1
|
Haploinsufficiency of EXT1 and Heparan Sulphate Deficiency Associated with Hereditary Multiple Exostoses in a Pakistani Family. Medicina (B Aires) 2022; 59:medicina59010100. [PMID: 36676722 PMCID: PMC9863873 DOI: 10.3390/medicina59010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Objectives: Hereditary multiple exostoses (HME) is a disease characterized by cartilage-capped bony protuberances at the site of growth plates of long bones. Functional mutations in the exostosin genes (EXT1 and EXT2) are reported to affect the hedgehog signalling pathways leading to multiple enchondromatosis. However, the exact role of each EXT protein in the regulation of heparan sulphate (HS) chain elongation is still an enigma. In this study, a Pakistani family with HME is investigated to find out the genetic basis of the disease. Materials and Methods: Genotyping of eight members of the family by amplifying microsatellite markers, tightly linked to the EXT1 and EXT2 genes. Results: The study revealed linkage of the HME family to the EXT1 locus 8q24.1. Sanger sequencing identified a heterozygous deletion (c.247Cdel) in exon 1 of EXT1, segregating with the disease phenotype in the family. In silico analysis predicted a shift in the frame causing an early stop codon (p.R83GfsX52). The predicted dwarf protein constituting 134 amino acids was functionally aberrant with a complete loss of the catalytic domain at the C-terminus. Interestingly, an alternative open reading frame 3 (ORF3) caused by the frame shift is predicted to encode a protein sequence, identical to the wild type and containing the catalytic domain, but lacking the first 100 amino acids of the wild-type EXT1 protein. Conclusion: Consequently, haploinsufficiency could be the cause of HME in the investigated family as the mutated copy of EXT1 is ineffective for EXT-1/2 complex formation. The predicted ORF3 protein could be of great significance in understanding several aspects of HME pathogenesis.
Collapse
|
2
|
Sefkow-Werner J, Machillot P, Sales A, Castro-Ramirez E, Degardin M, Boturyn D, Cavalcanti-Adam EA, Albiges-Rizo C, Picart C, Migliorini E. Heparan sulfate co-immobilized with cRGD ligands and BMP2 on biomimetic platforms promotes BMP2-mediated osteogenic differentiation. Acta Biomater 2020; 114:90-103. [PMID: 32673751 DOI: 10.1016/j.actbio.2020.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/27/2022]
Abstract
The chemical and physical properties of the extracellular matrix (ECM) are known to be fundamental for regulating growth factor bioactivity. The role of heparan sulfate (HS), a glycosaminoglycan, and of cell adhesion proteins (containing the cyclic RGD (cRGD) ligands) on bone morphogenetic protein 2 (BMP2)-mediated osteogenic differentiation has not been fully explored. In particular, it is not known whether and how their effects can be potentiated when they are presented in controlled close proximity, as in the ECM. Here, we developed streptavidin platforms to mimic selective aspects of the in vivo presentation of cRGD, HS and BMP2, with a nanoscale-control of their surface density and orientation to study cell adhesion and osteogenic differentiation. We showed that whereas a controlled increase in cRGD surface concentration upregulated BMP2 signaling due to β3 integrin recruitment, silencing either β1 or β3 integrins negatively affected BMP2-mediated phosphorylation of SMAD1/5/9 and alkaline phosphatase expression. Furthermore, the presence of adsorbed BMP2 promoted cellular adhesion at very low cRGD concentrations. Finally, we proved that HS co-immobilized with cRGD both sustained BMP2 signaling and enhanced osteogenic differentiation compared to BMP2 directly immobilized on streptavidin, even with a low cRGD surface concentration. Altogether, our results show that HS facilitated and sustained the synergy between BMP2 and integrin pathways and that the co-immobilization of HS and cRGD peptides optimised BMP2-mediated osteogenic differentiation. Statement of significance The growth factor BMP2 is used to treat large bone defects. Previous studies have shown that the presentation of BMP2 via extracellular matrix molecules, such as heparan sulfate (HS), can upregulate BMP2 signaling. The potential advantages of dose reduction and local specificity have stimulated interest in further investigations into biomimetic approaches. We designed a streptavidin model surface eligible for immobilizing tunable amounts of molecules from the extracellular space, such as HS, adhesion motifs (cyclic RGD) and BMP2. By studying cellular adhesion, BMP2 bioactivity and its osteogenic potential we reveal the combined effect of integrins, HS and BMP2, which contribute in answering fundamental questions regarding cell-matrix interaction.
