1
|
Solsona-Vilarrasa E, Vousden KH. Obesity, white adipose tissue and cancer. FEBS J 2024. [PMID: 39496581 DOI: 10.1111/febs.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
White adipose tissue (WAT) is crucial for whole-body energy homeostasis and plays an important role in metabolic and hormonal regulation. While healthy WAT undergoes controlled expansion and contraction to meet the body's requirements, dysfunctional WAT in conditions like obesity is characterized by excessive tissue expansion, alterations in lipid homeostasis, inflammation, hypoxia, and fibrosis. Obesity is strongly associated with an increased risk of numerous cancers, with obesity-induced WAT dysfunction influencing cancer development through various mechanisms involving both systemic and local interactions between adipose tissue and tumors. Unhealthy obese WAT affects circulating levels of free fatty acids and factors like leptin, adiponectin, and insulin, altering systemic lipid metabolism and inducing inflammation that supports tumor growth. Similar mechanisms are observed locally in an adipose-rich tumor microenvironment (TME), where WAT cells can also trigger extracellular matrix remodeling, thereby enhancing the TME's ability to promote tumor growth. Moreover, tumors reciprocally interact with WAT, creating a bidirectional communication that further enhances tumorigenesis. This review focuses on the complex interplay between obesity, WAT dysfunction, and primary tumor growth, highlighting potential targets for therapeutic intervention.
Collapse
|
2
|
Akla N, Veilleux C, Annabi B. The Chemopreventive Impact of Diet-Derived Phytochemicals on the Adipose Tissue and Breast Tumor Microenvironment Secretome. Nutr Cancer 2024; 77:9-25. [PMID: 39300732 DOI: 10.1080/01635581.2024.2401647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Cancer cells-derived extracellular vesicles can trigger the transformation of adipose-derived mesenchymal stem cells (ADMSC) into a pro-inflammatory, cancer-associated adipocyte (CAA) phenotype. Such secretome-mediated crosstalk between the adipose tissue and the tumor microenvironment (TME) therefore impacts tumor progression and metastatic processes. In addition, emerging roles of diet-derived phytochemicals, especially epigallocatechin-3-gallate (EGCG) among other polyphenols, in modulating exosome-mediated metabolic and inflammatory signaling pathways have been highlighted. Here, we discuss how selected diet-derived phytochemicals could alter the secretome signature as well as the crosstalk dynamics between the adipose tissue and the TME, with a focus on breast cancer. Their broader implication in the chemoprevention of obesity-related cancers is also discussed.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Carolane Veilleux
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie and CERMO-FC, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
3
|
Bhattacharya T, Kumari M, Kaur K, Kaity S, Arumugam S, Ravichandiran V, Roy S. Decellularized extracellular matrix-based bioengineered 3D breast cancer scaffolds for personalized therapy and drug screening. J Mater Chem B 2024; 12:8843-8867. [PMID: 39162395 DOI: 10.1039/d4tb00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breast cancer (BC) is the second deadliest cancer after lung cancer. Similar to all cancers, it is also driven by a 3D microenvironment. The extracellular matrix (ECM) is an essential component of the 3D tumor micro-environment, wherein it functions as a scaffold for cells and provides metabolic support. BC is characterized by alterations in the ECM. Various studies have attempted to mimic BC-specific ECMs using artificial materials, such as Matrigel. Nevertheless, research has proven that naturally derived decellularized extracellular matrices (dECMs) are superior in providing the essential in vivo-like cues needed to mimic a cancer-like environment. Developing in vitro 3-D BC models is not straightforward and requires extensive analysis of the data established by researchers. For the benefit of researchers, in this review, we have tried to highlight all developmental studies that have been conducted by various scientists so far. The analysis of the conclusions drawn from these studies is also discussed. The advantages and drawbacks of the decellularization methods employed for generating BC scaffolds will be covered, and the review will shed light on how dECM scaffolds help develop a BC environment. The later stages of the article will also focus on immunogenicity issues arising from decellularization and the origin of the tissue. Finally, this review will also discuss the biofabrication of matrices, which is the core part of the bioengineering process.
Collapse
Affiliation(s)
- Teeshyo Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
4
|
Smirnova O, Efremov Y, Klyucherev T, Peshkova M, Senkovenko A, Svistunov A, Timashev P. Direct and cell-mediated EV-ECM interplay. Acta Biomater 2024; 186:63-84. [PMID: 39043290 DOI: 10.1016/j.actbio.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EV) are a heterogeneous group of lipid particles excreted by cells. They play an important role in regeneration, development, inflammation, and cancer progression, together with the extracellular matrix (ECM), which they constantly interact with. In this review, we discuss direct and indirect interactions of EVs and the ECM and their impact on different physiological processes. The ECM affects the secretion of EVs, and the properties of the ECM and EVs modulate EVs' diffusion and adhesion. On the other hand, EVs can affect the ECM both directly through enzymes and indirectly through the modulation of the ECM synthesis and remodeling by cells. This review emphasizes recently discovered types of EVs bound to the ECM and isolated by enzymatic digestion, including matrix-bound nanovesicles (MBV) and tissue-derived EV (TiEV). In addition to the experimental studies, computer models of the EV-ECM-cell interactions, from all-atom models to quantitative pharmacology models aiming to improve our understanding of the interaction mechanisms, are also considered. STATEMENT OF SIGNIFICANCE: Application of extracellular vesicles in tissue engineering is an actively developing area. Vesicles not only affect cells themselves but also interact with the matrix and change it. The matrix also influences both cells and vesicles. In this review, different possible types of interactions between vesicles, matrix, and cells are discussed. Furthermore, the united EV-ECM system and its regulation through the cellular activity are presented.
