studies, blocking antibodies revealed that lymphangiogenesis 14 days after bleomycin treatment was dependent on vascular endothelial growth factor (Vegf) receptor 3 signaling, but not on Vegf receptor 2. Vegfc gene and protein expression increased specifically. Extensive extravasated plasma, platelets, and macrophages at sites of lymphatic growth were potential sources of Vegfc. Lymphangiogenesis peaked at 14 to 28 days after bleomycin challenge, was accompanied by doubling of chemokine (C-C motif) ligand 21 in lung lymphatics and tertiary lymphoid organ formation, and then decreased as lung injury resolved by 56 days. In gain-of-function studies, expansion of the lung lymphatic network by transgenic overexpression of Vegfc in club cell secretory protein (CCSP)/VEGF-C mice reduced macrophage accumulation and fibrosis and accelerated recovery after bleomycin treatment. These findings suggest that lymphatics have an overall protective effect in lung injury and fibrosis and fit with a mechanism whereby lung lymphatic network expansion reduces lymph stasis and increases clearance of fluid and cells, including profibrotic macrophages.
Collapse
Affiliation(s)
- Peter Baluk
- Department of Anatomy, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| | - Ram P Naikawadi
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shineui Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Felipe Rodriguez
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Dongwon Choi
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Young-Kwon Hong
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Paul J Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Donald M McDonald
- Department of Anatomy, University of California, San Francisco, San Francisco, California; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
17
|
Horowitz JC, Tschumperlin DJ, Kim KK, Osterholzer JJ, Subbotina N, Ajayi IO, Teitz-Tennenbaum S, Virk A, Dotson M, Liu F, Sicard D, Jia S, Sisson TH. Urokinase Plasminogen Activator Overexpression Reverses Established Lung Fibrosis. Thromb Haemost 2019; 119:1968-1980. [PMID: 31705517 DOI: 10.1055/s-0039-1697953] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Impaired plasminogen activation (PA) is causally related to the development of lung fibrosis. Prior studies demonstrate that enhanced PA in the lung limits the severity of scarring following injury and in vitro studies indicate that PA promotes matrix degradation and fibroblast apoptosis. These findings led us to hypothesize that increased PA in an in vivo model would enhance the resolution of established lung fibrosis in conjunction with increased myofibroblast apoptosis. METHODS Transgenic C57BL/6 mice with doxycycline inducible lung-specific urokinase plasminogen activator (uPA) expression or littermate controls were treated (day 0) with bleomycin or saline. Doxycycline was initiated on days 1, 9, 14, or 21. Lung fibrosis, stiffness, apoptosis, epithelial barrier integrity, and inflammation were assessed. RESULTS Protection from fibrosis with uPA upregulation from day 1 through day 28 was associated with reduced parenchymal stiffness as determined by atomic force microscopy. Initiation of uPA expression beginning in the late inflammatory or the early fibrotic phase reduced stiffness and fibrosis at day 28. Induction of uPA activity in mice with established fibrosis decreased lung collagen and lung stiffness while increasing myofibroblast apoptosis. Upregulation of uPA did not alter lung inflammation but was associated with improved epithelial cell homeostasis. CONCLUSION Restoring intrapulmonary PA activity diminishes lung fibrogenesis and enhances the resolution of established lung fibrosis. This PA-mediated resolution is associated with increased myofibroblast apoptosis and improved epithelial cell homeostasis. These studies support the potential capacity of the lung to resolve existing scar in murine models.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.,Veterans Affairs Medical Center, Ann Arbor, Michigan, United States
| | - Natalya Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Iyabode O Ajayi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.,Veterans Affairs Medical Center, Ann Arbor, Michigan, United States
| | - Ammara Virk
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Megan Dotson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Fei Liu
- Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Shijing Jia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
18
|
Marinova M, Solopov P, Dimitropoulou C, Colunga Biancatelli RML, Catravas JD. Acute exposure of mice to hydrochloric acid leads to the development of chronic lung injury and pulmonary fibrosis. Inhal Toxicol 2019; 31:147-160. [PMID: 31232121 DOI: 10.1080/08958378.2019.1624895] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Objective: Accidental exposure to hydrochloric acid (HCl) is associated with acute lung injury in humans, development of long-term chronic airway obstruction, and fibrosis. However, the mechanisms responsible for the progression to pulmonary fibrosis remain unclear. We utilized a mouse model of progressive lung injury from a single exposure to HCl to investigate the effects of HCl on the lower respiratory tract. Materials and methods: HCl (0.05-0.3 N) or saline was injected intratracheally into male C57Bl/6J mice. At 1, 4, 10 and 30 days post instillation, bronchoalveolar lavage fluid (BALF) and lung tissues were collected and examined for multiple outcomes. Results and discussion: We observed an early inflammatory response and a late mild inflammation present even at 30 d post HCl exposure. Mice treated with HCl exhibited higher total leukocyte and protein levels in the BALF compared to the vehicle group. This was characterized by increased number of neutrophils, monocytes, and lymphocytes as well as pro-inflammatory cytokines during the first 4 d of injury. The late inflammatory response exhibited a predominant presence of mononuclear cells, increased permeability to protein, and higher levels of the pro-fibrotic mediator TGFβ. Pro-fibrotic protein biomarkers, phosphorylated ERK, and HSP90, were also overexpressed at 10 and 30 d following HCl exposure. In vivo lung function measurements demonstrated lung dysfunction and chronic lung injury associated with increased lung hydroxyproline content and increased expression of extracellular matrix (ECM) proteins. The acute inflammation and severity of fibrosis increased in HCl-concentration dependent manner. Conclusions: Our findings suggest that the initial inflammatory response and pro-fibrotic biomarker upregulation may be linked to the progression of pulmonary fibrosis and airway dysfunction and may represent valuable therapeutic targets.