Collapse
|
3
|
Bachvarova V, Dierker T, Esko J, Hoffmann D, Kjellen L, Vortkamp A. Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate. Matrix Biol 2020; 93:43-59. [PMID: 32201365 DOI: 10.1016/j.matbio.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.
Collapse
Affiliation(s)
- Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, UCSD, United States.
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Germany.
| | - Lena Kjellen
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| |
Collapse
|
4
|
D'Arienzo A, Andreani L, Sacchetti F, Colangeli S, Capanna R. Hereditary Multiple Exostoses: Current Insights. Orthop Res Rev 2019; 11:199-211. [PMID: 31853203 PMCID: PMC6916679 DOI: 10.2147/orr.s183979] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Hereditary multiple exostoses (HME), also called hereditary multiple osteochondromas, is a rare genetic disorder characterized by multiple osteochondromas that grow near the growth plates of bones such as the ribs, pelvis, vertebrae and especially long bones. The disease presents with various clinical manifestations including chronic pain syndromes, restricted range of motion, limb deformity, short stature, scoliosis and neurovascular alteration. Malignant transformation of exostosis is rarely seen. The disease has no medical treatment and surgery is only recommended in symptomatic exostoses or in cases where a malignant transformation is suspected. HME is mainly caused by mutations and functional loss of the EXT1 and EXT2 genes which encode glycosyltransferases, an enzyme family involved in heparan sulfate (HS) synthesis. However, the peculiar molecular mechanism that leads to the structural changes of the cartilage and to osteochondroma formation is still being studied. Basic science studies have recently shown new insights about altering the molecular and cellular mechanism caused by HS deficiency. Pediatricians, geneticists and orthopedic surgeons play an important role in the study and treatment of this severe pathology. Despite the recent significant advances, we still need novel insights to better specify the role of HS in signal transduction. The purpose of this review was to analyze the most relevant aspects of HME from the literature review, give readers an important tool to understand its clinical features and metabolic-pathogenetic mechanism, and to identify an effective treatment method. We focused on the aspects of the disease related to clinical management and surgical treatment in order to give up-to-date information that could be useful for following best clinical practice.
Collapse
Affiliation(s)
- Antonio D'Arienzo
- Department of Translational Research on New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Lorenzo Andreani
- Department of Translational Research on New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Federico Sacchetti
- Department of Translational Research on New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Simone Colangeli
- Department of Translational Research on New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Rodolfo Capanna
- Department of Translational Research on New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Piombo V, Jochmann K, Hoffmann D, Wuelling M, Vortkamp A. Signaling systems affecting the severity of multiple osteochondromas. Bone 2018; 111:71-81. [PMID: 29545125 DOI: 10.1016/j.bone.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/12/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Multiple osteochondromas (MO) syndrome is a dominant autosomal bone disorder characterized by the formation of cartilage-capped bony outgrowths that develop at the juxtaposition of the growth plate of endochondral bones. MO has been linked to mutations in either EXT1 or EXT2, two glycosyltransferases required for the synthesis of heparan sulfate (HS). The establishment of mouse mutants demonstrated that a clonal, homozygous loss of Ext1 in a wild type background leads to the development of osteochondromas. Here we investigate mechanisms that might contribute to the variation in the severity of the disease observed in human patients. Our results show that residual amounts of HS are sufficient to prevent the development of osteochondromas strongly supporting that loss of heterozygosity is required for osteochondroma formation. Furthermore, we demonstrate that different signaling pathways affect size and frequency of the osteochondromas thereby modulating the severity of the disease. Reduced Fgfr3 signaling, which regulates proliferation and differentiation of chondrocytes, increases osteochondroma number, while activated Fgfr3 signaling reduces osteochondroma size. Both, activation and reduction of Wnt/β-catenin signaling decrease osteochondroma size and frequency by interfering with the chondrogenic fate of the mutant cells. Reduced Ihh signaling does not change the development of the osteochondromas, while elevated Ihh signaling increases the cellularity and inhibits chondrocyte differentiation in a subset of osteochondromas and might thus predispose osteochondromas to the transformation into chondrosarcomas.
