1
|
Xiang Q, Li L, Ji W, Gawlitta D, Walboomers XF, van den Beucken JJJP. Beyond resorption: osteoclasts as drivers of bone formation. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:22. [PMID: 39392536 PMCID: PMC11469995 DOI: 10.1186/s13619-024-00205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Emerging evidence illustrates that osteoclasts (OCs) play diverse roles beyond bone resorption, contributing significantly to bone formation and regeneration. Despite this, OCs remain mysterious cells, with aspects of their lifespan-from origin, fusion, alterations in cellular characteristics, to functions-remaining incompletely understood. Recent studies have identified that embryonic osteoclastogenesis is primarily driven by osteoclast precursors (OCPs) derived from erythromyeloid progenitors (EMPs). These precursor cells subsequently fuse into OCs essential for normal bone development and repair. Postnatally, hematopoietic stem cells (HSCs) become the primary source of OCs, gradually replacing EMP-derived OCs and assuming functional roles in adulthood. The absence of OCs during bone development results in bone structure malformation, including abnormal bone marrow cavity formation and shorter long bones. Additionally, OCs are reported to have intimate interactions with blood vessels, influencing bone formation and repair through angiogenesis regulation. Upon biomaterial implantation, activation of the innate immune system ensues immediately. OCs, originating from macrophages, closely interact with the immune system. Furthermore, evidence from material-induced bone formation events suggests that OCs are pivotal in these de novo bone formation processes. Nevertheless, achieving a pure OC culture remains challenging, and interpreting OC functions in vivo faces difficulties due to the presence of other multinucleated cells around bone-forming biomaterials. We here describe the fusion characteristics of OCPs and summarize reliable markers and morphological changes in OCs during their fusion process, providing guidance for researchers in identifying OCs both in vitro and in vivo. This review focuses on OC formation, characterization, and the roles of OCs beyond resorption in various bone pathophysiological processes. Finally, therapeutic strategies targeting OCs are discussed.
Collapse
Affiliation(s)
- Qianfeng Xiang
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
| | - Lei Li
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wei Ji
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - X Frank Walboomers
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands
- Research Institute for Medical Innovation, Radboudumc, Nijmegen, the Netherlands
| | - Jeroen J J P van den Beucken
- Radboudumc, Dentistry - Regenerative Biomaterials, Philips Van Leijdenlaan 25, Nijmegen, 6525EX, the Netherlands.
| |
Collapse
|
2
|
Brockhaus K, Hemsen I, Jauch-Speer SL, Niland S, Vogl T, Eble JA. Integrin α2 is an early marker for osteoclast differentiation that contributes to key steps in osteoclastogenesis. Front Cell Dev Biol 2024; 12:1448725. [PMID: 39220682 PMCID: PMC11363192 DOI: 10.3389/fcell.2024.1448725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Osteoclasts determine bone tissue turnover. Their increased activity causes osteoporosis, their dysfunction osteopetrosis. Methods and Results Murine monocytic ER-Hoxb8 cells differentiate into OCs upon treatment with M-CSF and RANKL and upregulate the collagen-binding integrin α2β1 distinctly earlier than other OC markers, such as the OC-associated receptor, OSCAR. Integrin α2β1 promotes OC differentiation at multiple levels by stimulating differentiation-relevant genes, by regulating cell matrix adhesion and the formation of adhesion-promoting protrusions, and by the upregulation of proteins involved in precursor cell fusion. The two key factors in osteoclastogenesis, RANK and NFATc1, were essentially unaffected after knocking out the ITGA2 gene encoding integrin α2 subunit. However, compared to integrin α2β1 expressing ER-Hoxb8 cells, ITGA2-deficient cells adhered differently with more branched filopodia and significantly longer tunneling nanotubes. Despite the higher number of fusion-relevant TNTs, they form fewer syncytia. They also resorb less hydroxyapatite, because integrin α2β1 regulates expression of lacuna proteins necessary for bone matrix resorption. The impaired syncytia formation of ITGA2-deficient OC precursor cells also correlated with reduced gene activation of fusion-supporting DC-STAMP and with an almost abolished transcription of tetraspanin CD9. CD9 only partially colocalized with integrin α2β1 in TNTs and filopodia of integrin α2β1-expressing OC precursors. Discussion Our findings define integrin α2β1 as an early marker of OC differentiation.
Collapse
Affiliation(s)
- Katrin Brockhaus
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Isabel Hemsen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Wang Q, Liu Y, Zhang M, Liu S, Wan N, Li M, Tu W. Novel PFOS alternative OBS inhibits body growth of developing zebrafish by triggering thyroid function disorder and osteoclast differentiation. CHEMOSPHERE 2023; 341:140068. [PMID: 37672812 DOI: 10.1016/j.chemosphere.2023.140068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/14/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The extensive use of the perfluorooctane sulfonate (PFOS) alternative sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has resulted in its widespread detection in the environment and enrichment in wildlife and humans. However, little is known about its potential toxicity, particularly in terms of body development. In this study, zebrafish embryos were acutely exposed to PFOS and OBS for a comparative developmental toxicity assessment. Both PFOS and OBS led to lower body weight and shorter body length, and the damaging effects of PFOS were more severe than those of OBS at the same exposure concentration. Biochemical assays of THs and transcription profiles correlated to the HPT axis demonstrated that OBS-induced body development inhibition resulted mainly from interference in THs synthesis, transfer, coupling with receptors, and conversion from T4 to T3, which was similar to the case of PFOS, except that the disruptive effects of OBS on thyroid function were more intense. Further transcriptome analysis showed that PFOS and OBS also promoted osteoclast differentiation, aggravating the inhibitory effects on body growth, and that PFOS had more obvious inhibitory effects than OBS. This study systematically explored the inhibitory effects of PFOS and OBS exposure on body development and tightly linked the toxic effects to thyroid function disorder and osteoclast differentiation. Our findings highlight that the health risks associated with OBS, an emerging substitute for PFOS, should not be ignored.