Collapse
Affiliation(s)
- Margarita Marinova
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | - Pavel Solopov
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA
| | | | - Ruben M L Colunga Biancatelli
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,b Policlinico Umberto I, La Sapienza University of Rome , Rome , Italy
| | - John D Catravas
- a Frank Reidy Research Center for Bioelectrics , Old Dominion University , Norfolk , VA , USA.,c School of Medical Diagnostic & Translational Sciences , College of Health Sciences, Old Dominion University , Norfolk , VA , USA
| |
Collapse
|
19
|
Sun T, Huang Z, Zhang H, Posner C, Jia G, Ramalingam TR, Xu M, Brightbill H, Egen JG, Dey A, Arron JR. TAZ is required for lung alveolar epithelial cell differentiation after injury. JCI Insight 2019; 5:128674. [PMID: 31211697 DOI: 10.1172/jci.insight.128674] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
The lung is a relatively quiescent organ during homeostasis, but has a remarkable capacity for repair after injury. Alveolar epithelial type I cells (AEC1s) line airspaces and mediate gas exchange. After injury, they are regenerated by differentiation from their progenitors - alveolar epithelial type II cells (AEC2s) - which also secrete surfactant to maintain surface tension and alveolar patency. While recent studies showed that the maintenance of AEC2 stemness is Wnt dependent, the molecular mechanisms underlying AEC2-AEC1 differentiation in adult lung repair are still incompletely understood. Here we show that WWTR1 (TAZ) plays a crucial role in AEC differentiation. Using an in vitro organoid culture system, we found that tankyrase inhibition can efficiently block AEC2-AEC1 differentiation, and this effect was due to the inhibition of TAZ. In a bleomycin induced lung injury model, conditional deletion of TAZ in AEC2s dramatically reduced AEC1 regeneration during recovery, leading to exacerbated alveolar lesions and fibrosis. In patients with idiopathic pulmonary fibrosis (IPF), decreased blood levels of RAGE, a biomarker of AEC1 health, were associated with more rapid disease progression. Our findings implicate TAZ as a critical factor involved in AEC2 to AEC1 differentiation, and hence the maintenance of alveolar integrity after injury.
Collapse
Affiliation(s)
| | | | - Hua Zhang
- Department of Translational Immunology
| | | | | | | | - Min Xu
- Department of Translational Immunology
| | | | | | - Anwesha Dey
- Department of Oncology, Genentech, 1 DNA Way, South San Francisco, California, USA
| | | |
Collapse
|
20
|
Abstract
Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
21
|
Cheong ML, Lai TH, Wu WB. Connective tissue growth factor mediates transforming growth factor β-induced collagen expression in human endometrial stromal cells. PLoS One 2019; 14:e0210765. [PMID: 30695033 PMCID: PMC6350958 DOI: 10.1371/journal.pone.0210765] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Adenomyosis is a medical condition defined by the abnormal presence of endometrial tissue within the myometrium, in which fibrosis occurs with new collagen deposition and myofibroblast differentiation. In this study, the effect of several mediators and growth factors on collagen expression was investigated on human endometrial stromal cells (fibroblasts) derived from adenomyotic endometrium. Experimental approach RT-PCR, Western blot analysis, pharmacological interventions and siRNA interference were applied to primary cultured human endometrial stromal cells (fibroblasts). Immunohistochemistry was used to analyze protein expression in adenomyotic endometrium tissue specimens. Results Of the tested mediators, transforming growth factor β1 (TGFβ1) and its isoforms were effective to induce collagen and connective tissue growth factor (CTGF) expression. Collagen and CTGF induction by TGFβ1 could be reduced by the inhibitors targeting DNA transcription, protein translation, and Smad2/3 signaling. Interestingly, TGFβ1 induced Smad2/3 phosphorylation and CTGF mRNA expression, but not collagen mRNA expression, suggesting that TGFβ1 mediates collagen expression through CTGF induction and Smad2/3 activation. In parallel, TGFβ1 and CTGF also induced expression of heat shock protein (HSP) 47, a protein required for the synthesis of several types of collagens. However, only CTGF siRNA knockdown, could compromise TGFβ1-induced collagen expression. Finally, the immunohistochemistry revealed vimentin- and α-SMA-positive staining for (myo)fibroblasts, TGFβ1, collagen, and CTGF in the subepithelial stroma region of human adenomyotic endometria. Conclusion and implications We reveal here that TGFβ1, collagen, and CTGF are expressed in the stroma of adenomyotic endometria and demonstrate that TGFβ1 can induce collagen production in endometrium-derived fibroblasts through cellular Smad2/3-dependent signaling pathway and CTGF expression, suggesting that endometrial TGFβ may take part in the pathogenesis of adenomyosis and ectopic endometrium may participate in uterine adenomyosis.
Collapse
Affiliation(s)
- Mei-Leng Cheong
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Tsung-Hsuan Lai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wen-Bin Wu
- School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Montesi SB, Désogère P, Fuchs BC, Caravan P. Molecular imaging of fibrosis: recent advances and future directions. J Clin Invest 2019; 129:24-33. [PMID: 30601139 DOI: 10.1172/jci122132] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.
Collapse
Affiliation(s)
| | - Pauline Désogère
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter Caravan
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Athinoula A. Martinos Center for Biomedical Imaging and.,Institute for Innovation in Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Gu BH, Madison MC, Corry D, Kheradmand F. Matrix remodeling in chronic lung diseases. Matrix Biol 2018; 73:52-63. [PMID: 29559389 PMCID: PMC6141350 DOI: 10.1016/j.matbio.2018.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Multicellular organisms synthesize and renew components of their subcellular and scaffolding proteins, collectively known as the extracellular matrix molecules (ECMs). In the lung, ECMs maintain tensile strength, elasticity, and dictate the specialized function of multiple cell lineages. These functions are critical in lung homeostatic processes including cellular migration and proliferation during morphogenesis or in response to repair. Alterations in lung ECMs that expose cells to new cryptic fragments, generated in response to endogenous proteinases or exogenous toxins, are associated with the development of several common respiratory diseases. How lung ECMs provide or relay vital signals to epithelial and mesenchymal cells has shed new light on development and progression of several common chronic respiratory diseases. This review will consider how ECMs regulate lung homeostasis and their reorganization under pathological conditions that can modulate the inflammatory diseases asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Better understanding of changes in the distribution of lung ECM could provide novel therapeutic approaches to treat chronic lung diseases.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Madison
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA
| | - David Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Ricard-Blum S, Baffet G, Théret N. Molecular and tissue alterations of collagens in fibrosis. Matrix Biol 2018; 68-69:122-149. [DOI: 10.1016/j.matbio.2018.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
|
25
|
Abstract
Activation of TGF-β1 initiates a program of temporary collagen accumulation important to wound repair in many organs. However, the outcome of temporary extracellular matrix strengthening all too frequently morphs into progressive fibrosis, contributing to morbidity and mortality worldwide. To avoid this maladaptive outcome, TGF-β1 signaling is regulated at numerous levels and intimately connected to feedback signals that limit accumulation. Here, we examine the current understanding of the core functions of TGF-β1 in promoting collagen accumulation, parallel pathways that promote physiological repair, and pathological triggers that tip the balance toward progressive fibrosis. Implicit in better understanding of these processes is the identification of therapeutic opportunities that will need to be further advanced to limit or reverse organ fibrosis.