Collapse
Affiliation(s)
- Virginia Piombo
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Katja Jochmann
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Manuela Wuelling
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Vas WJ, Shah M, Blacker TS, Duchen MR, Sibbons P, Roberts SJ. Decellularized Cartilage Directs Chondrogenic Differentiation: Creation of a Fracture Callus Mimetic. Tissue Eng Part A 2018; 24:1364-1376. [PMID: 29580181 DOI: 10.1089/ten.tea.2017.0450] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Complications that arise from impaired fracture healing have considerable socioeconomic implications. Current research in the field of bone tissue engineering predominantly aims to mimic the mature bone tissue microenvironment. This approach, however, may produce implants that are intrinsically unresponsive to the cues present during the initiation of fracture repair. As such, this study describes the development of decellularized xenogeneic hyaline cartilage matrix in an attempt to mimic the initial reparative phase of fracture repair. Three approaches based on vacuum-assisted osmotic shock (Vac-OS), Triton X-100 (Vac-STx), and sodium dodecyl sulfate (Vac-SDS) were investigated. The Vac-OS methodology reduced DNA content below 50 ng/mg of tissue, while retaining 85% of the sulfate glycosaminoglycan content, and as such was selected as the optimal methodology for decellularization. The resultant Vac-OS scaffolds (decellularized extracellular matrix [dcECM]) were also devoid of the immunogenic alpha-Gal epitope. Furthermore, minimal disruption to the structural integrity of the dcECM was demonstrated using differential scanning calorimetry and fluorescence lifetime imaging microscopy. The biological integrity of the dcECM was confirmed by its ability to drive the chondrogenic commitment and differentiation of human chondrocytes and periosteum-derived cells, respectively. Furthermore, histological examination of dcECM constructs implanted in immunocompetent mice revealed a predominantly M2 macrophage-driven regenerative response both at 2 and 8 weeks postimplantation. These findings contrasted with the implanted native costal cartilage that elicited a predominantly M1 macrophage-mediated inflammatory response. This study highlights the capacity of dcECM from the Vac-OS methodology to direct the key biological processes of endochondral ossification, thus potentially recapitulating the callus phase of fracture repair.