Collapse
Affiliation(s)
- Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Timofey Klyucherev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia
| | - Alexey Senkovenko
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
5
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
6
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
7
|
Liu S, Benito‐Martin A, Pelissier Vatter FA, Hanif SZ, Liu C, Bhardwaj P, Sethupathy P, Farghli AR, Piloco P, Paik P, Mushannen M, Dong X, Otterburn DM, Cohen L, Bareja R, Krumsiek J, Cohen‐Gould L, Calto S, Spector JA, Elemento O, Lyden DC, Brown KA. Breast adipose tissue-derived extracellular vesicles from obese women alter tumor cell metabolism. EMBO Rep 2023; 24:e57339. [PMID: 37929643 PMCID: PMC10702795 DOI: 10.15252/embr.202357339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.
Collapse
Affiliation(s)
- Shuchen Liu
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Department of Breast SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Alberto Benito‐Martin
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Facultad de Medicina, Unidad de Investigación BiomédicaUniversidad Alfonso X el Sabio (UAX)MadridSpain
| | | | - Sarah Z Hanif
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Catherine Liu
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Priya Bhardwaj
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaNYUSA
| | - Alaa R Farghli
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaNYUSA
| | - Phoebe Piloco
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Paul Paik
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Malik Mushannen
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Weill Cornell Medicine – QatarDohaQatar
| | - Xue Dong
- Department of SurgeryWeill Cornell MedicineNew YorkNYUSA
| | | | - Leslie Cohen
- Department of SurgeryWeill Cornell MedicineNew YorkNYUSA
| | - Rohan Bareja
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Jan Krumsiek
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Leona Cohen‐Gould
- Department of BiochemistryWeill Cornell MedicineNew YorkNYUSA
- Core Laboratories CenterWeill Cornell MedicineNew YorkNYUSA
| | - Samuel Calto
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCAUSA
| | | | - Olivier Elemento
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - David C Lyden
- Departments of Pediatrics and Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
| | - Kristy A Brown
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
- University of Kansas Cancer CenterKansas CityKSUSA
| |
Collapse
|
8
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
9
|
Liu S, Benito-Martin A, Pelissier Vatter FA, Hanif SZ, Liu C, Bhardwaj P, Sethupathy P, Farghli AR, Piloco P, Paik P, Mushannen M, Otterburn DM, Cohen L, Bareja R, Krumsiek J, Cohen-Gould L, Calto S, Spector JA, Elemento O, Lyden D, Brown KA. Breast adipose tissue-derived extracellular vesicles from women with obesity stimulate mitochondrial-induced dysregulated tumor cell metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527715. [PMID: 36798307 PMCID: PMC9934680 DOI: 10.1101/2023.02.08.527715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.
Collapse
|
10
|
Haggadone MD, Speth J, Hong HS, Penke LR, Zhang E, Lyssiotis CA, Peters-Golden M. ATP citrate lyase links increases in glycolysis to diminished release of vesicular suppressor of cytokine signaling 3 by alveolar macrophages. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166458. [PMID: 35700791 PMCID: PMC9940702 DOI: 10.1016/j.bbadis.2022.166458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are important vectors for intercellular communication. Lung-resident alveolar macrophages (AMs) tonically secrete EVs containing suppressor of cytokine signaling 3 (SOCS3), a cytosolic protein that promotes homeostasis in the distal lung via its actions in recipient neighboring epithelial cells. AMs are metabolically distinct and exhibit low levels of glycolysis at steady state. To our knowledge, whether cellular metabolism influences the packaging and release of an EV cargo molecule has never been explored in any cellular context. Here, we report that increases in glycolysis following in vitro exposure of AMs to the growth and activating factor granulocyte-macrophage colony-stimulating factor inhibit the release of vesicular SOCS3 by primary AMs. Glycolytically diminished SOCS3 secretion requires export of citrate from the mitochondria to the cytosol and its subsequent conversion to acetyl-CoA by ATP citrate lyase. Our data for the first time implicate perturbations in intracellular metabolites in the regulation of vesicular cargo packaging and secretion.
Collapse
Affiliation(s)
- Mikel D Haggadone
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer Speth
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hanna S Hong
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 41809, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 41809, USA
| | - Loka R Penke
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric Zhang
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 41809, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 41809, USA
| | - Marc Peters-Golden
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
12
|
Shefer A, Yalovaya A, Tamkovich S. Exosomes in Breast Cancer: Involvement in Tumor Dissemination and Prospects for Liquid Biopsy. Int J Mol Sci 2022; 23:8845. [PMID: 36012109 PMCID: PMC9408748 DOI: 10.3390/ijms23168845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
In women, breast cancer (BC) is the most commonly diagnosed cancer (24.5%) and the leading cause of cancer death (15.5%). Understanding how this heterogeneous disease develops and the confirm mechanisms behind tumor progression is of utmost importance. Exosomes are long-range message vesicles that mediate communication between cells in physiological conditions but also in pathology, such as breast cancer. In recent years, there has been an exponential rise in the scientific studies reporting the change in morphology and cargo of tumor-derived exosomes. Due to the transfer of biologically active molecules, such as RNA (microRNA, long non-coding RNA, mRNA, etc.) and proteins (transcription factors, enzymes, etc.) into recipient cells, these lipid bilayer 30-150 nm vesicles activate numerous signaling pathways that promote tumor development. In this review, we attempt to shed light on exosomes' involvement in breast cancer pathogenesis (including epithelial-to-mesenchymal transition (EMT), tumor cell proliferation and motility, metastatic processes, angiogenesis stimulation, and immune system repression). Moreover, the potential use of exosomes as promising diagnostic biomarkers for liquid biopsy of breast cancer is also discussed.