Collapse
Affiliation(s)
- Kevin K Kim
- Department of Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan 48109
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| | - Harold A Chapman
- Department of Medicine, Cardiovascular Research Institute, and Lung Biology Center, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
26
|
Pulmonary fibrosis in vivo displays increased p21 expression reduced by 5-HT 2B receptor antagonists in vitro - a potential pathway affecting proliferation. Sci Rep 2018; 8:1927. [PMID: 29386571 PMCID: PMC5792547 DOI: 10.1038/s41598-018-20430-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) has repeatedly been associated with the development of fibrotic disorders such as pulmonary fibrosis. By blocking the binding of 5-HT to 5-HT2B receptors with receptor antagonists, several pro-fibrotic mechanisms can be inhibited. Bleomycin-induced pulmonary fibrosis is a model used to evaluate pathological mechanisms and pharmacological interventions. Previously we have shown attenuated fibrosis in systemic bleomycin-treated mice following treatment with two 5-HT2B receptor antagonists (EXT5 and EXT9). Our aim is to further identify cellular effects and signaling pathways associated with the anti-fibrotic effects of EXT5/9. Gene expressions in lung tissues from systemic bleomycin-treated mice were examined, revealing significant increased expression of Cdkn1α (a gene coding for p21), particularly in distal regions of the lung. In vitro studies in human lung fibroblasts revealed increased levels of p21 (p = 0.0032) and pAkt (p = 0.12) following treatment with 5-HT (10 µM). The induction of p21 and pAkt appears to be regulated by 5-HT2B receptors, with diminished protein levels following EXT9-treatment (p21 p = 0.0024, pAkt p = 0.15). Additionally, 5-HT induced fibroblast proliferation, an event significantly reduced by EXT5 (10 µM) and EXT9 (10 µM). In conclusion, our results suggest that 5-HT2B receptor antagonism attenuates pulmonary fibrosis in part by anti-proliferative effects, associated with inhibited pAkt/p21 signaling pathway.
Collapse
|
27
|
Shendre A, Wiener H, Irvin MR, Zhi D, Limdi NA, Overton ET, Wassel CL, Divers J, Rotter JI, Post WS, Shrestha S. Admixture Mapping of Subclinical Atherosclerosis and Subsequent Clinical Events Among African Americans in 2 Large Cohort Studies. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001569. [PMID: 28408707 PMCID: PMC5396391 DOI: 10.1161/circgenetics.116.001569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/11/2016] [Accepted: 02/03/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND Local ancestry may contribute to the disproportionate burden of subclinical and clinical cardiovascular disease among admixed African Americans compared with other populations, suggesting a rationale for admixture mapping. METHODS AND RESULTS We estimated local European ancestry (LEA) using Local Ancestry inference in adMixed Populations using Linkage Disequilibrium method (LAMP-LD) and evaluated the association with common carotid artery intima-media thickness (cCIMT) using multivariable linear regression analysis among 1554 African Americans from MESA (Multi-Ethnic Study of Atherosclerosis). We conducted secondary analysis to examine the significant cCIMT-LEA associations with clinical cardiovascular disease events. We observed genome-wide significance in relation to cCIMT association with the SERGEF gene (secretion-regulating guanine nucleotide exchange factor; β=0.0137; P=2.98×10-4), also associated with higher odds of stroke (odds ratio=1.71; P=0.02). Several regions, in particular CADPS gene (Ca2+-dependent secretion activator 1) region identified in MESA, were also replicated in the ARIC cohort (Atherosclerosis Risk in Communities). We observed other cCIMT-LEA regions associated with other clinical events, most notably the regions harboring CKMT2 gene (creatine kinase, mitochondrial 2) and RASGRF2 gene (Ras protein-specific guanine nucleotide-releasing factor 2) with all clinical events except stroke, the LRRC3B gene (leucine-rich repeat containing 3B) with myocardial infarction, the PRMT3 gene (protein arginine methyltransferase 3) with stroke, and the LHFPL2 gene (lipoma high mobility group protein I-C fusion partner-like 2) with hard and all coronary heart disease. CONCLUSIONS We identified several novel LEA regions, in addition to previously identified genetic variations, associated with cCIMT and cardiovascular disease events among African Americans.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Currently: Richard M. Fairbanks School of Public Health, Indianapolis University Purdue University Indianapolis, IN
| | - Howard Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Currently: Richard M. Fairbanks School of Public Health, Indianapolis University Purdue University Indianapolis, IN
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Currently: Richard M. Fairbanks School of Public Health, Indianapolis University Purdue University Indianapolis, IN
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
- Currently, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, TX
| | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Edgar T. Overton
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Christina L. Wassel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT
| | - Jasmin Divers
- Biostatistical Sciences, Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Jerome I. Rotter
- Department of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
28
|
Hicks DF, Goossens N, Blas-García A, Tsuchida T, Wooden B, Wallace MC, Nieto N, Lade A, Redhead B, Cederbaum AI, Dudley JT, Fuchs BC, Lee YA, Hoshida Y, Friedman SL. Transcriptome-based repurposing of apigenin as a potential anti-fibrotic agent targeting hepatic stellate cells. Sci Rep 2017; 7:42563. [PMID: 28256512 PMCID: PMC5335661 DOI: 10.1038/srep42563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023] Open
Abstract
We have used a computational approach to identify anti-fibrotic therapies by querying a transcriptome. A transcriptome signature of activated hepatic stellate cells (HSCs), the primary collagen-secreting cell in liver, and queried against a transcriptomic database that quantifies changes in gene expression in response to 1,309 FDA-approved drugs and bioactives (CMap). The flavonoid apigenin was among 9 top-ranked compounds predicted to have anti-fibrotic activity; indeed, apigenin dose-dependently reduced collagen I in the human HSC line, TWNT-4. To identify proteins mediating apigenin's effect, we next overlapped a 122-gene signature unique to HSCs with a list of 160 genes encoding proteins that are known to interact with apigenin, which identified C1QTNF2, encoding for Complement C1q tumor necrosis factor-related protein 2, a secreted adipocytokine with metabolic effects in liver. To validate its disease relevance, C1QTNF2 expression is reduced during hepatic stellate cell activation in culture and in a mouse model of alcoholic liver injury in vivo, and its expression correlates with better clinical outcomes in patients with hepatitis C cirrhosis (n = 216), suggesting it may have a protective role in cirrhosis progression.These findings reinforce the value of computational approaches to drug discovery for hepatic fibrosis, and identify C1QTNF2 as a potential mediator of apigenin's anti-fibrotic activity.