Collapse
Affiliation(s)
- Wollis J Vas
- 1 Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London , Stanmore, United Kingdom
| | - Mittal Shah
- 1 Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London , Stanmore, United Kingdom
| | - Thomas S Blacker
- 2 Department of Cell and Developmental Biology, University College London , London, United Kingdom .,3 Department of Physics and Astronomy, University College London , London, United Kingdom
| | - Michael R Duchen
- 2 Department of Cell and Developmental Biology, University College London , London, United Kingdom
| | - Paul Sibbons
- 4 Northwick Park Institute for Medical Research , Northwick Park Hospital, London, United Kingdom
| | - Scott J Roberts
- 1 Department of Materials and Tissue, Institute of Orthopaedics and Musculoskeletal Science, University College London , Stanmore, United Kingdom
| |
Collapse
|
7
|
Sinha S, Mundy C, Bechtold T, Sgariglia F, Ibrahim MM, Billings PC, Carroll K, Koyama E, Jones KB, Pacifici M. Unsuspected osteochondroma-like outgrowths in the cranial base of Hereditary Multiple Exostoses patients and modeling and treatment with a BMP antagonist in mice. PLoS Genet 2017; 13:e1006742. [PMID: 28445472 PMCID: PMC5425227 DOI: 10.1371/journal.pgen.1006742] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/10/2017] [Accepted: 04/05/2017] [Indexed: 11/18/2022] Open
Abstract
Hereditary Multiple Exostoses (HME) is a rare pediatric disorder caused by loss-of-function mutations in the genes encoding the heparan sulfate (HS)-synthesizing enzymes EXT1 or EXT2. HME is characterized by formation of cartilaginous outgrowths-called osteochondromas- next to the growth plates of many axial and appendicular skeletal elements. Surprisingly, it is not known whether such tumors also form in endochondral elements of the craniofacial skeleton. Here, we carried out a retrospective analysis of cervical spine MRI and CT scans from 50 consecutive HME patients that included cranial skeletal images. Interestingly, nearly half of the patients displayed moderate defects or osteochondroma-like outgrowths in the cranial base and specifically in the clivus. In good correlation, osteochondromas developed in the cranial base of mutant Ext1f/f;Col2-CreER or Ext1f/f;Aggrecan-CreER mouse models of HME along the synchondrosis growth plates. Osteochondroma formation was preceded by phenotypic alteration of cells at the chondro-perichondrial boundary and was accompanied by ectopic expression of major cartilage matrix genes -collagen 2 and collagen X- within the growing ectopic masses. Because chondrogenesis requires bone morphogenetic protein (BMP) signaling, we asked whether osteochondroma formation could be blocked by a BMP signaling antagonist. Systemic administration with LDN-193189 effectively inhibited osteochondroma growth in conditional Ext1-mutant mice. In vitro studies with mouse embryo chondrogenic cells clarified the mechanisms of LDN-193189 action that turned out to include decreases in canonical BMP signaling pSMAD1/5/8 effectors but interestingly, concurrent increases in such anti-chondrogenic mechanisms as pERK1/2 and Chordin, Fgf9 and Fgf18 expression. Our study is the first to reveal that the cranial base can be affected in patients with HME and that osteochondroma formation is amenable to therapeutic drug intervention.
Collapse
Affiliation(s)
- Sayantani Sinha
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Till Bechtold
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Federica Sgariglia
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mazen M. Ibrahim
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Paul C. Billings
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kristen Carroll
- Shriner’s Hospital for Children, Salt Lake City, Utah, United States of America
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kevin B. Jones
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (MP); (KBJ)
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MP); (KBJ)
| |
Collapse
|
8
|
Hong G, Guo X, Yan W, Li Q, Zhao H, Ma P, Hu X. Identification of a novel mutation in the EXT1 gene from a patient with multiple osteochondromas by exome sequencing. Mol Med Rep 2016; 15:657-664. [PMID: 28035357 PMCID: PMC5364847 DOI: 10.3892/mmr.2016.6086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/18/2016] [Indexed: 01/16/2023] Open
Abstract
Multiple osteochondromas (MO) is an autosomal skeletal disease with an elusive molecular mechanism. To further elucidate the genetic mechanism of the disease a three-generation Chinese family with MO was observed and researched, and a novel frameshift mutation (c.335_336insA) in the exotosin 1 (EXT1) gene of one patient with MO was observed through exome sequencing. This was further validated by Sanger sequencing and comparison with 200 unrelated healthy controls. Immunohistochemistry and multiple sequence alignment were performed to determine the pathogenicity of the candidate mutation. Multiple sequence alignment suggested that codon 335 and 336 in the EXT1 gene were highly conserved regions in vertebrates. Immunohistochemistry revealed that EXT1 protein expression levels were decreased in a patient with MO and this mutation compared with a patient with MO who had no EXT1 mutation. Owing to the appearance of c.335_336insA in exon 1 of EXT1, a premature stop codon was introduced, resulting in truncated EXT1. As a result integrated and functional EXT1 was reduced. EXT1 is involved in the biosynthesis of heparan sulfate (HS), an essential molecule, and its dysfunction may lead to MO. The novel mutation of c.335_336insA in the EXT1 gene reported in the present study has enlarged the causal mutation spectrum of MO, and may assist genetic counseling and prenatal diagnosis of MO.