Collapse
Affiliation(s)
- Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China.
| | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Nannan Wan
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Mingqi Li
- Research Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330012, China
| | - Wenqing Tu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Peng Q, Wang J, Han M, Zhao M, Li K, Lu T, Guo Q, Jiang Q. Tanshinone IIA inhibits osteoclastogenesis in rheumatoid arthritis via LDHC-regulated ROS generation. Chin Med 2023; 18:54. [PMID: 37189204 PMCID: PMC10184368 DOI: 10.1186/s13020-023-00765-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by bone destruction in the afflicted joints, and during the process of bone destruction, osteoclasts play a crucial role. Tanshinone IIA (Tan IIA) has shown anti-inflammatory effects in RA. However, the exact molecular mechanisms by which it delays bone destruction remain largely unexplained. Here, we found that Tan IIA decreased the severity of and ameliorated bone loss in an AIA rat model. In vitro, Tan IIA inhibited RANKL-induced osteoclast differentiation. By activity-based protein analysis (ABPP) combined with LC‒MS/MS, we discovered that Tan IIA covalently binds to the lactate dehydrogenase subunit LDHC and inhibits its enzymatic activity. Moreover, we found that Tan IIA inhibits the generation of osteoclast-specific markers by reducing the accumulation of reactive oxygen species (ROS), thus reducing osteoclast differentiation. Finally, our results reveal that Tan IIA suppresses osteoclast differentiation via LDHC-mediated ROS generation in osteoclasts. Tan IIA can thus be regarded as an effective drug for the treatment of bone damage in RA.
Collapse
Affiliation(s)
- Qiuwei Peng
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jian Wang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Man Han
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Minghong Zhao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Kesong Li
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tianming Lu
- School of Public Health, Guangxi Medical University, Guangxi, 530021, China
| | - Qiuyan Guo
- Artemisnin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Quan Jiang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
5
|
Jiang T, Gong Y, Zhang W, Qiu J, Zheng X, Li Z, Yang G, Hong Z. PD0325901, an ERK inhibitor, attenuates RANKL-induced osteoclast formation and mitigates cartilage inflammation by inhibiting the NF-κB and MAPK pathways. Bioorg Chem 2023; 132:106321. [PMID: 36642020 DOI: 10.1016/j.bioorg.2022.106321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 01/01/2023]
Abstract
Osteoarthritis (OA), a degenerative disease affecting the joint, is characterized by degradation of the joint edge, cartilage injury, and subchondral bone hyperplasia. Treatment of early subchondral bone loss in OA can inhibit subsequent articular degeneration and improve the prognosis of OA. PD0325901, a specific inhibitor of ERK, is widely used in oncology and has potential as a therapeutic agent for osteoarthritis In this study, we investigated the biological function of PD0325901 in bone marrow monocytes/macrophages (BMMs)treated with RANKL and found that it inhibited osteoclast differentiation in vitro in a time- and dose-dependent manner. PD0325901 restrained the expression of osteoclast marker genes, such as c-Fos and NFATc1 induced by RANKL. We tested the biological effects of PD035901 on ATDC5 cells stimulated by IL-1β and found that it had protective effects on ATDC5 cells. In animal studies, we used a destabilization of the medial meniscus (DMM) model and injected 5 mg/kg or 10 mg/kg of PD0325901 compound into each experimental group of mice. We found that PD0325901 significantly reduced osteochondral pathological changes in post-OA subchondral bone destruction.Finally, we found that PD0325901 down-regulated the pyroptosis level in chondrocytes to rescue cartilage degeneration. Therefore, PD0325901 is expected to be a new generation alternative therapy for OA.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Yuhang Gong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Wekang Zhang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Jianxin Qiu
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Xiaohang Zheng
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Ze Li
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China
| | - Guangyong Yang
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China.
| | - Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China; Bone Development and Metabolism Research Center of Taizhou Hospital of Zhejiang Province, Linhai, Zhejiang, China.
| |
Collapse
|
6
|
Liu Z, Zhu J, Li Z, Liu H, Fu C. Biomaterial scaffolds regulate macrophage activity to accelerate bone regeneration. Front Bioeng Biotechnol 2023; 11:1140393. [PMID: 36815893 PMCID: PMC9932600 DOI: 10.3389/fbioe.2023.1140393] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Bones are important for maintaining motor function and providing support for internal organs. Bone diseases can impose a heavy burden on individuals and society. Although bone has a certain ability to repair itself, it is often difficult to repair itself alone when faced with critical-sized defects, such as severe trauma, surgery, or tumors. There is still a heavy reliance on metal implants and autologous or allogeneic bone grafts for bone defects that are difficult to self-heal. However, these grafts still have problems that are difficult to circumvent, such as metal implants that may require secondary surgical removal, lack of bone graft donors, and immune rejection. The rapid advance in tissue engineering and a better comprehension of the physiological mechanisms of bone regeneration have led to a new focus on promoting endogenous bone self-regeneration through the use of biomaterials as the medium. Although bone regeneration involves a variety of cells and signaling factors, and these complex signaling pathways and mechanisms of interaction have not been fully understood, macrophages undoubtedly play an essential role in bone regeneration. This review summarizes the design strategies that need to be considered for biomaterials to regulate macrophage function in bone regeneration. Subsequently, this review provides an overview of therapeutic strategies for biomaterials to intervene in all stages of bone regeneration by regulating macrophages.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Jiabo Zhu
- Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Zhuohan Li
- Department of Gynecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Hanyan Liu
- Department of Orthopedics, Baicheng Central Hospital, Baicheng, China
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Abstract
Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.