Collapse
Affiliation(s)
- Daniel F. Hicks
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nicolas Goossens
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Division of Gastroenterology and Hepatology, Geneva University Hospital, Geneva, Switzerland
| | - Ana Blas-García
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pharmacology, University of Valencia-FISABIO, Valencia, Spain
| | - Takuma Tsuchida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Research Division, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Benjamin Wooden
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Michael C. Wallace
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- University of Western Australia, West Leederville, WA, Australia
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, USA
| | - Abigale Lade
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Benjamin Redhead
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joel T. Dudley
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Bryan C. Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Youngmin A. Lee
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Scott L. Friedman
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
29
|
Koopmans T, Crutzen S, Menzen MH, Halayko AJ, Hackett T, Knight DA, Gosens R. Selective targeting of CREB-binding protein/β-catenin inhibits growth of and extracellular matrix remodelling by airway smooth muscle. Br J Pharmacol 2016; 173:3327-3341. [PMID: 27629364 PMCID: PMC5738668 DOI: 10.1111/bph.13620] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2016] [Revised: 08/17/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogeneous chronic inflammatory disease, characterized by the development of structural changes (airway remodelling). β-catenin, a transcriptional co-activator, is fundamentally involved in airway smooth muscle growth and may be a potential target in the treatment of airway smooth muscle remodelling. EXPERIMENTAL APPROACH We assessed the ability of small-molecule compounds that selectively target β-catenin breakdown or its interactions with transcriptional co-activators to inhibit airway smooth muscle remodelling in vitro and in vivo. KEY RESULTS ICG-001, a small-molecule compound that inhibits the β-catenin/CREB-binding protein (CBP) interaction, strongly and dose-dependently inhibited serum-induced smooth muscle growth and TGFβ1-induced production of extracellular matrix components in vitro. Inhibition of β-catenin/p300 interactions using IQ-1 or inhibition of tankyrase 1/2 using XAV-939 had considerably less effect. In a mouse model of allergic asthma, β-catenin expression in the smooth muscle layer was found to be unaltered in control versus ovalbumin-treated animals, a pattern that was found to be similar in smooth muscle within biopsies taken from asthmatic and non-asthmatic donors. However, β-catenin target gene expression was highly increased in response to ovalbumin; this effect was prevented by topical treatment with ICG-001. Interestingly, ICG-001 dose-dependently reduced airway smooth thickness after repeated ovalbumin challenge, but had no effect on the deposition of collagen around the airways, mucus secretion or eosinophil infiltration. CONCLUSIONS AND IMPLICATIONS Together, our findings highlight the importance of β-catenin/CBP signalling in the airways and suggest ICG-001 may be a new therapeutic approach to treat airway smooth muscle remodelling in asthma.
Collapse
Affiliation(s)
- Tim Koopmans
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Stijn Crutzen
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Mark H Menzen
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| | - Andrew J Halayko
- Department of Physiology and PathophysiologyUniversity of ManitobaWinnipegMBCanada
| | - Tillie‐Louise Hackett
- Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverBCCanada
| | - Darryl A Knight
- Department of Anesthesiology, Pharmacology & TherapeuticsUniversity of British ColumbiaVancouverBCCanada
- School of Biomedical Sciences and PharmacyThe University of NewcastleCallaghanNSWAustralia
- Asthma, Allergy and Infection Research ClusterHunter Medical Research InstituteNew Lambton HeightsNSWAustralia
| | - Reinoud Gosens
- Department of Molecular PharmacologyUniversity of GroningenGroningenThe Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC)University of GroningenGroningenThe Netherlands
| |
Collapse
|
30
|
Ge Z, Li B, Zhou X, Yang Y, Zhang J. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats. Mol Cell Biochem 2016; 423:165-174. [DOI: 10.1007/s11010-016-2834-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022]
|
31
|
Zhang DY, Goossens N, Guo J, Tsai MC, Chou HI, Altunkaynak C, Sangiovanni A, Ivarone M, Colombo M, Kobayashi M, Kumada H, Villanueva A, Llovet JM, Hoshida Y, Friedman SL. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut 2016; 65:1754-64. [PMID: 26045137 PMCID: PMC4848165 DOI: 10.1136/gutjnl-2015-309655] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 01/04/2023]
Abstract
OBJECTIVE We used an informatics approach to identify and validate genes whose expression is unique to hepatic stellate cells and assessed the prognostic capability of their expression in cirrhosis. DESIGN We defined a hepatic stellate cell gene signature by comparing stellate, immune and hepatic transcriptome profiles. We then created a prognostic index using a combination of hepatic stellate cell signature expression and clinical variables. This signature was derived in a retrospective-prospective cohort of hepatitis C-related early-stage cirrhosis (prognostic index derivation set) and validated in an independent retrospective cohort of patients with postresection hepatocellular carcinoma (HCC). We then examined the association between hepatic stellate cell signature expression and decompensation, HCC development, progression of Child-Pugh class and survival. RESULTS The 122-gene hepatic stellate cell signature consists of genes encoding extracellular matrix proteins and developmental factors and correlates with the extent of fibrosis in human, mouse and rat datasets. Importantly, association of clinical prognostic variables with overall survival was improved by adding the signature; we used these results to define a prognostic index in the derivation set. In the validation set, the same prognostic index was associated with overall survival. The prognostic index was associated with decompensation, HCC and progression of Child-Pugh class in the derivation set, and HCC recurrence in the validation set. CONCLUSIONS This work highlights the unique transcriptional niche of stellate cells, and identifies potential stellate cell targets for tracking, targeting and isolation. Hepatic stellate cell signature expression may identify patients with HCV cirrhosis or postresection HCC with poor prognosis.