Collapse
Affiliation(s)
- Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xiaoyan Guo
- Department of Laboratory Medicine, The Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Wei Yan
- Department of Bone Tumors, The Fuzhou Second Affiliated Hospital of Xiamen University, Fuzhou, Fujian 350007, P.R. China
| | - Qianqian Li
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Hailing Zhao
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ping Ma
- Medical College, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xiao Hu
- Shenzhen Huada Gene Research Institute, Shenzhen, Fujian 518083, P.R. China
| |
Collapse
|
9
|
Beltrami G, Ristori G, Scoccianti G, Tamburini A, Capanna R. Hereditary Multiple Exostoses: a review of clinical appearance and metabolic pattern. ACTA ACUST UNITED AC 2016; 13:110-118. [PMID: 27920806 DOI: 10.11138/ccmbm/2016.13.2.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hereditary multiple exostoses (HME) is an inherited genetic condition characterized by the presence of multiple exostoses (osteochondromas). MHE is a relatively rare autosomal dominant disorder, mainly caused by loss of function mutations in two genes: exostosin-1 (EXT1) and exostosin-2 (EXT2). These genes are linked to heparan sulfate (HS) synthesis, but the specific molecular mechanism leading to the disruption of the cartilage structure and the consequent exostoses formation is still not resolved. The aim of this paper is to encounter the main aspects of HME reviewing the literature, in order to improve clinical features and evolution, and the metabolic-pathogenetic mechanisms underlying. Although MHE may be asymptomatic, a wide spectrum of clinical manifestations is found in paediatric patients with this disorder. Pain is experienced by the majority of patients, even restricted motion of the joint is often encountered. Sometimes exostoses can interfere with normal development of the growth plate, giving rise to limb deformities, low stature and scoliosis. Other many neurovascular and associated disorders can lead to surgery. The most feared complication is the malignant transformation of an existing osteochondroma into a secondary peripheral chondrosarcoma, during adulthood. The therapeutic approach to HME is substantially surgical, whereas the medical one is still at an experimental level. In conclusion, HME is a complex disease where the paediatrician, the geneticist and the orthopaedic surgeon play an interchangeable role in diagnosis, research and therapy. We are waiting for new studies able to explain better the role of HS in signal transduction, because it plays a role in other bone and cartilage diseases (in particular malignant degeneration) as well as in skeletal embryology.
Collapse
Affiliation(s)
- Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| | - Gabriele Ristori
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| | - Angela Tamburini
- Hematology-Oncology Service, Department of Pediatrics, "Azienda Ospedaliera Universitaria Meyer", Firenze, Italy
| | - Rodolfo Capanna
- Department of Orthopaedic Oncology and Reconstructive Surgery, "Azienda Ospedaliera Universitaria Careggi", Firenze, Italy
| |
Collapse
|
10
|
Ge X, Tsang K, He L, Garcia RA, Ermann J, Mizoguchi F, Zhang M, Zhou B, Zhou B, Aliprantis AO. NFAT restricts osteochondroma formation from entheseal progenitors. JCI Insight 2016; 1:e86254. [PMID: 27158674 DOI: 10.1172/jci.insight.86254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth.