Collapse
Affiliation(s)
| | | | - Steve Stegen
- Corresponding author at: Clinical and Experimental Endocrinology, KU Leuven, O&N1bis, Herestraat 49 box 902, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
9
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2913-2927. [DOI: 10.1021/acsabm.2c00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No.24, South 1st Section, 1st Ring Road, Chengdu 610064, P. R. China
| |
Collapse
|
10
|
Wang Q, Xie J, Zhou C, Lai W. Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement. Cell Prolif 2021; 55:e13172. [PMID: 34953003 PMCID: PMC8780927 DOI: 10.1111/cpr.13172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Aging and common diseases alter the stiffness of bone tissue, causing changes to the microenvironment of the mechanosensitive bone cells. Osteoclasts, the sole bone‐resorbing cells, play a vital role in bone remodeling. This study was performed to elucidate the mechanism through which osteoclasts sense and react to substrate stiffness signals. Materials and methods We fabricated polydimethylsiloxane (PDMS) substrates of different stiffness degrees for osteoclast formation progressed from osteoclast precursors including bone marrow‐derived macrophages (BMMs) and RAW264.7 monocytes. Osteoclast differentiation in response to the stiffness signals was determined by examining the cell morphology, fusion/fission activities, transcriptional profile, and resorption function. Cytoskeletal changes and mechanosensitive adhesion molecules were also assessed. Results Stiffer PDMS substrates accelerated osteoclast differentiation, firstly observed by variations in their morphology and fusion/fission activities. Upregulation of canonical osteoclast markers (Nfatc1, Acp5, Ctsk, Camk2a, Mmp9, Rela, and Traf6) and the fusion master regulator DC‐stamp were detected on stiffer substrates, with similar increases in their bone resorption functions. Additionally, the activation of cytoskeleton‐associated adhesion molecules, including fibronectin and integrin αvβ3, followed by biochemical signaling cascades of paxillin, FAK, PKC, and RhoA, was detected on the stiffer substrates. Conclusions This is the first study to provide evidence proving that extracellular substrate stiffness is a strong determinant of osteoclast differentiation and functions. Higher stiffness upregulated the differentiation profile and activity of osteoclasts, revealing the mechanical regulation of osteoclast activity in bone homeostasis and diseases.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Bernardor J, Alioli C, Meaux MN, Peyruchaud O, Machuca-Gayet I, Bacchetta J. Peripheral Blood Mononuclear Cells (PBMCs) to Dissect the Underlying Mechanisms of Bone Disease in Chronic Kidney Disease and Rare Renal Diseases. Curr Osteoporos Rep 2021; 19:553-562. [PMID: 34773213 DOI: 10.1007/s11914-021-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW To describe the methods that can be used to obtain functional and mature osteoclasts from peripheral blood mononuclear cells (PBMCs) and report the data obtained with this model in two peculiar diseases, namely pediatric chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and nephropathic cystinosis. To discuss future research possibilities in the field. RECENT FINDINGS Bone tissue undergoes continuous remodeling throughout life to maintain bone architecture; it involves two processes: bone formation and bone resorption with the coordinated activity of osteoblasts, osteoclasts, and osteocytes. Animal models fail to fully explain human bone pathophysiology during chronic kidney disease, mainly due to interspecies differences. The development of in vitro models has permitted to mimic human bone-related diseases as an alternative to in vivo models. Since 1997, osteoclasts have been generated in cell cultures, notably when culturing PBMCs with specific growth factors and cytokines (i.e., M-CSF and RANK-L), without the need for osteoblasts or stromal cells. These models may improve the global understanding of bone pathophysiology. They can be been used not only to evaluate the direct effects of cytokines, hormones, cells, or drugs on bone remodeling during CKD-MBD, but also in peculiar genetic renal diseases inducing specific bone impairment.
Collapse
Affiliation(s)
- Julie Bernardor
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France.
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
- Centre de Référence des Maladies Rénales Rares, Filières Maladies Rares ORKID et ERK-Net, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
- Faculté de Médecine, Université de Nice Côte d'Azur, Nice, France.
- Unité d'hémodialyse pédiatrique, Archet 2, CHU de Nice, 06202, Nice, France.
| | - Candide Alioli
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Marie-Noelle Meaux
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Irma Machuca-Gayet
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Justine Bacchetta
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Centre de Référence des Maladies Rénales Rares, Filières Maladies Rares ORKID et ERK-Net, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
12
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Inhibitory Effects of Combined Bone Morphogenetic Protein 2, Vascular Endothelial Growth Factor, and Basic Fibroblast Growth Factor on Osteoclast Differentiation and Activity. Tissue Eng Part A 2021; 27:1387-1398. [PMID: 33632010 DOI: 10.1089/ten.tea.2020.0325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor (VEGF), and basic fibroblast growth factors (bFGF) are important regulators of bone development and bone remodeling involving the coordination of osteoblast-mediated bone formation and osteoclast-mediated bone resorption. The synergistic promotions of these growth factors on osteogenesis in the appropriate combination have been confirmed by a lot of studies, but the effect of this combined application on osteoclastogenesis still remains ambiguous. On the basis of comparing the osteoclastic potentials under stimulation of BMP-2, VEGF, or bFGF alone, this study focused on their combined effects on the differentiation and activity of osteoclasts. Our results showed that osteoclastogenesis was enhanced to some extent under the stimulation of BMP-2, VEGF, or bFGF alone, and the potential of these three growth factors to stimulate osteoclastogenesis was VEGF > BMP-2 > bFGF. However, the treatment with the combination of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL), the most suitable dose combination for osteogenesis optimized in our previous study, weakened osteoclast differentiation confirmed by smaller tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, lower TRAP activity, and lower expression of dendritic cell-specific transmembrane protein, an important molecule regulating osteoclast fusion. Moreover, BMP-2, VEGF, and bFGF in combination also moderately inhibited the bone-resorbing activity of mature osteoclasts by suppressing the expression of osteoclast-specific genes cathepsin K, and matrix metalloproteinase-9. The underlying molecular mechanisms involved the suppression of the receptor activator of nuclear factor-κB ligand-induced c-Fos levels and the activation of nuclear factor of activated T cells c1, two major transcription factors in osteoclast differentiation. Taken together, our study showed that the combination of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL) promoted osteoblastogenesis but inhibited osteoclastogenesis. Thus, the simultaneous use of BMP-2 (50 ng/mL), VEGF (1 ng/mL), and bFGF (10 ng/mL) in an appropriate combination might improve efficacious bone regeneration in a clinical setting. Impact statement Few studies have addressed the combined effects of multiple growth factors on osteoclasts. This study demonstrated that the simultaneous use of bone morphogenetic protein 2 (BMP-2; 50 ng/mL), vascular endothelial growth factor (VEGF; 1 ng/mL), and basic fibroblast growth factors (bFGF; 10 ng/mL), the most suitable dose combination for osteogenesis optimized in our previous study, showed inhibitory effects on the differentiation and activity of osteoclasts. Our results suggest that the growth factor signaling pathways in osteoclasts may interact with each other. Furthermore, this study could provide new insights into the optimal application of BMP-2, VEGF, and bFGF for bone repair and regeneration.
Collapse
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
13
|
Häussling V, Aspera-Werz RH, Rinderknecht H, Springer F, Arnscheidt C, Menger MM, Histing T, Nussler AK, Ehnert S. 3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics. Int J Mol Sci 2021; 22:ijms22062925. [PMID: 33805833 PMCID: PMC8002142 DOI: 10.3390/ijms22062925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022] Open
Abstract
A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.