Collapse
Affiliation(s)
- David Y. Zhang
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicolas Goossens
- Liver Cancer Program, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, New York,Division of Gastroenterology and Hepatology Geneva University Hospital, Geneva, Switzerland
| | - Jinsheng Guo
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY,Division of Digestive Diseases Zhongshang Hospital and Fudan University, Shanghai, China
| | - Ming-chao Tsai
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hsin-I Chou
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY
| | - Civan Altunkaynak
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY
| | - Angelo Sangiovanni
- M. & A. Migliavacca Center for Liver Disease and 1st Division of Gastroenterology Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Massimo Ivarone
- M. & A. Migliavacca Center for Liver Disease and 1st Division of Gastroenterology Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Massomo Colombo
- M. & A. Migliavacca Center for Liver Disease and 1st Division of Gastroenterology Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | - Augusto Villanueva
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY,Liver Cancer Program, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M. Llovet
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY,Liver Cancer Program, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, New York,Liver Cancer Translational Research Lab, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, Centro de Investigaciones en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) University of Barcelona, Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Yujin Hoshida
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY,Liver Cancer Program, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott L. Friedman
- Department of Medicine, Division of Liver Diseases Icahn School of Medicine at Mount Sinai, New York, NY,Liver Cancer Program, Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
32
|
Serotonin biosynthesis as a predictive marker of serotonin pharmacodynamics and disease-induced dysregulation. Sci Rep 2016; 6:30059. [PMID: 27444653 PMCID: PMC4956766 DOI: 10.1038/srep30059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 12/23/2022] Open
Abstract
The biogenic amine serotonin (5-HT) is a multi-faceted hormone that is synthesized from dietary tryptophan with the rate limiting step being catalyzed by the enzyme tryptophan hydroxylase (TPH). The therapeutic potential of peripheral 5-HT synthesis inhibitors has been demonstrated in a number of clinical and pre-clinical studies in diseases including carcinoid syndrome, lung fibrosis, ulcerative colitis and obesity. Due to the long half-life of 5-HT in blood and lung, changes in steady-state levels are slow to manifest themselves. Here, the administration of stable isotope labeled tryptophan (heavy “h-Trp”) and resultant in vivo conversion to h-5-HT is used to monitor 5-HT synthesis in rats. Dose responses for the blockade of h-5-HT appearance in blood with the TPH inhibitors L-para-chlorophenylalanine (30 and 100 mg/kg) and telotristat etiprate (6, 20 and 60 mg/kg), demonstrated that the method enables robust quantification of pharmacodynamic effects on a short time-scale, opening the possibility for rapid screening of TPH1 inhibitors in vivo. In the bleomycin-induced lung fibrosis rat model, the mechanism of lung 5-HT increase was investigated using a combination of synthesis and steady state 5-HT measurement. Elevated 5-HT synthesis measured in the injured lungs was an early predictor of disease induced increases in total 5-HT.
Collapse
|
33
|
van Beuge MM, Ten Dam EJPM, Werker PMN, Bank RA. Matrix and cell phenotype differences in Dupuytren's disease. FIBROGENESIS & TISSUE REPAIR 2016; 9:9. [PMID: 27366208 PMCID: PMC4928329 DOI: 10.1186/s13069-016-0046-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/28/2015] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
Background Dupuytren’s disease is a fibroproliferative disease of the hand and fingers, which usually manifests as two different phenotypes within the same patient. The disease first causes a nodule in the palm of the hand, while later, a cord develops, causing contracture of the fingers. Results We set out to characterize the two phenotypes by comparing matched cord and nodule tissue from ten Dupuytren’s patients. We found that nodule tissue contained more proliferating cells, CD68-positive macrophages and α-smooth muscle actin (α-SMA)-positive myofibroblastic cells. qPCR analysis showed an increased expression of COL1A1, COL1A2, COL5A1, and COL6A1 in nodule tissue compared to cord tissue. Immunohistochemistry showed less deposition of collagen type I in nodules, although they contained more fibronectin, collagen type V, and procollagen 1. Lower collagen levels in nodule were confirmed by HPLC measurements of the Hyp/Pro ratio. PCOLCE2, an activator of BMP1, the main enzyme cleaving the C-terminal pro-peptide from procollagen, was also reduced in nodule. Cord tissue not only contained more collagen I, but also higher levels of hydroxylysylpyridinoline and lysylpyridinoline residues per triple helix, indicating more crosslinks. Conclusions Our results clearly show that in Dupuytren’s disease, the nodule is the active disease unit, although it does not have the highest collagen protein levels. The difference in collagen type I deposition compared to mRNA levels and procollagen 1 levels may be connected to a decrease in procollagen processing. Electronic supplementary material The online version of this article (doi:10.1186/s13069-016-0046-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marike M van Beuge
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Evert-Jan P M Ten Dam
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands ; Department of Plastic Surgery, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Paul M N Werker
- Department of Plastic Surgery, Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
34
|
Abstract
INTRODUCTION The lysyl oxidase family of enzymes is classically known as being required for connective tissue maturation by oxidizing lysine residues in elastin and lysine and hydroxylysine residues in collagen precursors. The resulting aldehydes then participate in cross-link formation, which is required for normal connective tissue integrity. These enzymes have biological functions that extend beyond this fundamental biosynthetic role, with contributions to angiogenesis, cell proliferation, and cell differentiation. Dysregulation of lysyl oxidases occurs in multiple pathologies including fibrosis, primary and metastatic cancers, and complications of diabetes in a variety of tissues. AREAS COVERED This review summarizes the major findings of novel roles for lysyl oxidases in pathologies, and highlights some of the potential therapeutic approaches that are in development and which stem from these new findings. EXPERT OPINION Fundamental questions remain regarding the mechanisms of novel biological functions of this family of proteins, and regarding functions that are independent of their catalytic enzyme activity. However, progress is underway in the development of isoform-specific pharmacologic inhibitors, potential therapeutic antibodies and gaining an increased understanding of both tumor suppressor and metastasis promotion activities. Ultimately, this is likely to lead to novel therapeutic agents.
Collapse
Affiliation(s)
- Philip C Trackman
- a Department of Molecular and Cell Biology , Boston University, Henry M. Goldman School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
35
|
Abstract
Although fibrosis is becoming increasingly recognized as a major cause of morbidity and mortality in chronic inflammatory diseases, available treatment strategies are limited. Tenascins constitute a family of matricellular proteins, primarily modulating interactions of cells with other matrix components and growth factors. Data obtained from tenascin C deficient mice show important roles of this molecule in several models of fibrosis. Moreover there is growing evidence that tenascin C has a strong impact on chronic inflammation, myofibroblast differentiation and recruitment. Tenascin C as well as tenascin X has furthermore been shown to affect TGF-β activation and signaling. Taken together these data suggest that these proteins might be important factors in fibrosis development and make them attractive both as biological markers and as targets for therapeutical intervention. So far most clinical research in fibrosis has been focused on tenascin C. This review aims at summarizing our up-to-date knowledge on the involvement of tenascin C in the pathogenesis of fibrotic disorders.
Collapse
|
36
|
van den Bosch MH, Gleissl TA, Blom AB, van den Berg WB, van Lent PL, van der Kraan PM. Wnts talking with the TGF-β superfamily: WISPers about modulation of osteoarthritis. Rheumatology (Oxford) 2015; 55:1536-47. [PMID: 26667213 DOI: 10.1093/rheumatology/kev402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
The Wnt signalling pathway is gaining increasing attention in the field of joint pathologies, attributable to its role in the development and homeostasis of the tissues found in the joint, including bone and cartilage. Imbalance in this pathway has been implicated in the development and progression of OA, and interference with the pathway might therefore depict an effective treatment strategy. Though offering multiple opportunities, it is yet to be decided which starting point will bring forth the most promising results. The complexity of the pathway and its interaction with other pathways (such as the TGF-β signalling pathway, which also has a central role in the maintenance of joint homeostasis) means that acting directly on proteins in this signalling cascade entails a high risk of undesired side effects. Therefore, interference with Wnt-induced proteins, such as WISP1, might be an overall more effective and safer therapeutic approach to inhibit the pathological events that take place during OA.