Collapse
Affiliation(s)
- Xianpeng Ge
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kelly Tsang
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lizhi He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto A Garcia
- Department of Pathology, Bone and Soft Tissue Pathology Division, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joerg Ermann
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Fumitaka Mizoguchi
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Minjie Zhang
- Orthopaedic Research Laboratories, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bin Zhou
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, USA
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Antonios O Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Baron J, Sävendahl L, De Luca F, Dauber A, Phillip M, Wit JM, Nilsson O. Short and tall stature: a new paradigm emerges. Nat Rev Endocrinol 2015; 11:735-46. [PMID: 26437621 PMCID: PMC5002943 DOI: 10.1038/nrendo.2015.165] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the past, the growth hormone (GH)-insulin-like growth factor 1 (IGF-1) axis was often considered to be the main system that regulated childhood growth and, therefore, determined short stature and tall stature. However, findings have now revealed that the GH-IGF-1 axis is just one of many regulatory systems that control chondrogenesis in the growth plate, which is the biological process that drives height gain. Consequently, normal growth in children depends not only on GH and IGF-1 but also on multiple hormones, paracrine factors, extracellular matrix molecules and intracellular proteins that regulate the activity of growth plate chondrocytes. Mutations in the genes that encode many of these local proteins cause short stature or tall stature. Similarly, genome-wide association studies have revealed that the normal variation in height seems to be largely due to genes outside the GH-IGF-1 axis that affect growth at the growth plate through a wide variety of mechanisms. These findings point to a new conceptual framework for understanding short and tall stature that is centred not on two particular hormones but rather on the growth plate, which is the structure responsible for height gain.
Collapse
Affiliation(s)
- Jeffrey Baron
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Francesco De Luca
- St. Christopher’s Hospital for Children, Section of Endocrinology and Diabetes; Drexel University College of Medicine, Department of Pediatrics, Philadelphia, PA, U.S.A
| | - Andrew Dauber
- Cincinnati Center for Growth Disorders, Cincinnati Children’s Hospital Medical Center, Division of Endocrinology, Cincinnati, Ohio, USA
| | - Moshe Phillip
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Children’s Diabetes, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Jan M. Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ola Nilsson
- Division of Pediatric Endocrinology, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
- Center for Molecular Medicine, Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Tóth F, Nissi MJ, Ellermann JM, Wang L, Shea KG, Polousky J, Carlson CS. Novel Application of Magnetic Resonance Imaging Demonstrates Characteristic Differences in Vasculature at Predilection Sites of Osteochondritis Dissecans. Am J Sports Med 2015; 43:2522-7. [PMID: 26286878 PMCID: PMC4766866 DOI: 10.1177/0363546515596410] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Understanding the pathogenesis of osteochondrosis/osteochondritis dissecans and other developmental orthopaedic diseases that are thought to occur secondary to defects in vascular supply to growth/epiphyseal cartilage has been hampered by the inability to image the vasculature in this tissue. This is particularly true in human beings due to limitations of current imaging techniques and the lack of availability of appropriate cadaveric samples for histological studies. HYPOTHESIS Susceptibility-weighted imaging, an MRI sequence, allows identification of characteristic differences in the vascular architecture in species that are affected by osteochondrosis/osteochondritis dissecans on the femoral condyle (humans and pigs) versus a species that is free of the disease (goat). STUDY DESIGN Controlled laboratory study. MATERIALS Distal femora from cadavers of juvenile humans (n = 5), pigs (n = 3), and goats (n = 3) were scanned in a 9.4-T MRI scanner using susceptibility-weighted imaging. Three-dimensional reconstructions were created, and minimum intensity projections were calculated in 3 planes to enhance visualization of the vascular architecture. RESULTS Susceptibility-weighted imaging allowed clear visualization of the epiphyseal vasculature in all species. Vascular architecture, with vessels primarily arising from the perichondrium, was similar in humans and pigs, which are predisposed to osteochondrosis/osteochondritis dissecans, and was starkly different from that present in goats, a species in which there are no reports of osteochondrosis/osteochondritis dissecans. Furthermore, vessels in the distal femoral predilection site disappeared with age in humans in a pattern similar to that reported previously in pigs. CONCLUSION Nearly identical vascular architecture at the shared primary predilection site of osteochondrosis/osteochondritis dissecans in the femoral condyles in human beings and pigs suggests that vascular failure, which is known to be central to the pathogenesis of this disease in pigs, may also play a role in humans. CLINICAL RELEVANCE This assumption of a shared pathogenesis is supported by the pattern of disappearance of vessels with age at the primary predilection site of osteochondritis dissecans in humans, which is essentially identical to that which has been reported in pigs. Susceptibility-weighted imaging will likely help further elucidate this potential relationship in the future.