Collapse
Affiliation(s)
- Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alena Yalovaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Cancer-Associated Exosomal CBFB Facilitates the Aggressive Phenotype, Evasion of Oxidative Stress, and Preferential Predisposition to Bone Prometastatic Factor of Breast Cancer Progression. DISEASE MARKERS 2022; 2022:8446629. [PMID: 35903297 PMCID: PMC9325341 DOI: 10.1155/2022/8446629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
Background. Despite therapeutic advancements, metastasis remains a major cause in breast cancer-specific mortality. Breast cancer cells are susceptible to oxidative damage and exhibit high levels of oxidative stress, including protein damage, DNA damage, and lipid peroxidation. Some breast cancer risk factors may change the level of endogenous oxidative stress. Circulating exosomes play critical roles in tumorigenesis, distant metastasis, and poor prognosis in patients with breast cancer. Methods. We used an online database to analyze the expression and prognostic value of core binding factor subunit β (CBFB) and oxidative stress–related targets in patients with breast cancer. Serum from healthy controls and patients with primary breast cancer or bone metastatic breast cancer in the bone was collected. Exosomes were isolated from the sera or cell culture media. We used an MDA-MB-436-innoculated tumor xenograft mouse model for silencing CBFB. Results. Circulating exosomes from patients with breast cancer metastasis to the bone were rich in CBFB. The human mammary fibroblast cells HMF3A and fibroblasts derived from patient samples cocultured with exosomes had increased α-SMA and vimentin expression and IL-6 and OPN secretion. Similarly, nonmetastatic breast cancer cells cocultured with exosomes exhibited increased levels of certain markers, including vimentin, snail1, CXCR4, and Runx2, and the exosomes had high CBFB expression. Silencing CBFB in metastatic MDA-MB-436 and MDA-MB-157 cells resulted in suppressed migration and invasion and downregulation of vimentin, CXCR4, snail1, Runx2, CD44, and OPN. Conversely, CBFB overexpression resulted in upregulation of Runx2, vimentin, snail1, CD44, and OPN in nonmetastatic T47D and MCF12A cells. The CBFB-rich exosomes derived from MDA-MB-436 cells induced enhanced metastatic phenotypes in the low-metastatic T47D and MCF12A cell lines. Conclusion. Our results revealed that CBFB may promote bone metastasis in patients with breast cancer. Of therapeutic relevance, targeting CBFB resulted in decreased tumor burden and bone metastasis, downregulation of bone metastasis markers, and impaired regulation of oxidative stress–related proteins NAE1 and NOS1.
Collapse
|
14
|
Gregory E, Baek IH, Ala-Kokko N, Dugan R, Pinzon-Herrera L, Almodóvar J, Song YH. Peripheral Nerve Decellularization for In Vitro Extracellular Matrix Hydrogel Use: A Comparative Study. ACS Biomater Sci Eng 2022; 8:2574-2588. [PMID: 35649243 PMCID: PMC9983633 DOI: 10.1021/acsbiomaterials.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rise of tissue-engineered biomaterials has introduced more clinically translatable models of disease, including three-dimensional (3D) decellularized extracellular matrix (dECM) hydrogels. Specifically, decellularized nerve hydrogels have been utilized to model peripheral nerve injuries and disorders in vitro; however, there lacks standardization in decellularization methods. Here, rat sciatic nerves of varying preparations were decellularized using previously established methods: sodium deoxycholate (SD)-based, 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS)-based, and apoptosis-mediated. These nerves were characterized for cellular debris removal, ECM retention, and low cytotoxicity with cultured Schwann cells. The best preparations of each decellularization method were digested into dECM hydrogels, and rheological characterization, gelation kinetics, and confocal reflectance imaging of collagen fibril assembly were performed. It was determined that the SD-based method with nerve epineurial removal best maintained the overall ECM composition and mechanical properties of physiological peripheral nerves while efficiently stripping the scaffolds of tissue-specific cells and debris. This method was then utilized as a culture platform for quiescent Schwann cells and cancer-nerve crosstalk. Hydrogel-embedded Schwann cells were found to have high viability and act in a more physiologically relevant manner than those cultured in monolayers, and the hydrogel platform allowed for the activation of Schwann cells following treatment with cancer secreted factors. These findings establish a standard for peripheral nerve decellularization for usage as a dECM hydrogel testbed for in vitro peripheral nerve disease modeling and may facilitate the development of treatments for peripheral nerve disease and injury.
Collapse
|
15
|
Garcia-Hernandez A, Reyes-Uribe E, Arce-Salinas C, de la Cruz-Lopez KG, Manzo-Merino J, Guzman-Ortiz AL, Quezada H, Cortes-Reynosa P, Breton-Mora F, Elizalde-Acosta I, Thompson-Bonilla R, Salazar EP. Extracellular vesicles from blood of breast cancer women induce angiogenic processes in HUVECs. Tissue Cell 2022; 76:101814. [DOI: 10.1016/j.tice.2022.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/24/2022]
|
16
|
Bae IY, Choi W, Oh SJ, Kim C, Kim S. TIMP-1-expressing breast tumor spheroids for the evaluation of drug penetration and efficacy. Bioeng Transl Med 2022; 7:e10286. [PMID: 35600659 PMCID: PMC9115709 DOI: 10.1002/btm2.10286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Abundance of stromal cells and extracellular matrix (ECM) is observed in breast cancer, acting as a barrier for drug penetration and presenting a key issue for developing efficient therapeutics. In this study, we aimed to develop a three-dimensional (3D) multicellular tumor model comprising cancer and stromal cells that could effectively mimic the drug resistance properties of breast cancer. Three different types of spheroid models were designed by co-culturing breast cancer cells (MDA-MB-231) with three different types of stromal cells: human adipose-derived stromal cells (hASCs), human bone marrow stromal cells, or human dermal fibroblasts. Compared with other models, in the hASC co-culture model, tissue inhibitor of metalloproteinases-1 (TIMP-1) was highly expressed and the activity of matrix metalloproteinases was decreased, resulting in a higher ECM deposition on the spheroid surfaces. This spheroid model showed less drug penetration and treatment efficacy than the other models. TIMP-1 silencing in hASCs reduced ECM protein expression and increased drug penetration and vulnerability. A quantitative structure-activity relationship study using multiple linear regression drew linear relationships between the chemical properties of drugs and experimentally determined permeability values. Drugs that did not match the drug-likeness rules exhibited lower permeability in the 3D tumor model. Taken together, our findings indicate that this 3D multicellular tumor model may be used as a reliable platform for efficiently screening therapeutics agents for solid tumors.