Collapse
Affiliation(s)
- Victor Häussling
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Helen Rinderknecht
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Fabian Springer
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076 Tübingen, Germany;
- Radiology Department, BG Trauma Center Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany
| | - Christian Arnscheidt
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Maximilian M. Menger
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Tina Histing
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| | - Andreas K. Nussler
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
- Correspondence: ; Tel.: +49-7071-606-1065
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (V.H.); (R.H.A.-W.); (H.R.); (C.A.); (M.M.M.); (T.H.); (S.E.)
| |
Collapse
|
14
|
Norwood I, Szondi D, Ciocca M, Coudert A, Cohen-Solal M, Rucci N, Teti A, Maurizi A. Transcriptomic and bioinformatic analysis of Clcn7-dependent Autosomal Dominant Osteopetrosis type 2. Preclinical and clinical implications. Bone 2021; 144:115828. [PMID: 33359007 DOI: 10.1016/j.bone.2020.115828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/26/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Autosomal Dominant Osteopetrosis type 2 (ADO2) is a rare genetic disease characterized by dense yet fragile bones. To date, the radiological approach remains the gold standard for ADO2 diagnosis. However, recent observations unveiled that ADO2 is a systemic disease affecting various organs beyond bone, including lung, kidney, muscle, and brain. Monitoring disease status and progression would greatly benefit from specific biomarkers shared by the affected organs. In this work, data derived from RNA deep sequencing (RNA dSeq) of bone, lung, kidney, muscle, brain, and osteoclasts isolated from wildtype (WT) and Clcn7G213R ADO2 mice were subjected to gene ontology and pathway analyses. Results showed the presence of alterations in gene ontology terms and pathways associated with bone metabolism and osteoclast biology, including JAK-STAT, cytokine-cytokine receptor, and hematopoietic cell lineage. Furthermore, in line with the multiorgan alterations caused by ADO2, the analysis of soft organs showed an enrichment of PPAR and neuroactive ligand-receptor interaction pathways known to be involved in the onset of tissue fibrosis and behavioral alterations, respectively. Finally, we observed the modulations of potential ADO2 biomarkers in organs and cells of ADO2 mice and in the peripheral blood mononuclear cells of patients, using conventional methods. Of note, some of these biomarkers could be possibly responsive to an effective experimental therapy based on a mutation-specific siRNA. Overall, the identified gene signature and the soluble forms of the encoded proteins could potentially represent reliable disease biomarkers that could improve the ADO2 diagnosis, the monitoring of both the skeletal and non-skeletal dysfunctions, and the assessment of the response to therapy.
Collapse
Affiliation(s)
- Iona Norwood
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Denis Szondi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Michela Ciocca
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Amélie Coudert
- Université de Paris, INSERM U 1132 Bioscar and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Martine Cohen-Solal
- Université de Paris, INSERM U 1132 Bioscar and Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
15
|
Relevance of Notch Signaling for Bone Metabolism and Regeneration. Int J Mol Sci 2021; 22:ijms22031325. [PMID: 33572704 PMCID: PMC7865281 DOI: 10.3390/ijms22031325] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Notch1-4 receptors and their signaling pathways are expressed in almost all organ systems and play a pivotal role in cell fate decision by coordinating cell proliferation, differentiation and apoptosis. Differential expression and activation of Notch signaling pathways has been observed in a variety of organs and tissues under physiological and pathological conditions. Bone tissue represents a dynamic system, which is constantly remodeled throughout life. In bone, Notch receptors have been shown to control remodeling and regeneration. Numerous functions have been assigned to Notch receptors and ligands, including osteoblast differentiation and matrix mineralization, osteoclast recruitment and cell fusion and osteoblast/osteoclast progenitor cell proliferation. The expression and function of Notch1-4 in the skeleton are distinct and closely depend on the temporal expression at different differentiation stages. This review addresses the current knowledge on Notch signaling in adult bone with emphasis on metabolism, bone regeneration and degenerative skeletal disorders, as well as congenital disorders associated with mutant Notch genes. Moreover, the crosstalk between Notch signaling and other important pathways involved in bone turnover, including Wnt/β-catenin, BMP and RANKL/OPG, are outlined.
Collapse
|
16
|
Takeuchi T, Horimoto Y, Oyama M, Nakatani S, Kobata K, Tamura M, Arata Y, Hatanaka T. Osteoclast Differentiation Is Suppressed by Increased O-GlcNAcylation Due to Thiamet G Treatment. Biol Pharm Bull 2020; 43:1501-1505. [PMID: 32999159 DOI: 10.1248/bpb.b20-00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Osteoclasts are the only bone-resorbing cells in organisms and understanding their differentiation mechanism is crucial for the treatment of osteoporosis. In the present study, we investigated the effect of Thiamet G, an O-GlcNAcase specific inhibitor, on osteoclastogenic differentiation. Thiamet G treatment increased global O-GlcNAcylation in murine RAW264 cells and suppressed receptor activator of nuclear factor-κB ligand (RANKL)-dependent formation in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells, thereby suppressing the upregulation of osteoclast specific genes. Meanwhile, knockdown of O-linked N-acetylglucosamine (O-GlcNAc) transferase promoted the formation TRAP-positive multinuclear cells. Thiamet G treatment also suppressed RANKL and macrophage colony-stimulating factor (M-CSF) dependent osteoclast formation and bone-resorbing activity in mouse primary bone marrow cells and human peripheral blood mononuclear cells. These results indicate that the promotion of O-GlcNAc modification specifically suppresses osteoclast formation and its activity and suggest that chemicals affecting O-GlcNAc modification might potentially be useful in the prevention or treatment of osteoporosis in future.
Collapse
Affiliation(s)
| | | | - Midori Oyama
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences
| | - Sachie Nakatani
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences
| | - Kenji Kobata
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences
| | | | | | - Tomomi Hatanaka
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences.,Tokai University, School of Medicine
| |
Collapse
|
17
|
Ponzetti M, Rucci N. Switching Homes: How Cancer Moves to Bone. Int J Mol Sci 2020; 21:E4124. [PMID: 32527062 PMCID: PMC7313057 DOI: 10.3390/ijms21114124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastases (BM) are a very common complication of the most prevalent human cancers. BM are extremely painful and may be life-threatening when associated with hypercalcaemia. BM can lead to kidney failure and cardiac arrhythmias and arrest, but why and how do cancer cells decide to "switch homes" and move to bone? In this review, we will present what answers science has provided so far, with focus on the molecular mechanisms and cellular aspects of well-established findings, such as the concept of "vicious cycle" and "osteolytic" vs. "osteosclerotic" bone metastases; as well as on novel concepts, such as cellular dormancy and extracellular vesicles. At the molecular level, we will focus on hypoxia-associated factors and angiogenesis, the Wnt pathway, parathyroid hormone-related peptide (PTHrP) and chemokines. At the supramolecular/cellular level, we will discuss tumour dormancy, id est the mechanisms through which a small contingent of tumour cells coming from the primary site may be kept dormant in the endosteal niche for many years. Finally, we will present a potential role for the multimolecular mediators known as extracellular vesicles in determining bone-tropism and establishing a premetastatic niche by influencing the bone microenvironment.