Collapse
Affiliation(s)
- Martijn H van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teresa A Gleissl
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Bauer Y, Tedrow J, de Bernard S, Birker-Robaczewska M, Gibson KF, Guardela BJ, Hess P, Klenk A, Lindell KO, Poirey S, Renault B, Rey M, Weber E, Nayler O, Kaminski N. A novel genomic signature with translational significance for human idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 52:217-31. [PMID: 25029475 DOI: 10.1165/rcmb.2013-0310oc] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
The bleomycin-induced rodent lung fibrosis model is commonly used to study mechanisms of lung fibrosis and to test potential therapeutic interventions, despite the well recognized dissimilarities to human idiopathic pulmonary fibrosis (IPF). Therefore, in this study, we sought to identify genomic commonalities between the gene expression profiles from 100 IPF lungs and 108 control lungs that were obtained from the Lung Tissue Research Consortium, and rat lungs harvested at Days 3, 7, 14, 21, 28, 42, and 56 after bleomycin instillation. Surprisingly, the highest gene expression similarity between bleomycin-treated rat and IPF lungs was observed at Day 7. At this point of maximal rat-human commonality, we identified a novel set of 12 disease-relevant translational gene markers (C6, CTHRC1, CTSE, FHL2, GAL, GREM1, LCN2, MMP7, NELL1, PCSK1, PLA2G2A, and SLC2A5) that was able to separate almost all patients with IPF from control subjects in our cohort and in two additional IPF/control cohorts (GSE10667 and GSE24206). Furthermore, in combination with diffusing capacity of carbon monoxide measurements, four members of the translational gene marker set contributed to stratify patients with IPF according to disease severity. Significantly, pirfenidone attenuated the expression change of one (CTHRC1) translational gene marker in the bleomycin-induced lung fibrosis model, in transforming growth factor-β1-treated primary human lung fibroblasts and transforming growth factor-β1-treated human epithelial A549 cells. Our results suggest that a strategy focused on rodent model-human disease commonalities may identify genes that could be used to predict the pharmacological impact of therapeutic interventions, and thus facilitate the development of novel treatments for this devastating lung disease.
Collapse
Affiliation(s)
- Yasmina Bauer
- 1 Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Preparation and characterisation of poly(hydroxyalkanoate)/Ganoderma lucidum fibre composites: mechanical and biological properties. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1307-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
|
39
|
The Th17 pathway in the peripheral lung microenvironment interacts with expression of collagen V in the late state of experimental pulmonary fibrosis. Immunobiology 2014; 220:124-35. [PMID: 25172545 DOI: 10.1016/j.imbio.2014.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2014] [Accepted: 08/07/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Myofibroblasts derived from fibroblasts in the pathogenesis of pulmonary fibrosis causes excessive and disordered deposition of matrix proteins, including collagen V, which can cause a Th17-mediated immune response and lead to apoptosis. However, whether the intrinsic ability of lung FBs to produce the matrix depends on their site-specific variations is not known. AIM To investigate the link between Th17 and collagen V that maintains pulmonary remodeling in the peripheral lung microenvironment during the late stage of experimental pulmonary fibrosis. METHODS Young male mice including wild Balb/c mice (BALB, n=10), wild C57 Black/6J mice (C57, n=10) and IL-17 receptor A knockout mice (KO, n=8), were sacrificed 21 days after treatment with bleomycin. Picrosirius red staining, immunohistochemistry for IL-17-related markers and "in situ" detection of apoptosis, immunofluorescence for collagen types I and V, primary cell cultures from tissue lung explants for RT-PCR and electron microscopy were used. RESULTS The peripheral deposition of extracellular matrix components by myofibroblasts during the late stage is maintained in C57 mice compared with that in Balb mice and is not changed in the absence of IL-17 receptor A; however, the absence of IL-17 receptor A induces overexpression of type V collagen, amplifies the peripheral expression of IL-17 and IL-17-related cytokines and reduces peripheral lung fibroblast apoptosis. CONCLUSION A positive feedback loop between the expression patterns of collagen V and IL-17 may coordinate the maintenance of peripheral collagen I in the absence of IL-17 receptor A in fibrosis-susceptible strains in a site-specific manner.
Collapse
|
40
|
Stroma as an Active Player in the Development of the Tumor Microenvironment. CANCER MICROENVIRONMENT 2014; 8:159-66. [PMID: 25106539 DOI: 10.1007/s12307-014-0150-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/17/2014] [Accepted: 07/28/2014] [Indexed: 12/16/2022]
Abstract
The stroma is a considerable part of the tumor microenvironment. Because of its complexity, it can influence both cancer and immune cells in their behavior and cross-talk. Aside from soluble products released by non-cancer and cancer cells, extracellular matrix components have been increasingly recognized as more than just minor players in the constitution, development and regulation of the tumor microenvironment. The variations in the connective scaffold architecture, induced by transforming growth factor beta, lysyl oxidase and metalloproteinase activity, create different conditions of ECM density and stiffness. They exert broad effects on immune cells (e.g. physical barriers, modulation by release of stored TGF-β1), mesenchymal cells (transition to myofibroblasts), epithelial cells (epithelial-to-mesenchymal transition), cancer cells (progression to metastatic phenotype) and stem cells (activation of differentiation addressed by the microenvironment characteristics). Physiological mechanisms of the wound healing process, as well as mechanisms of fibrosis in some chronic pathologies, closely recall aspects of cancer deregulated biology. Their elucidation can provide a better understanding of tumor microenvironment immunobiology. In the following short review, we will focus on some aspects of the fibrous stroma to highlight its active participation in the tumor microenvironment constitution, tumor progression and the local immunological network.
Collapse
|
41
|
Leppert PC, Jayes FL, Segars JH. The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int 2014; 2014:783289. [PMID: 25110476 PMCID: PMC4106177 DOI: 10.1155/2014/783289] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 02/02/2023] Open
Abstract
The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.