Collapse
Affiliation(s)
- In Yeong Bae
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Wooshik Choi
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Seung Ja Oh
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Biomedical Engineering, KIST schoolKorea University of Science and TechnologySeoulRepublic of Korea
| | - Chansoo Kim
- AI Laboratory, Computational Science Center and ESRIKorea Institute of Science and TechnologySeoulRepublic of Korea
| | - Sang‐Heon Kim
- Center for Biomaterials, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Biomedical Engineering, KIST schoolKorea University of Science and TechnologySeoulRepublic of Korea
| |
Collapse
|
17
|
Rodrigues-Junior DM, Tsirigoti C, Lim SK, Heldin CH, Moustakas A. Extracellular Vesicles and Transforming Growth Factor β Signaling in Cancer. Front Cell Dev Biol 2022; 10:849938. [PMID: 35493080 PMCID: PMC9043557 DOI: 10.3389/fcell.2022.849938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Complexity in mechanisms that drive cancer development and progression is exemplified by the transforming growth factor β (TGF-β) signaling pathway, which suppresses early-stage hyperplasia, yet assists aggressive tumors to achieve metastasis. Of note, several molecules, including mRNAs, non-coding RNAs, and proteins known to be associated with the TGF-β pathway have been reported as constituents in the cargo of extracellular vesicles (EVs). EVs are secreted vesicles delimited by a lipid bilayer and play critical functions in intercellular communication, including regulation of the tumor microenvironment and cancer development. Thus, this review aims at summarizing the impact of EVs on TGF-β signaling by focusing on mechanisms by which EV cargo can influence tumorigenesis, metastatic spread, immune evasion and response to anti-cancer treatment. Moreover, we emphasize the potential of TGF-β-related molecules present in circulating EVs as useful biomarkers of prognosis, diagnosis, and prediction of response to treatment in cancer patients.
Collapse
Affiliation(s)
| | - Chrysoula Tsirigoti
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (A*-STAR), Singapore, Singapore
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Aristidis Moustakas,
| |
Collapse
|
18
|
Uribe J, Traberg WC, Hama A, Druet V, Mohamed Z, Ooi A, Pappa AM, Huerta M, Inal S, Owens RM, Daniel S. Dual Mode Sensing of Binding and Blocking of Cancer Exosomes to Biomimetic Human Primary Stem Cell Surfaces. ACS Biomater Sci Eng 2021; 7:5585-5597. [PMID: 34802228 DOI: 10.1021/acsbiomaterials.1c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer-derived exosomes (cEXOs) facilitate transfer of information between tumor and human primary stromal cells, favoring cancer progression. Although the mechanisms used during this information exchange are still not completely understood, it is known that binding is the initial contact established between cEXOs and cells. Hence, studying binding and finding strategies to block it are of great therapeutic value. However, such studies are challenging for a variety of reasons, including the need for human primary cell culture, the difficulty in decoupling and isolating binding from internalization and cargo delivery, and the lack of techniques to detect these specific interactions. In this work, we created a supported biomimetic stem cell membrane incorporating membrane components from human primary adipose-derived stem cells (ADSCs). We formed the supported membrane on glass and on multielectrode arrays to offer the dual option of optical or electrical detection of cEXO binding to the membrane surface. Using our platform, we show that cEXOs bind to the stem cell membrane and that binding is blocked when an antibody to integrin β1, a component of ADSC surface, is exposed to the membrane surface prior to cEXOs. To test the biological outcome of blocking this interaction, we first confirm that adding cEXOs to cultured ADSCs leads to the upregulation of vascular endothelial growth factor, a measure of proangiogenic activity. Next, when ADSCs are first blocked with anti-integrin β1 and then exposed to cEXOs, the upregulation of proangiogenic activity and cell proliferation are significantly reduced. This biomimetic membrane platform is the first cell-free label-free in vitro platform for the recapitulation and study of cEXO binding to human primary stem cells with potential for therapeutic molecule screening as it is compatible with scale-up and multiplexing.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Walther C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Adel Hama
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Victor Druet
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Amanda Ooi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Miriam Huerta
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853-5201, United States
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States.,School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853-5201, United States
| |
Collapse
|
19
|
IFIT3 (interferon induced protein with tetratricopeptide repeats 3) modulates STAT1 expression in small extracellular vesicles. Biochem J 2021; 478:3905-3921. [PMID: 34622927 PMCID: PMC9121857 DOI: 10.1042/bcj20210580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
We have previously shown that the αvβ6 integrin plays a key role in promoting prostate cancer (PrCa) and it can be transferred to recipient cells via small extracellular vesicles (sEVs). Furthermore, we have reported in a proteomic analysis that αvβ6 integrin down-regulation increases the expression of IFIT3 (interferon induced protein with tetratricopeptide repeats 3) in PrCa cells and their derived sEVs. IFIT3 is a protein well known for being an antiviral effector, but recently its role in cancer has also been elucidated. To study the relationship between IFIT3 and STAT1 (signal transducer and activator of transcription 1), an upstream regulator of IFIT3, in PrCa cells and their released sEVs, we used CRISPR/Cas9 techniques to down-regulate the expression of the β6 integrin subunit, IFIT3 or STAT1. Our results show that IFIT3 and STAT1 are highly expressed in PrCa cells devoid of the β6 integrin subunit. However, IFIT3 but not STAT1, is present in sEVs derived from PrCa cells lacking the β6 integrin subunit. We demonstrate that loss of IFIT3 generates sEVs enriched in STAT1 but reduces the levels of STAT1 in the cells. As expected, IFIT3 is not detectable in STAT1 negative cells or sEVs. We thus propose that the observed STAT1 enrichment in sEVs is a compensatory mechanism for the loss of IFIT3. Overall, these results provide new insights into the intrinsic role of IFIT3 as a regulator of STAT1 expression in sEVs and in intercellular communication in PrCa.