Collapse
Affiliation(s)
- Ferenc Tóth
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA,Correspondence to: Ferenc Toth, 435H AnSci/VetMed, 1988 Fitch Avenue, St. Paul, MN 55108, USA; Tel.: 1-612-624-7727;
| | - Mikko J. Nissi
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA,Department of Radiology, Institute of Diagnostics, University of Oulu, Oulu, Finland,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jutta M. Ellermann
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Luning Wang
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kevin G. Shea
- St Lukes Health System, Boise, ID,Department of Orthopedics, University of Utah, Salt Lake City, UT
| | - John Polousky
- The Rocky Mountain Hospital for Children, Denver, CO
| | - Cathy S. Carlson
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
13
|
Wang KX, Xu LL, Rui YF, Huang S, Lin SE, Xiong JH, Li YH, Lee WYW, Li G. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS One 2015; 10:e0120593. [PMID: 25799169 PMCID: PMC4370627 DOI: 10.1371/journal.pone.0120593] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/24/2015] [Indexed: 12/11/2022] Open
Abstract
Factors synthesized by mesenchymal stem cells (MSCs) contain various growth factors, cytokines, exosomes and microRNAs, which may affect the differentiation abilities of MSCs. In the present study, we investigated the effects of secretion factors of human umbilical cord derived mesenchymal stem cells (hUCMSCs) on osteogenesis of human bone marrow derived MSCs (hBMSCs). The results showed that 20 μg/ml hUCMSCs secretion factors could initiate osteogenic differentiation of hBMSCs without osteogenic induction medium (OIM), and the amount of calcium deposit (stained by Alizarin Red) was significantly increased after the hUCMSCs secretion factors treatment. Real time quantitative reverse transcription-polymerase chain reaction (real time qRT-PCR) demonstrated that the expression of osteogenesis-related genes including ALP, BMP2, OCN, Osterix, Col1α and Runx2 were significantly up-regulated following hUCMSCs secretion factors treatment. In addition, we found that 10 μg hUCMSCs secretion factors together with 2×10(5) hBMSCs in the HA/TCP scaffolds promoted ectopic bone formation in nude mice. Local application of 10 μg hUCMSCs secretion factors with 50 μl 2% hyaluronic acid hydrogel and 1×10(5) rat bone marrow derived MSCs (rBMSCs) also significantly enhanced the bone repair of rat calvarial bone critical defect model at both 4 weeks and 8 weeks. Moreover, the group that received the hUCMSCs secretion factors treatment had more cartilage and bone regeneration in the defect areas than those in the control group. Taken together, these findings suggested that hUCMSCs secretion factors can initiate osteogenesis of bone marrow MSCs and promote bone repair. Our study indicates that hUCMSCs secretion factors may be potential sources for promoting bone regeneration.