Collapse
Affiliation(s)
| | | | - James H. Segars
- Unit on Reproductive Endocrinology and Infertility, Program on Pediatric and Adult Endocrinology, NICHD, NIH, Bethesda, MD 20892-1109, USA
| |
Collapse
|
42
|
Berschneider B, Ellwanger DC, Baarsma HA, Thiel C, Shimbori C, White ES, Kolb M, Neth P, Königshoff M. miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis. Int J Biochem Cell Biol 2014; 53:432-41. [PMID: 24953558 DOI: 10.1016/j.biocel.2014.06.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2013] [Revised: 05/18/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of idiopathic interstitial pneumonia. MicroRNAs (miRNAs), short, single-stranded RNAs that regulate protein expression in a post-transcriptional manner, have recently been demonstrated to contribute to IPF pathogenesis. We have previously identified WNT1-inducible signaling pathway protein 1 (WISP1) as a highly expressed pro-fibrotic mediator in IPF, but the underlying mechanisms resulting in increased WISP1 expression, remain elusive. Here, we investigated whether WISP1 is a target of miRNA regulation. We applied a novel supervised machine learning approach, which predicted miR-30a/d and miR-92a target sites in regions of the human WISP1 3'UTR preferentially bound by the miRNA ribonucleoprotein complex. Both miRNAs were decreased in IPF samples, whereas WISP1 protein was increased. We demonstrated further that transforming growth factor (TGF)-β1-induced WISP1 expression in primary lung fibroblasts in vitro and lung homogenates in vivo. Notably, miR-30a and miR-92a reversed TGF-β1-induced WISP1 mRNA expression in lung fibroblasts. Moreover, miR-92a inhibition increased WISP1 protein expression in lung fibroblasts. An inverse relationship for WISP1 and miR-92a was found in a TGF-β1 dependent lung fibrosis model in vivo. Finally, we found significantly increased WISP1 expression in primary IPF fibroblasts, which negatively correlated with miR-92a level ex vivo. Altogether, our findings indicate a regulatory role of miR-92a for WISP1 expression in pulmonary fibrosis.
Collapse
Affiliation(s)
- Barbara Berschneider
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Daniel C Ellwanger
- Department of Genome-oriented Bioinformatics, Technische Universität München, Center of Life and Food Science, Freising Weihenstephan, Germany
| | - Hoeke A Baarsma
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Cedric Thiel
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Chiko Shimbori
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, ON, Canada
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, ON, Canada
| | - Peter Neth
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
43
|
Pathak RR, Davé V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level. Cell Physiol Biochem 2014; 33:1239-60. [PMID: 24802001 PMCID: PMC4396816 DOI: 10.1159/000358693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/11/2014] [Indexed: 12/13/2022] Open
Abstract
Assimilation and integration of "omics" technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a "systomic" approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Vrushank Davé
- Morsani College of Medicine, Department of Pathology and Cell Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
44
|
Decaris ML, Gatmaitan M, FlorCruz S, Luo F, Li K, Holmes WE, Hellerstein MK, Turner SM, Emson CL. Proteomic analysis of altered extracellular matrix turnover in bleomycin-induced pulmonary fibrosis. Mol Cell Proteomics 2014; 13:1741-52. [PMID: 24741116 PMCID: PMC4083112 DOI: 10.1074/mcp.m113.037267] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
Fibrotic disease is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Surprisingly, very little is known about the synthesis and degradation rates of the many proteins and proteoglycans that constitute healthy or pathological extracellular matrix. A comprehensive understanding of altered ECM protein synthesis and degradation during the onset and progression of fibrotic disease would be immensely valuable. We have developed a dynamic proteomics platform that quantifies the fractional synthesis rates of large numbers of proteins via stable isotope labeling and LC/MS-based mass isotopomer analysis. Here, we present the first broad analysis of ECM protein kinetics during the onset of experimental pulmonary fibrosis. Mice were labeled with heavy water for up to 21 days following the induction of lung fibrosis with bleomycin. Lung tissue was subjected to sequential protein extraction to fractionate cellular, guanidine-soluble ECM proteins and residual insoluble ECM proteins. Fractional synthesis rates were calculated for 34 ECM proteins or protein subunits, including collagens, proteoglycans, and microfibrillar proteins. Overall, fractional synthesis rates of guanidine-soluble ECM proteins were faster than those of insoluble ECM proteins, suggesting that the insoluble fraction reflected older, more mature matrix components. This was confirmed through the quantitation of pyridinoline cross-links in each protein fraction. In fibrotic lung tissue, there was a significant increase in the fractional synthesis of unique sets of matrix proteins during early (pre-1 week) and late (post-1 week) fibrotic response. Furthermore, we isolated fast turnover subpopulations of several ECM proteins (e.g. type I collagen) based on guanidine solubility, allowing for accelerated detection of increased synthesis of typically slow-turnover protein populations. This establishes the presence of multiple kinetic pools of pulmonary collagen in vivo with altered turnover rates during evolving fibrosis. These data demonstrate the utility of dynamic proteomics in analyzing changes in ECM protein turnover associated with the onset and progression of fibrotic disease.
Collapse
Affiliation(s)
- Martin L Decaris
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608;
| | - Michelle Gatmaitan
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| | - Simplicia FlorCruz
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| | - Flora Luo
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| | - Kelvin Li
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| | - William E Holmes
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| | - Marc K Hellerstein
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608; §Department of Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, California 94720
| | - Scott M Turner
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| | - Claire L Emson
- From *KineMed Inc., 5980 Horton St., Suite 470, Emeryville California 94608
| |
Collapse
|
45
|
Wang XR, Lu YH. Role of Wnt/β-catenin pathway in activation and proliferation of hepatic stellate cells. Shijie Huaren Xiaohua Zazhi 2014; 22:609-614. [DOI: 10.11569/wcjd.v22.i5.609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis refers to a pathological state in which a variety of pathogenic factors lead to hepatocyte inflammation and necrosis, the imbalance between degradation and deposition of collagen and other extracellular matrix (ECM) molecules, and the abnormal proliferation of liver connective tissue. In the process of the formation of hepatic fibrosis, hepatic stellate cells are the major contributor. Activated hepatic stellate cells secrete extracellular matrix components, and excessive deposition of extracellular matrix is the central event in liver fibrosis. Currently, there have been many articles reporting that the Wnt/β-catenin signaling pathway is involved in organ fibrosis and liver fibrosis, but the underlying mechanism has not been clearly clarified. Some studies have also confirmed that there is a certain relationship between the Wnt/β-catenin pathway and activation of hepatic stellate cells in liver fibrosis.