Collapse
|
20
|
Airuddin SS, Halim AS, Wan Sulaiman WA, Kadir R, Nasir NAM. Adipose-Derived Stem Cell: "Treat or Trick". Biomedicines 2021; 9:biomedicines9111624. [PMID: 34829853 PMCID: PMC8615427 DOI: 10.3390/biomedicines9111624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/31/2021] [Accepted: 10/31/2021] [Indexed: 12/23/2022] Open
Abstract
Stem cells have been widely used for treating disease due to the various benefits they offer in the curing process. Several treatments using stem cells have undergone clinical trials, such as cell-based therapies for heart disease, sickle cell disease, thalassemia, etc. Adipose-derived stem cells are some of the many mesenchymal stem cells that exist in our body that can be harvested from the abdomen, thighs, etc. Adipose tissue is easy to harvest, and its stem cells can be obtained in higher volumes compared to stem cells harvested from bone marrow, for which a more invasive technique is required with a smaller volume obtained. Many scientists have expressed interest in investigating the role of adipose-derived stem cells in treating disease since their use was first described. This is due to these stem cells' ability to differentiate into multiple lineages and secrete a variety of growth factors and proteins. Previous studies have found that the hormones, cytokines, and growth factors contained in adipose tissue play major roles in the metabolic regulation of adipose tissue, as well as in energy balance and whole-body homeostasis through their endocrine, autocrine, and paracrine functions. These are thought to be important contributors to the process of tissue repair and regeneration. However, it remains unclear how effective and safe ADSCs are in treating diseases. The research that has been carried out to date is in order to investigate the impact of ADSCs in disease treatment, as described in this review, to highlight its "trick or treat" effect in medical treatment.
Collapse
Affiliation(s)
- Siti Syahira Airuddin
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (S.S.A.); (A.S.H.); (W.A.W.S.)
| | - Ahmad Sukari Halim
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (S.S.A.); (A.S.H.); (W.A.W.S.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Azman Wan Sulaiman
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (S.S.A.); (A.S.H.); (W.A.W.S.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ramlah Kadir
- Department of Immunology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Nur Azida Mohd Nasir
- Reconstructive Sciences Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (S.S.A.); (A.S.H.); (W.A.W.S.)
- Correspondence: ; Tel.: +609-767-6914
| |
Collapse
|
21
|
Iorio M, Umesh Ganesh N, De Luise M, Porcelli AM, Gasparre G, Kurelac I. The Neglected Liaison: Targeting Cancer Cell Metabolic Reprogramming Modifies the Composition of Non-Malignant Populations of the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215447. [PMID: 34771610 PMCID: PMC8582418 DOI: 10.3390/cancers13215447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Metabolic reprogramming is a well-known hallmark of cancer, whereby the development of drugs that target cancer cell metabolism is gaining momentum. However, when establishing preclinical studies and clinical trials, it is often neglected that a tumor mass is a complex system in which cancer cells coexist and interact with several types of microenvironment populations, including endothelial cells, fibroblasts and immune cells. We are just starting to understand how such populations are affected by the metabolic changes occurring in a transformed cell and little is known about the impact of metabolism-targeting drugs on the non-malignant tumor components. Here we provide a general overview of the links between cancer cell metabolism and tumor microenvironment (TME), particularly focusing on the emerging literature reporting TME-specific effects of metabolic therapies.
Collapse
Affiliation(s)
- Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Nikkitha Umesh Ganesh
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Anna Maria Porcelli
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center of Industrial Research (CIRI) Life Science and Health Technologies, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (M.I.); (N.U.G.); (M.D.L.); (G.G.)
- Center for Applied Biomedical Research, University of Bologna, 40138 Bologna, Italy;
- Centro Studi e Ricerca sulle Neoplasie Ginecologiche (CSR), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2088-418
| |
Collapse
|
22
|
Extracellular Vesicles in Airway Homeostasis and Pathophysiology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epithelial–mesenchymal trophic unit (EMTU) is a morphofunctional entity involved in the maintenance of the homeostasis of airways as well as in the pathogenesis of several diseases, including asthma and chronic obstructive pulmonary disease (COPD). The “muco-microbiotic layer” (MML) is the innermost layer of airways made by microbiota elements (bacteria, viruses, archaea and fungi) and the surrounding mucous matrix. The MML homeostasis is also crucial for maintaining the healthy status of organs and its alteration is at the basis of airway disorders. Nanovesicles produced by EMTU and MML elements are probably the most important tool of communication among the different cell types, including inflammatory ones. How nanovesicles produced by EMTU and MML may affect the airway integrity, leading to the onset of asthma and COPD, as well as their putative use in therapy will be discussed here.
Collapse
|
23
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Ling L, Mulligan JA, Ouyang Y, Shimpi AA, Williams RM, Beeghly GF, Hopkins BD, Spector JA, Adie SG, Fischbach C. Obesity-associated Adipose Stromal Cells Promote Breast Cancer Invasion Through Direct Cell Contact and ECM Remodeling. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910650. [PMID: 33692663 PMCID: PMC7939099 DOI: 10.1002/adfm.201910650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 05/17/2023]
Abstract
Obesity increases the risk and worsens the prognosis for breast cancer due, in part, to altered adipose stromal cell (ASC) behavior. Whether ASCs from obese individuals increase migration of breast cancer cells relative to their lean counterparts, however, remains unclear. To test this connection, multicellular spheroids composed of MCF10A-derived tumor cell lines of varying malignant potential and lean or obese ASCs were embedded into collagen scaffolds mimicking the elastic moduli of interstitial breast adipose tissue. Confocal image analysis suggests that tumor cells alone migrate insignificantly under these conditions. However, direct cell-cell contact with either lean or obese ASCs enables them to migrate collectively, whereby obese ASCs activate tumor cell migration more effectively than their lean counterparts. Time-resolved optical coherence tomography (OCT) imaging suggests that obese ASCs facilitate tumor cell migration by mediating contraction of local collagen fibers. Matrix metalloproteinase (MMP)-dependent proteolytic activity significantly contributes to ASC-mediated tumor cell invasion and collagen deformation. However, ASC contractility is also important, as co-inhibition of both MMPs and contractility is necessary to completely abrogate ASC-mediated tumor cell migration. These findings imply that obesity-mediated changes of ASC phenotype may impact tumor cell migration and invasion with potential implications for breast cancer malignancy in obese patients.