Collapse
Affiliation(s)
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
18
|
Material-Dependent Formation and Degradation of Bone Matrix-Comparison of Two Cryogels. Bioengineering (Basel) 2020; 7:bioengineering7020052. [PMID: 32517006 PMCID: PMC7378764 DOI: 10.3390/bioengineering7020052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
Cryogels represent ideal carriers for bone tissue engineering. We recently described the osteogenic potential of cryogels with different protein additives, e.g., platelet-rich plasma (PRP). However, these scaffolds raised concerns as different toxic substances are required for their preparation. Therefore, we developed another gelatin (GEL)-based cryogel. This study aimed to compare the two scaffolds regarding their physical characteristics and their influence on osteogenic and osteoclastic cells. Compared to the PRP scaffolds, GEL scaffolds had both larger pores and thicker walls, resulting in a lower connective density. PRP scaffolds, with crystalized calcium phosphates on the surface, were significantly stiffer but less mineralized than GEL scaffolds with hydroxyapatite incorporated within the matrix. The GEL scaffolds favored adherence and proliferation of the osteogenic SCP-1 and SaOS-2 cells. Macrophage colony-stimulating factor (M-CSF) and osteoprotegerin (OPG) levels seemed to be induced by GEL scaffolds. Levels of other osteoblast and osteoclast markers were comparable between the two scaffolds. After 14 days, mineral content and stiffness of the cryogels were increased by SCP-1 and SaOS-2 cells, especially of PRP scaffolds. THP-1 cell-derived osteoclastic cells only reduced mineral content and stiffness of PRP cryogels. In summary, both scaffolds present powerful advantages; however, the possibility to altered mineral content and stiffness may be decisive when it comes to using PRP or GEL scaffolds for bone tissue engineering.
Collapse
|
19
|
Interaction of Brucella abortus with Osteoclasts: a Step toward Understanding Osteoarticular Brucellosis and Vaccine Safety. Infect Immun 2020; 88:IAI.00822-19. [PMID: 31932325 DOI: 10.1128/iai.00822-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarticular disease is a frequent complication of human brucellosis. Vaccination remains a critical component of brucellosis control, but there are currently no vaccines for use in humans, and no in vitro models for assessing the safety of candidate vaccines in reference to the development of bone lesions currently exist. While the effect of Brucella infection on osteoblasts has been extensively evaluated, little is known about the consequences of osteoclast infection. Murine bone marrow-derived macrophages were derived into mature osteoclasts and infected with B. abortus 2308, the vaccine strain S19, and attenuated mutants S19vjbR and B. abortus ΔvirB2 While B. abortus 2308 and S19 replicated inside mature osteoclasts, the attenuated mutants were progressively killed, behavior that mimics infection kinetics in macrophages. Interestingly, B. abortus 2308 impaired the growth of osteoclasts without reducing resorptive activity, while osteoclasts infected with B. abortus S19 and S19vjbR were significantly larger and exhibited enhanced resorption. None of the Brucella strains induced apoptosis or stimulated nitric oxide or lactose dehydrogenase production in mature osteoclasts. Finally, infection of macrophages or osteoclast precursors with B. abortus 2308 resulted in generation of smaller osteoclasts with decreased resorptive activity. Overall, Brucella exhibits similar growth characteristics in mature osteoclasts compared to the primary target cell, the macrophage, but is able to impair the maturation and alter the resorptive capacity of these cells. These results suggest that osteoclasts play an important role in osteoarticular brucellosis and could serve as a useful in vitro model for both analyzing host-pathogen interactions and assessing vaccine safety.
Collapse
|
20
|
Omi M, Mishina Y. Role of osteoclasts in oral homeostasis and jawbone diseases. ACTA ACUST UNITED AC 2020; 18:14-27. [PMID: 34220275 DOI: 10.1002/osi2.1078] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The jawbone is a unique structure as it serves multiple functions in mastication. Given the fact that the jawbone is remodeled faster than other skeletal bones, bone cells in the jawbone may respond differently to local and systemic cues to regulate bone remodeling and adaptation. Osteoclasts are bone cells responsible for removing old bone, playing an essential role in bone remodeling. Although bone resorption by osteoclasts is required for dental tissue development, homeostasis and repair, excessive osteoclast activity is associated with oral skeletal diseases such as periodontitis. In addition, antiresorptive medications used to prevent bone homeostasis of tumors can cause osteonecrosis of the jaws that is a major concern to the dentist. Therefore, understanding of the role of osteoclasts in oral homeostasis under physiological and pathological conditions leads to better targeted therapeutic options for skeletal diseases to maintain patients' oral health. Here, we highlight the unique features of the jawbone compared to the long bone and the involvement of osteoclasts in the jawbone-specific diseases.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Transforming growth factor-β1 enhances proliferative and metastatic potential by up-regulating lymphoid enhancer-binding factor 1/integrin αMβ2 in human renal cell carcinoma. Mol Cell Biochem 2019; 465:165-174. [PMID: 31848806 DOI: 10.1007/s11010-019-03676-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Renal cell carcinoma (RCC) is a kind of malignant tumor with high recurrence, and it is urgent to find molecular markers for diagnosis and prognosis of RCC. Our study investigated the expression and function of integrin αMβ2 in RCC cells, aiming to understand the role of integrin αMβ2 in RCC and develop new therapeutic target for RCC. Overexpression and knockdown of lymphoid enhancer-binding factor 1 (LEF1) were performed using vector containing full-length cDNA and via siRNA technology, respectively. The expressions of mRNA and protein were detected by RT-PCR and Western blot, respectively. Proliferation of RCC cell was analyzed using WST-1 assay, and metastasis of RCC cell was evaluated using the transwell system. Our results demonstrated that LEF1 and integrin αMβ2 were up-regulated in RCC cells via TGF-β1-dependent mechanism, and LEF1 together with β-catenin directly increased integrin αMβ2 level. On the other hand, TGF-β1-induced proliferation, migration and invasion were suppressed by function-blocking antibody against integrin αMβ2 in RCC cells. In addition, integrin αMβ2 is crucial for LEF1 mediated cell invasion by regulating MMP-2, MMP-9 and calpain-2 secretion in RCC cells. LEF1/integrin αMβ2 expression was regulated by TGF-β1, and LEF1/integrin αMβ2 was involved in TGF-β1's improvement effects on the proliferation and metastasis of RCC. Blocking integrin αMβ2 activity could be a therapeutic option for patients with advanced RCC.