Collapse
|
46
|
Lin CH, Yu MC, Tung WH, Chen TT, Yu CC, Weng CM, Tsai YJ, Bai KJ, Hong CY, Chien MH, Chen BC. Connective tissue growth factor induces collagen I expression in human lung fibroblasts through the Rac1/MLK3/JNK/AP-1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2823-2833. [PMID: 23906792 DOI: 10.1016/j.bbamcr.2013.07.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/07/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 01/05/2023]
Abstract
Connective tissue growth factor (CTGF) plays an important role in lung fibrosis. In this study, we investigated the role of Rac1, mixed-lineage kinase 3 (MLK3), c-Jun N-terminal kinase (JNK), and activator protein-1 (AP-1) in CTGF-induced collagen I expression in human lung fibroblasts. CTGF caused concentration- and time-dependent increases in collagen I expression. CTGF-induced collagen I expression was inhibited by the dominant negative mutant (DN) of Rac1 (RacN17), MLK3DN, MLK3 inhibitor (K252a), JNK1DN, JNK2DN, a JNK inhibitor (SP600125), and an AP-1 inhibitor (curcumin). Treatment of cells with CTGF caused activation of Rac1, MLK3, JNK, and AP-1. The CTGF-induced increase in MLK3 phosphorylation was inhibited by RacN17. Treatment with RacN17 and the MLK3DN inhibited CTGF-induced JNK phosphorylation. CTGF caused increases in c-Jun phosphorylation and the recruitment of c-Jun and c-Fos to the collagen I promoter. Furthermore, stimulation of cells with the CTGF resulted in increases in AP-1-luciferase activity; this effect was inhibited by Rac1N17, MLK3DN, JNK1DN, and JNK2DN. Moreover, CTGF-induced α-smooth muscle actin (α-SMA) expression was inhibited by the procollagen I small interfering RNA (siRNA). These results suggest for the first time that CTGF acting through Rac1 activates the MLK3/JNK signaling pathway, which in turn initiates AP-1 activation and recruitment of c-Jun and c-Fos to the collagen I promoter and ultimately induces collagen I expression in human lung fibroblasts.
Collapse
Affiliation(s)
- Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chih Yu
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wan-Hsuan Tung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ting Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Chi Yu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Weng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Jyu Tsai
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kua-Jen Bai
- Department of Pulmonary Medicine, Taipei Medical University - Wanfang Hospital, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chuang-Ye Hong
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan
| | - Ming-Hsien Chien
- Taipei Medical University Wangfang Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
47
|
Blaauboer ME, Boeijen FR, Emson CL, Turner SM, Zandieh-Doulabi B, Hanemaaijer R, Smit TH, Stoop R, Everts V. Extracellular matrix proteins: a positive feedback loop in lung fibrosis? Matrix Biol 2013; 34:170-8. [PMID: 24291458 DOI: 10.1016/j.matbio.2013.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022]
Abstract
Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis. We further report in vitro experiments clarifying both the effect of myofibroblast differentiation on this expression and the effect of extracellular elastin on myofibroblast differentiation. Lung fibrosis was induced in female C57Bl/6 mice by bleomycin instillation. Animals were sacrificed at zero to five weeks after fibrosis induction. Collagen synthesized during the week prior to sacrifice was labeled with deuterium. After sacrifice, lung tissue was collected for determination of new collagen formation, microarray analysis, and histology. Human lung fibroblasts were grown on tissue culture plastic or BioFlex culture plates coated with type I collagen or elastin, and stimulated to undergo myofibroblast differentiation by 0-10 ng/ml transforming growth factor (TGF)β1. mRNA expression was analyzed by quantitative real-time PCR. New collagen formation during bleomycin-induced fibrosis was highly correlated to gene expression of elastin, type V collagen and tenascin C. At the protein level, elastin, type V collagen and tenascin C were highly expressed in fibrotic areas as seen in histological sections of the lung. Type V collagen and tenascin C were transiently increased. Human lung fibroblasts stimulated with TGFβ1 strongly increased gene expression of elastin, type V collagen and tenascin C. The extracellular presence of elastin increased gene expression of the myofibroblastic markers α smooth muscle actin and type I collagen. The extracellular matrix composition changes dramatically during the development of lung fibrosis. The increased levels of elastin, type V collagen and tenascin C are probably the result of increased expression by fibroblastic cells; reversely, elastin influences myofibroblast differentiation. This suggests a reciprocal interaction between fibroblasts and the extracellular matrix composition that could enhance the development of lung fibrosis.
Collapse
Affiliation(s)
- Marjolein E Blaauboer
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, The Netherlands; TNO Metabolic Health Research, Leiden, The Netherlands.
| | - Fee R Boeijen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | | | | | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| | | | - Theo H Smit
- Department of Orthopaedics, VU Medical Center, MOVE Research Institute Amsterdam, The Netherlands
| | - Reinout Stoop
- TNO Metabolic Health Research, Leiden, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, The Netherlands
| |
Collapse
|
48
|
Clarke DL, Carruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. FIBROGENESIS & TISSUE REPAIR 2013; 6:20. [PMID: 24279676 PMCID: PMC4176485 DOI: 10.1186/1755-1536-6-20] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/19/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Repairing damaged tissues is an essential homeostatic mechanism that enables clearance of dead or damaged cells after injury, and the maintenance of tissue integrity. However, exaggeration of this process in the lung can lead to the development of fibrotic scar tissue. This is characterized by excessive accumulation of extracellular matrix (ECM) components such as fibronectin, proteoglycans, hyaluronic acid, and interstitial collagens. After tissue injury, or a breakdown of tissue integrity, a cascade of events unfolds to maintain normal tissue homeostasis. Inflammatory mediators are released from injured epithelium, leading to both platelet activation and inflammatory cell migration. Inflammatory cells are capable of releasing multiple pro-inflammatory and fibrogenic mediators such as transforming growth factor (TGF)β and interleukin (IL)-13, which can trigger myofibroblast proliferation and recruitment. The myofibroblast population is also expanded as a result of epithelial cells undergoing epithelial-to-mesenchymal transition and of the activation of resident fibroblasts, leading to ECM deposition and tissue remodeling. In the healthy lung, wound healing then proceeds to restore the normal architecture of the lung; however, fibrosis can develop when the wound is severe, the tissue injury persists, or the repair process becomes dysregulated. Understanding the processes regulating aberrant wound healing and the matrix in the chronic fibrotic lung disease idiopathic pulmonary fibrosis (IPF), is key to identifying new treatments for this chronic debilitating disease. This review focuses primarily on the emerging role of enzymes in the lungs of patients with IPF. Elevated expression of a number of enzymes that can directly modulate the ECM has been reported, and recent data indicates that modulating the activity of these enzymes can have a downstream effect on fibrotic tissue remodeling.
Collapse
|