Collapse
Affiliation(s)
- Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey A. Mulligan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Yunxin Ouyang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | | | - Garrett F. Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Jason A. Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Division of Plastic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Yang J, Bahcecioglu G, Zorlutuna P. The Extracellular Matrix and Vesicles Modulate the Breast Tumor Microenvironment. Bioengineering (Basel) 2020; 7:E124. [PMID: 33050609 PMCID: PMC7712041 DOI: 10.3390/bioengineering7040124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence has shown multiple roles of the tumor microenvironment (TME) components, specifically the extracellular matrix (ECM), in breast cancer development, progression, and metastasis. Aside from the biophysical properties and biochemical composition of the breast ECM, the signaling molecules are extremely important in maintaining homeostasis, and in the breast TME, they serve as the key components that facilitate tumor progression and immune evasion. Extracellular vesicles (EVs), the mediators that convey messages between the cells and their microenvironment through signaling molecules, have just started to capture attention in breast cancer research. In this comprehensive review, we first provide an overview of the impact of ECM in breast cancer progression as well as the alterations occurring in the TME during this process. The critical importance of EVs and their biomolecular contents in breast cancer progression and metastasis are also discussed. Finally, we discuss the potential biomedical or clinical applications of these extracellular components, as well as how they impact treatment outcomes.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA;
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Extracellular Vesicles-Based Drug Delivery Systems: A New Challenge and the Exemplum of Malignant Pleural Mesothelioma. Int J Mol Sci 2020; 21:ijms21155432. [PMID: 32751556 PMCID: PMC7432055 DOI: 10.3390/ijms21155432] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Research for the most selective drug delivery to tumors represents a fascinating key target in science. Alongside the artificial delivery systems identified in the last decades (e.g., liposomes), a family of natural extracellular vesicles (EVs) has gained increasing focus for their potential use in delivering anticancer compounds. EVs are released by all cell types to mediate cell-to-cell communication both at the paracrine and the systemic levels, suggesting a role for them as an ideal nano-delivery system. Malignant pleural mesothelioma (MPM) stands out among currently untreatable tumors, also due to the difficulties in achieving an early diagnosis. Thus, early diagnosis and treatment of MPM are both unmet clinical needs. This review looks at indirect and direct evidence that EVs may represent both a new tool for allowing an early diagnosis of MPM and a potential new delivery system for more efficient therapeutic strategies. Since MPM is a relatively rare malignant tumor and preclinical MPM models developed to date are very few and not reliable, this review will report data obtained in other tumor types, suggesting the potential use of EVs in mesothelioma patients as well.
Collapse
|
27
|
Uribe J, Liu HY, Mohamed Z, Chiou AE, Fischbach C, Daniel S. Supported Membrane Platform to Assess Surface Interactions between Extracellular Vesicles and Stromal Cells. ACS Biomater Sci Eng 2020; 6:3945-3956. [PMID: 33463350 DOI: 10.1021/acsbiomaterials.0c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated particles secreted by eukaryotic cells that stimulate cell communication and horizontal cargo exchange. EV interactions with stromal cells can result in molecular changes in the recipient cell and, in some cases, lead to disease progression. However, mechanisms leading to these changes are poorly understood. A few model systems are available for studying the outcomes of surface interactions between EV membranes with stromal cells. Here, we created a hybrid supported bilayer incorporating EVs membrane material, called an extracellular vesicle supported bilayer, EVSB. Using EVSBs, we investigated the surface interactions between breast cancer EVs and adipose-derived stem cells (ADSCs) by culturing ADSCs on EVSBs and analyzing cell adhesion, spreading, viability, vascular endothelial growth factor (VEGF) secretion, and myofibroblast differentiation. Results show that cell viability, adhesion, spreading, and proangiogenic activity were enhanced, conditions that promote oncogenic activity, but cell differentiation was not. This model system could be used to develop therapeutic strategies to limit EV-ADSC interactions and proangiogenic conditions. Finally, this model system is not limited to the study of cancer but can be used to study surface interactions between EVs from any origin and any target cell to investigate EV mechanisms leading to cellular changes in other diseases.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Han-Yuan Liu
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Aaron E Chiou
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States
| | - Claudia Fischbach
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, 101 Weill Hall, 273 Tower Road, Ithaca, New York 14853, United States.,School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, 6-44 Ho Plaza, Ithaca, New York 14853, United States
| |
Collapse
|
28
|
The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers (Basel) 2020; 12:cancers12071849. [PMID: 32659999 PMCID: PMC7408631 DOI: 10.3390/cancers12071849] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy with rising incidence and limited therapeutic options. Obesity is a well-established risk factor for PC development. Moreover, it negatively affects outcome in PC patients. Excessive fat accumulation in obese, over- and normal-weight individuals induces metabolic and inflammatory changes of adipose tissue microenvironment leading to a dysfunctional adipose “organ”. This may drive the association between abnormal fat accumulation and pancreatic cancer. In this review, we describe several molecular mechanisms that underpin this association at both local and systemic levels. We focus on the role of adipose tissue-derived circulating factors including adipokines, hormones and pro-inflammatory cytokines, as well as on the impact of the local adipose tissue in promoting PC. A discussion on potential therapeutic interventions, interfering with pro-tumorigenic effects of dysfunctional adipose tissue in PC, is included. Considering the raise of global obesity, research efforts to uncover the molecular basis of the relationship between pancreatic cancer and adipose tissue dysfunction may provide novel insights for the prevention of this deadly disease. In addition, these efforts may uncover novel targets for personalized interventional strategies aimed at improving the currently unsatisfactory PC therapeutic options.