Collapse
|
22
|
Omi M, Kaartinen V, Mishina Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J Biol Chem 2019; 294:17818-17836. [PMID: 31619522 DOI: 10.1074/jbc.ra119.009521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development. Here, we observed that BMP-7, which preferentially binds to ACVR1, promotes osteoclast differentiation, suggesting ACVR1 is involved in osteoclastogenesis. To investigate this further, we isolated osteoclasts from either Acvr1-floxed mice or mice with constitutively-activated Acvr1 (caAcvr1) carrying tamoxifen-inducible Cre driven by a ubiquitin promotor and induced Cre activity in culture. Osteoclasts from the Acvr1-floxed mice had reduced osteoclast numbers and demineralization activity, whereas those from the caAcvr1-mutant mice formed large osteoclasts and demineralized pits, suggesting that BMP signaling through ACVR1 regulates osteoclast fusion and activity. It is reported that BMP-2 binds to BMPR1A, another BMP type 1 receptor, whereas BMP-7 binds to ACVR1 to activate SMAD1/5/9 signaling. Here, Bmpr1a-disrupted osteoclasts displayed reduced phospho-SMAD1/5/9 (pSMAD1/5/9) levels when induced by BMP-2, whereas no impacts on pSMAD1/5/9 were observed when induced by BMP-7. In contract, Acvr1-disrupted osteoclasts displayed reduced pSMAD1/5/9 levels when induced either by BMP-2 or BMP-7, suggesting that ACVR1 is the major receptor for transducing BMP-7 signals in osteoclasts. Indeed, LDN-193189 and LDN-212854, which specifically block SMAD1/5/9 phosphorylation, inhibited osteoclastogenesis of caAcvr1-mutant cells. Moreover, increased BMP signaling promoted nuclear translocation of nuclear factor-activated T-cells 1 (NFATc1), which was inhibited by LDN treatments. Taken together, ACVR1-mediated BMP-SMAD signaling activates NFATc1, a regulatory protein crucial for receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
23
|
Raynaud-Messina B, Verollet C, Maridonneau-Parini I. The osteoclast, a target cell for microorganisms. Bone 2019; 127:315-323. [PMID: 31233933 DOI: 10.1016/j.bone.2019.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
Abstract
Bone is a highly adaptive tissue with regenerative properties that is subject to numerous diseases. Infection is one of the causes of altered bone homeostasis. Bone infection happens subsequently to bone surgery or to systemic spreading of microorganisms. In addition to osteoblasts, osteoclasts (OCs) also constitute cell targets for pathogens. OCs are multinucleated cells that have the exclusive ability to resorb bone mineral tissue. However, the OC is much more than a bone eater. Beyond its role in the control of bone turnover, the OC is an immune cell that produces and senses inflammatory cytokines, ingests microorganisms and presents antigens. Today, increasing evidence shows that several pathogens use OC as a host cell to grow, generating debilitating bone defects. In this review, we exhaustively inventory the bacteria and viruses that infect OC and report the present knowledge in this topic. We point out that most of the microorganisms enhance the bone resorption activity of OC. We notice that pathogen interactions with the OC require further investigation, in particular to validate the OC as a host cell in vivo and to identify the cellular mechanisms involved in altered bone resorption. Thus, we conclude that the OC is a new cell target for pathogens; this new research area paves the way for new therapeutic strategies in the infections causing bone defects.
Collapse
Affiliation(s)
- Brigitte Raynaud-Messina
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Toulouse, France; International Associated Laboratory (LIA) CNRS "IM-TB/HIV" (1167), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Maurizi A, Capulli M, Curle A, Patel R, Ucci A, Côrtes JA, Oxford H, Lamandé SR, Bateman JF, Rucci N, Teti A. Extra-skeletal manifestations in mice affected by Clcn7-dependent autosomal dominant osteopetrosis type 2 clinical and therapeutic implications. Bone Res 2019; 7:17. [PMID: 31231577 PMCID: PMC6559989 DOI: 10.1038/s41413-019-0055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
Autosomal dominant osteopetrosis type 2 (ADO2) is a high-density brittle bone disease characterized by bone pain, multiple fractures and skeletal-related events, including nerve compression syndrome and hematological failure. We demonstrated that in mice carrying the heterozygous Clcn7G213R mutation, whose human mutant homolog CLCN7G215R affects patients, the clinical impacts of ADO2 extend beyond the skeleton, affecting several other organs. The hallmark of the extra-skeletal alterations is a consistent perivascular fibrosis, associated with high numbers of macrophages and lymphoid infiltrates. Fragmented clinical information in a small cohort of patients confirms extra-skeletal alterations consistent with a systemic disease, in line with the observation that the CLCN7 gene is expressed in many organs. ADO2 mice also show anxiety and depression and their brains exhibit not only perivascular fibrosis but also β-amyloid accumulation and astrogliosis, suggesting the involvement of the nervous system in the pathogenesis of the ADO2 extra-skeletal alterations. Extra-skeletal organs share a similar cellular pathology, confirmed also in vitro in bone marrow mononuclear cells and osteoclasts, characterized by an impairment of the exit pathway of the Clcn7 protein product, ClC7, through the Golgi, with consequent reduced ClC7 expression in late endosomes and lysosomes, associated with high vesicular pH and accumulation of autophagosome markers. Finally, an experimental siRNA therapy, previously proven to counteract the bone phenotype, also improves the extra-skeletal alterations. These results could have important clinical implications, supporting the notion that a systematic evaluation of ADO2 patients for extra-skeletal symptoms could help improve their diagnosis, clinical management, and therapeutic options.