Collapse
Affiliation(s)
- Kui-Xing Wang
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Liang-Liang Xu
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shuo Huang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Si-En Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang-Hui Xiong
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- State Key Laboratory of Space Medical Fundamentation and Application, Astronaut Research and Training Center of China (ACC), 26 Beiqing Road, 100094, Beijing, China
| | - Ying-Hui Li
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- State Key Laboratory of Space Medical Fundamentation and Application, Astronaut Research and Training Center of China (ACC), 26 Beiqing Road, 100094, Beijing, China
| | - Wayne Yuk-Wai Lee
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Li
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- * E-mail:
| |
Collapse
|
14
|
Herrero-Mendez A, Palomares T, Castro B, Herrero J, Granado MH, Bejar JM, Alonso-Varona A. HR007: a family of biomaterials based on glycosaminoglycans for tissue repair. J Tissue Eng Regen Med 2015; 11:989-1001. [PMID: 25728195 DOI: 10.1002/term.1998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 01/19/2023]
Abstract
Most new advances in tissue engineering (TE) focus on the creation of adequate microenvironments that may accelerate the repair processes of damaged tissues. Extracellular matrix (ECM) of Wharton's jelly (WJ) from umbilical cords is very rich in sulphated GAGs (sGAGs) and hyaluronic acid (HA), components which have special properties that could positively influence the regeneration of several types of tissue. Previously, we described the methodology for the extraction and purification of GAGs from WJ and, importantly, the separation of sGAGs and HA to develop various scaffolds for regenerative medicine. In this new study we hypothesized that the biomaterials obtained, called HR007s, would be excellent candidates for two different applications, chondral and dermal repair. First, we have confirmed that the GAGs obtained are biocompatible, as they do not cause cytotoxicity, haemolysis or an inflammatory response. Second, we have developed three-dimensional (3D) structures through the combination of different ratios of GAGs and their subsequent stabilization, which can be properly adapted to target tissues, cartilage or skin. Finally, we have combined these scaffolds with adipose mesenchymal stem cells (ASCs) or fibroblasts for application to chondral or dermal defects, respectively, with the goal of promoting fast reparative processes. The results show that HR007 scaffolds induce cell proliferation, enhance the expression of specific gene markers, increase the production of tissue ECM proteins and have chemotactic effects over the studied cells. In summary, the bioactive properties of HR007 scaffolds make them promising candidates for use in regenerative medicine, at least for chondral and dermal repair. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - T Palomares
- Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - B Castro
- Histocell, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - J Herrero
- Histocell, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - M H Granado
- Histocell, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - J M Bejar
- Department of Plastic Surgery, Cruces Hospital, Barakaldo, Bizkaia, Spain
| | - A Alonso-Varona
- Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
15
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
16
|
Douglass S, Goyal A, Iozzo RV. The role of perlecan and endorepellin in the control of tumor angiogenesis and endothelial cell autophagy. Connect Tissue Res 2015; 56:381-91. [PMID: 26181327 PMCID: PMC4769797 DOI: 10.3109/03008207.2015.1045297] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During tumor growth and angiogenesis there is a dynamic remodeling of tissue architecture often accompanied by the release of extracellular matrix constituents full of biological activity. One of the key constituents of the tumor microenvironment is the large heparan sulfate proteoglycan perlecan. This proteoglycan, strategically located at cell surfaces and within basement membranes, is a well-defined pro-angiogenic molecule when intact. However, when partially processed by proteases released during cancer remodeling and invasion, the C-terminal fragment of perlecan, known as endorepellin, has opposite effects than its parent molecule. Endorepellin is a potent inhibitor of angiogenesis by exerting a dual receptor antagonism by simultaneously engaging VEGFR2 and α2β1 integrin. Signaling through the α2β1 integrin leads to actin disassembly and block of endothelial cell migration, necessary for capillary morphogenesis. Signaling through the VEGFR2 induces dephosphorylation of the receptor via activation of SHP-1 and suppression of downstream proangiogenic effectors, especially attenuating VEGFA expression. A novel and emerging role of endorepellin is its ability to evoke autophagy by activating Peg3 and various canonical autophagic markers. This effect is specific for endothelial cells as these are the primary cells expressing both VEGFR2 and α2β1 integrin. Thus, an endogenous fragment of a ubiquitous proteoglycan can regulate both angiogenesis and autophagy through a dual receptor antagonism. The biological properties of this natural endogenous protein place endorepellin as a potential therapeutic agent against cancer or diseases where angiogenesis is prominent.
Collapse
Affiliation(s)
- Stephen Douglass
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Atul Goyal
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| | - Renato V Iozzo
- a Department of Pathology , Anatomy and Cell Biology and the Cancer Cell Biology and Signalling Program, Kimmel Cancer Centre, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|