Collapse
|
29
|
Seo BR, Chen X, Ling L, Song YH, Shimpi AA, Choi S, Gonzalez J, Sapudom J, Wang K, Andresen Eguiluz RC, Gourdon D, Shenoy VB, Fischbach C. Collagen microarchitecture mechanically controls myofibroblast differentiation. Proc Natl Acad Sci U S A 2020; 117:11387-11398. [PMID: 32385149 PMCID: PMC7260976 DOI: 10.1073/pnas.1919394117] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Altered microarchitecture of collagen type I is a hallmark of wound healing and cancer that is commonly attributed to myofibroblasts. However, it remains unknown which effect collagen microarchitecture has on myofibroblast differentiation. Here, we combined experimental and computational approaches to investigate the hypothesis that the microarchitecture of fibrillar collagen networks mechanically regulates myofibroblast differentiation of adipose stromal cells (ASCs) independent of bulk stiffness. Collagen gels with controlled fiber thickness and pore size were microfabricated by adjusting the gelation temperature while keeping their concentration constant. Rheological characterization and simulation data indicated that networks with thicker fibers and larger pores exhibited increased strain-stiffening relative to networks with thinner fibers and smaller pores. Accordingly, ASCs cultured in scaffolds with thicker fibers were more contractile, expressed myofibroblast markers, and deposited more extended fibronectin fibers. Consistent with elevated myofibroblast differentiation, ASCs in scaffolds with thicker fibers exhibited a more proangiogenic phenotype that promoted endothelial sprouting in a contractility-dependent manner. Our findings suggest that changes of collagen microarchitecture regulate myofibroblast differentiation and fibrosis independent of collagen quantity and bulk stiffness by locally modulating cellular mechanosignaling. These findings have implications for regenerative medicine and anticancer treatments.
Collapse
Affiliation(s)
- Bo Ri Seo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Young Hye Song
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jacqueline Gonzalez
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jiranuwat Sapudom
- Biophysical Chemistry, Faculty of Life Sciences, Leipzig University, 04103 Leipzig, Germany
| | - Karin Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
| | | | - Delphine Gourdon
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853;
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
30
|
Cantini G, Di Franco A, Mannelli M, Scimè A, Maggi M, Luconi M. The Role of Metabolic Changes in Shaping the Fate of Cancer-Associated Adipose Stem Cells. Front Cell Dev Biol 2020; 8:332. [PMID: 32478073 PMCID: PMC7242628 DOI: 10.3389/fcell.2020.00332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue in physiological and in metabolically altered conditions (obesity, diabetes, metabolic syndrome) strictly interacts with the developing tumors both systemically and locally. In addition to the cancer-associated fibroblasts, adipose cells have also recently been described among the pivotal actors of the tumor microenvironment responsible for sustaining tumor development and progression. In particular, emerging evidence suggests that not only the mature adipocytes but also the adipose stem cells (ASCs) are able to establish a strict crosstalk with the tumour cells, thus resulting in a reciprocal reprogramming of both the tumor and adipose components. This review will focus on the metabolic changes induced by this interaction as a driver of fate determination occurring in cancer-associated ASCs (CA-ASCs) to support the tumor metabolic requirements. We will showcase the major role played by the metabolic changes occurring in the adipose tumor microenvironment that regulates ASC fate and consequently cancer progression. Our new results will also highlight the CA-ASC response in vitro by using a coculture system of primary ASCs grown with cancer cells originating from two different types of adrenal cancers [adrenocortical carcinoma (ACC) and pheochromocytoma]. In conclusion, the different factors involved in this crosstalk process will be analyzed and their effects on the adipocyte differentiation potential and functions of CA-ASCs will be discussed.
Collapse
Affiliation(s)
- Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Alessandra Di Franco
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Massimo Mannelli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio," University of Florence, Florence, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
31
|
Wu Q, Li B, Sun S, Sun S. Unraveling Adipocytes and Cancer Links: Is There a Role for Senescence? Front Cell Dev Biol 2020; 8:282. [PMID: 32411704 PMCID: PMC7198697 DOI: 10.3389/fcell.2020.00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Senescence is characterized by a permanent cell cycle arrest that is elicited in response to different stresses. In addition, senescent cells undergo multiple other phenotypic alterations, such as autophagy modulation, metabolic reprogramming, and the senescence-associated secretory phenotype (SASP). These senescence-related and inflammatory effects prevail within tumors and are strongly controlled by cancer properties, and inflammatory mediators further maintain and propagate the senescence process to adjacent cells. It is important to consider these detrimental effects that may drive tumorigenesis or cancer relapse. Importantly, cancer-associated adipocytes (CAAs) are one of the primary stromal cells in various tumor microenvironments and favor tumor progression by releasing various factors that can mediate local and systemic effects. However, it remains unclear whether CAAs possess senescent features. In this review, we discuss the complex relationship between senescence and CAAs and highlight important considerations for therapeutics.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China.,Faculty of Medicine, University of Paris Sud-Saclay, Le Kremlin-Bicêtre, France
| | - Bei Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
33
|
Abstract
The term "adipose tissue" represents a multicellular and multifunctional organ involved in lipid storage, in hormone and temperature regulation, and in the protection of bones and vital organs from impact-based damage. Emerging evidence now suggests a more malignant role of adipose tissue in promoting cancer onset and progression via the release of secreted factors such as interleukin-6 (IL6) and extracellular vesicles (EVs). These adipose-source factors subsequently affect various aspects of tumorigenesis and/or cancer progression by either directly enhancing the tumor cell oncogenic phenotype or indirectly by the stimulating adjacent normal cells to adopt a more pro-cancer phenotype. Due to the recent growing interest in the role of IL6 and EVs released by adipose tissue in cancer promotion and progression, we are focusing on the protumorigenic impact of fat tissue via IL6 and EV secretion.