Collapse
Affiliation(s)
- Antonio Maurizi
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mattia Capulli
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annabel Curle
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rajvi Patel
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Argia Ucci
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Juliana Alves Côrtes
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Harriet Oxford
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Shireen R Lamandé
- 2Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia
| | - John F Bateman
- 2Murdoch Children's Research Institute and University of Melbourne, Melbourne, Australia
| | - Nadia Rucci
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Teti
- 1Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
25
|
Fu YX, Wang YH, Tong XS, Gong Z, Sun XM, Yuan JC, Zheng TT, Li C, Niu DQ, Dai HG, Liu XF, Mao YJ, Tang BD, Xue W, Huang YJ. EDACO, a derivative of myricetin, inhibits the differentiation of Gaoyou duck embryonic osteoclasts in vitro. Br Poult Sci 2019; 60:169-175. [PMID: 30722674 DOI: 10.1080/00071668.2018.1564239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. This study determined the effects of (E)-3-(2-(4-(3-(2,4-dimethoxyphenyl)acryloyl)phenoxy)ethoxy)-5,7-dimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one (EDACO) on the differentiation of Gaoyou duck embryonic osteoclasts cultured in vitro. 2. Bone marrow mononuclear cells (BM-MNC) were collected from 23-d-old Gaoyou duck embryos and induced by macrophage colony-stimulating factor and receptor activator of nuclear factor κB ligand in the presence of EDACO at different concentrations (i.e. 10, 20, 40, 80 and 160 µM). Tartrate-resistant acid phosphatase (TRAP) staining and resorption ability determination were conducted. 3. Results suggested that EDACO suppressed the shaping of positive multinucleated cells and the number of TRAP-positive cells in the 20, 40, 80 and 160 μM EDACO groups was significantly decreased (P < 0.05 or P < 0.01). Besides, the absorption activity of differentiated duck embryonic osteoclasts was significantly inhibited (P < 0.05) in both 80 and 160 μM EDACO groups. 4. Overall, EDACO can inhibit the differentiation of BM-MNC into mature osteoclasts in duck embryos.1.
Collapse
Affiliation(s)
- Y X Fu
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - Y H Wang
- b State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering , Guizhou University , Huaxi District , Guiyang , 550025 , PR China
| | - X S Tong
- c College of Veterinary Medicine , Yangzhou University , Yangzhou , 225009 , PR China
| | - Z Gong
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - X M Sun
- d Department of Clinical Medicine , Bengbu Medical College , Bengbu , 233030 , PR China
| | - J C Yuan
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - T T Zheng
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - C Li
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - D Q Niu
- e Department of gynaecology and obstetrics , The Second Affiliated Hospital of Bengbu Medical College , Bengbu , 233030 , PR China
| | - H G Dai
- f Animal husbandry and veterinary bureau of Fengyang County , Chuzhou , 233100 , PR China
| | - X F Liu
- g Department of surgical oncology , The First Affiliated Hospital of Bengbu Medical College , Huaxi District , Bengbu , 233030 , PR China
| | - Y J Mao
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - B D Tang
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| | - W Xue
- b State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering , Guizhou University , Huaxi District , Guiyang , 550025 , PR China
| | - Y J Huang
- a Department of Bioscience , Bengbu Medical College , Bengbu , 233030 , PR China
| |
Collapse
|
26
|
Aielli F, Ponzetti M, Rucci N. Bone Metastasis Pain, from the Bench to the Bedside. Int J Mol Sci 2019; 20:E280. [PMID: 30641973 PMCID: PMC6359191 DOI: 10.3390/ijms20020280] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Bone is the most frequent site of metastasis of the most common cancers in men and women. Bone metastasis incidence has been steadily increasing over the years, mainly because of higher life expectancy in oncologic patients. Although bone metastases are sometimes asymptomatic, their consequences are most often devastating, impairing both life quality and expectancy, due to the occurrence of the skeletal-related events, including bone fractures, hypercalcemia and spinal cord compression. Up to 75% of patients endure crippling cancer-induced bone pain (CIBP), against which we have very few weapons. This review's purpose is to discuss the molecular and cellular mechanisms that lead to CIBP, including how cancer cells convert the bone "virtuous cycle" into a cancer-fuelling "vicious cycle", and how this leads to the release of molecular mediators of pain, including protons, neurotrophins, interleukins, chemokines and ATP. Preclinical tests and assays to evaluate CIBP, including the incapacitance tester (in vivo), and neuron/glial activation in the dorsal root ganglia/spinal cord (ex vivo) will also be presented. Furthermore, current therapeutic options for CIBP are quite limited and nonspecific and they will also be discussed, along with up-and-coming options that may render CIBP easier to treat and let patients forget they are patients.
Collapse
Affiliation(s)
- Federica Aielli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
27
|
Abstract
This chapter describes the isolation, culture, and staining of osteoclasts. The key advantages of this assay are that it allows direct measurement of osteoclast number, bone resorption, as well as yielding good quantities of osteoclasts at defined stages of formation for molecular analysis. An additional focus of this chapter will be the generation of osteoclasts from less conventional animal species and cell lines.
Collapse
Affiliation(s)
- Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alberta Zallone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
28
|
Sprangers S, Everts V. Molecular pathways of cell-mediated degradation of fibrillar collagen. Matrix Biol 2019; 75-76:190-200. [DOI: 10.1016/j.matbio.2017.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
|
29
|
Dawodu D, Patecki M, Hegermann J, Dumler I, Haller H, Kiyan Y. oxLDL inhibits differentiation and functional activity of osteoclasts via scavenger receptor-A mediated autophagy and cathepsin K secretion. Sci Rep 2018; 8:11604. [PMID: 30072716 PMCID: PMC6072764 DOI: 10.1038/s41598-018-29963-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022] Open
Abstract
Resorptive activity of osteoclasts is important for maintaining bone homeostasis. Endogenous compounds such as oxidized low density lipoprotein (oxLDL) have been shown to disturb this activity. While some studies have investigated the effects of oxLDL on the process of osteoclastogenesis, the underlying mechanism are not fully understood. We show here that oxLDL concentrations of ~10-25 µg protein (0.43-1.0 µM MDA/mg protein) completely blocked the formation of functional osteoclasts. The underlying mechanism implies an inhibition of autophagy that in turn leads to a decreased fusion of cathepsin K (CatK)-loaded lysosomal vesicles with the ruffled border membrane. As result, a lower secretion of CatK and impaired protonation of the resorption lacunae by vacuolar-ATPase (v-ATPase) is observed in the presence of oxLDL. We demonstrate that scavenger receptor A (SR-A) mediates oxLDL effects on osteoclastogenesis and repressing this receptor partially rescued oxLDL effects. Collectively, our data provides an insight into the possible mechanism of oxLDL on osteoclastogenesis suggesting that it does not perturb the packaging of CatK and v-ATPase (V-a3) in the secretory lysosome, but inhibits the fusion of these lysosomes to the ruffled border. The relevance of our findings suggests a distinct link between oxLDL, autophagy and osteoclastogenesis.
Collapse
Affiliation(s)
- Damilola Dawodu
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Margret Patecki
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany
| | - Yulia Kiyan
- Department of Nephrology and Hypertensiology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
30
|
Lizneva D, Yuen T, Sun L, Kim SM, Atabiekov I, Munshi LB, Epstein S, New M, Zaidi M. Emerging concepts in the epidemiology, pathophysiology, and clinical care of osteoporosis across the menopausal transition. Matrix Biol 2018; 71-72:70-81. [PMID: 29738833 DOI: 10.1016/j.matbio.2018.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 02/08/2023]
Abstract
Bone loss in women accelerates during perimenopause, and continues into old age. To-date, there has been little progress made in stratifying for fracture risk in premenopausal and early postmenopausal women. Epidemiologic data suggests that changes in serum FSH could predict decrements in bone mass during peri- and postmenopause. In bone, FSH stimulates osteoclast formation by releasing osteoclastogenic cytokines. Here, we address the evidence for bone loss across the menopausal transition, discuss strategies for detection and treatment of early postmenopausal osteoporosis, and describe the role FSH plays in physiology and likely in pathophysiology of early postmenopausal bone loss.
Collapse
Affiliation(s)
- Daria Lizneva
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation.
| | - Tony Yuen
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Sun
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se-Min Kim
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ihor Atabiekov
- Department of Reproductive Health Protection, Scientific Center of Family Health and Human Reproduction, Irkutsk, Russian Federation
| | - Lubna Bashir Munshi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sol Epstein
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria New
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
31
|
Extracellular matrix: The driving force of mammalian diseases. Matrix Biol 2018; 71-72:1-9. [PMID: 29625183 DOI: 10.1016/j.matbio.2018.03.023] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/31/2022]
Abstract
Like the major theme of a Mozart concerto, the immense and pervasive extracellular matrix drives each movement and ultimately closes the symphony, embracing a unique role as the fundamental mediator for most, if not all, ensuing intracellular events. As such, it comes as no surprise that the mechanism of just about every known disease can be traced back to some part of the matrix, typically in the form of an abnormal amount or activity level of a particular matrix component. These defects considerably affect downstream signaling axes leading to overt cellular dysfunction, organ failure, and death. From skin to bone, from vessels to brain, from eyes to all the internal organs, the matrix plays an incredible role as both a cause and potential means to reverse diseases. Human malaises including connective tissue disorders, muscular dystrophy, fibrosis, and cancer are all extracellular matrix-driven diseases. The ability to understand and modulate these matrix-related mechanisms may lead to the future discovery of novel therapeutic options for these patients.
Collapse
|
32
|
Teti A, Econs MJ. Osteopetroses, emphasizing potential approaches to treatment. Bone 2017; 102:50-59. [PMID: 28167345 DOI: 10.1016/j.bone.2017.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022]
Abstract
Osteopetroses are a heterogeneous group of rare genetic bone diseases sharing the common hallmarks of reduced osteoclast activity, increased bone mass and high bone fragility. Osteoclasts are bone resorbing cells that contribute to bone growth and renewal through the erosion of the mineralized matrix. Alongside the bone forming activity by osteoblasts, osteoclasts allow the skeleton to grow harmonically and maintain a healthy balance between bone resorption and formation. Osteoclast impairment in osteopetroses prevents bone renewal and deteriorates bone quality, causing atraumatic fractures. Osteopetroses vary in severity and are caused by mutations in a variety of genes involved in bone resorption or in osteoclastogenesis. Frequent signs and symptoms include osteosclerosis, deformity, dwarfism and narrowing of the bony canals, including the nerve foramina, leading to hematological and neural failures. The disease is autosomal, with only one extremely rare form associated so far to the X-chromosome, and can have either recessive or dominant inheritance. Recessive ostepetroses are generally lethal in infancy or childhood, with a few milder forms clinically denominated intermediate osteopetroses. Dominant osteopetrosis is so far associated only with mutations in the CLCN7 gene and, although described as a benign form, it can be severely debilitating, although not at the same level as recessive forms, and can rarely result in reduced life expectancy. Severe osteopetroses due to osteoclast autonomous defects can be treated by Hematopoietic Stem Cell Transplant (HSCT), but those due to deficiency of the pro-osteoclastogenic cytokine, RANKL, are not suitable for this procedure. Likewise, it is unclear as to whether HSCT, which has high intrinsic risks, results in clinical improvement in autosomal dominant osteopetrosis. Therefore, there is an unmet medical need to identify new therapies and studies are currently in progress to test gene and cell therapies, small interfering RNA approach and novel pharmacologic treatments.
Collapse
Affiliation(s)
- Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio-Coppito 2, 67100 L'Aquila, Italy.
| | - Michael J Econs
- Department of Medicine, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University, 1120 W. Michigan St., Indianapolis, IN 46202, USA.
| |
Collapse
|
33
|
Sprangers S, Schoenmaker T, Cao Y, Everts V, de Vries TJ. Integrin αMβ2 is differently expressed by subsets of human osteoclast precursors and mediates adhesion of classical monocytes to bone. Exp Cell Res 2016; 350:161-168. [PMID: 27889375 DOI: 10.1016/j.yexcr.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 02/02/2023]
Abstract
Bone-degrading osteoclasts are formed through fusion of their monocytic precursors. In the population of human peripheral blood monocytes, three distinct subsets have been identified: classical, intermediate and non-classical monocytes. We have previously shown that when the monocyte subsets are cultured on bone, significantly more osteoclasts are formed from classical monocytes than from intermediate or non-classical monocytes. Considering that this difference does not exist when monocyte subsets are cultured on plastic, we hypothesized that classical monocytes adhere better to the bone surface compared to intermediate and non-classical monocytes. To investigate this, the different monocyte subsets were isolated from human peripheral blood and cultured on slices of human bone in the presence of the cytokine M-CSF. We found that classical monocytes adhere better to bone due to a higher expression of the integrin αMβ2 and that their ability to attach to bone is significantly decreased when the integrin is blocked. This suggests that integrin αMβ2 mediates attachment of osteoclast precursors to bone and thereby enables the formation of osteoclasts.
Collapse
Affiliation(s)
- Sara Sprangers
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Ton Schoenmaker
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Yixuan Cao
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| | - Teun J de Vries
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands; Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, MOVE Research Institute Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam The Netherlands.
| |
Collapse
|