Collapse
|
34
|
The role of tumor-derived exosomes in tumor angiogenesis and tumor progression. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Exosomes, belonging to the group of extracellular bodies, are released by healthy as well as cancerous cells and serve as a communication pathway. Tumor-derived exosomes (TEX) possess the capacity to reprogram the function of normal cells owing to their genetic and molecular cargo. Such exosomes target endothelial cells (among others) in the tumor microenvironment to promote angiogenesis. Blood supply is essential in solid tumor growth and metastasis. The potential of pro-angiogenic changes is enhanced by an increased amount of circulating tumor-derived exosomes in the body fluids of cancer patients. A vascular network is important, since the proliferation, as well as the metastatic spread of cancer cells depends on an adequate supply of oxygen and nutrients, and the removal of waste products. New blood vessels and lymphatic vessels are formed through processes called angiogenesis and lymphangiogenesis, respectively. Angiogenesis is regulated by both activator and inhibitor molecules. Thousands of patients have received anti-angiogenic therapy to date. Despite their theoretical efficacy, anti-angiogenic treatments have not proved beneficial in terms of long-term survival. Tumor-derived exosomes carrying pro-angiogenic factors might be a target for new anti-cancer therapy.
Collapse
|
35
|
Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S. Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. Int J Mol Sci 2019; 20:E5471. [PMID: 31684107 PMCID: PMC6862236 DOI: 10.3390/ijms20215471] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autologous therapies using adipose-derived stromal vascular fraction (AD-SVFs) and adult adipose-derived mesenchymal stem cells (AD-MSCs) warrant careful preparation of the harvested adipose tissue. Currently, no standardized technique for this preparation exists. Processing quantitative standards (PQSs) define manufacturing quantitative variables (such as time, volume, and pressure). Processing qualitative standards (PQLSs) define the quality of the materials and methods in manufacturing. The purpose of the review was to use PQSs and PQLSs to report the in vivo and in vitro results obtained by different processing kits that use different procedures (enzymatic vs. non-enzymatic) to isolate human AD-SVFs/AD-MSCs. PQSs included the volume of fat tissue harvested and reagents used, the time/gravity of centrifugation, and the time, temperature, and tilt level/speed of incubation and/or centrifugation. PQLSs included the use of a collagenase, a processing time of 30 min, kit weight, transparency of the kit components, the maintenance of a closed sterile processing environment, and the use of a small centrifuge and incubating rocker. Using a kit with the PQSs and PQLSs described in this study enables the isolation of AD-MSCs that meet the consensus quality criteria. As the discovery of new critical quality attributes (CQAs) of AD-MSCs evolve with respect to purity and potency, adjustments to these benchmark PQSs and PQLs will hopefully isolate AD-MSCs of various CQAs with greater reproducibility, quality, and safety. Confirmatory studies will no doubt need to be completed.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Barbara De Angelis
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", 00179 Rome, Italy.
| | | | - Ashutosh Kothari
- Chief of Breast Surgery Unit, Guy's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
36
|
Scioli MG, Storti G, D'Amico F, Gentile P, Kim BS, Cervelli V, Orlandi A. Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. Int J Mol Sci 2019; 20:ijms20133296. [PMID: 31277510 PMCID: PMC6651808 DOI: 10.3390/ijms20133296] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Growing importance has been attributed to interactions between tumors, the stromal microenvironment and adult mesenchymal stem cells. Adipose-derived stem cells (ASCs) are routinely employed in regenerative medicine and in autologous fat transfer procedures. To date, clinical trials have failed to demonstrate the potential pro-oncogenic role of ASC enrichment. Nevertheless, some pre-clinical studies from in vitro and in vivo models have suggested that ASCs act as a potential tumor promoter for different cancer cell types, and support tumor progression and invasiveness through the activation of several intracellular signals. Interaction with the tumor microenvironment and extracellular matrix remodeling, the exosomal release of pro-oncogenic factors as well as the induction of epithelial-mesenchymal transitions are the most investigated mechanisms. Moreover, ASCs have also demonstrated an elective tumor homing capacity and this tumor-targeting capacity makes them a suitable carrier for anti-cancer drug delivery. New genetic and applied nanotechnologies may help to design promising anti-cancer cell-based approaches through the release of loaded intracellular nanoparticles. These new anti-cancer therapies can more effectively target tumor cells, reaching higher local concentrations even in pharmacological sanctuaries, and thus minimizing systemic adverse drug effects. The potential interplay between ASCs and tumors and potential ASCs-based therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Federico D'Amico
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Pietro Gentile
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Bong-Sung Kim
- Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology Institute, Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy.
| |
Collapse
|
37
|
Zhang J, Chu M. Differential roles of VEGF: Relevance to tissue fibrosis. J Cell Biochem 2019; 120:10945-10951. [PMID: 30793361 DOI: 10.1002/jcb.28489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Excessive extracellular matrix deposition and pathological vascularization are characteristics of fibrosis, which compromises the normal functioning of organs. Although whether angiogenesis can be induced and can occur in parallel with the progression of fibrosis has not been definitely determined, angiogenesis undoubtedly plays a vital role in fibrosis. Since vascular endothelial growth factor (VEGF) is one of the most effective proangiogenic factors, VEGF-targeting interventions have been a focus for the development of therapeutic strategies against fibrosis. In this review, we will summarize the current knowledge of the role of VEGF and its relevant mechanisms in fibrotic biology. We especially expect to provide a comprehensive overview of the therapeutic potential of VEGF-targeted therapy strategies to restore vascular function in the organs affected by fibrosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Nan Gang, China
| |
Collapse
|
38
|
Schwager SC, Bordeleau F, Zhang J, Antonyak MA, Cerione RA, Reinhart-King CA. Matrix stiffness regulates microvesicle-induced fibroblast activation. Am J Physiol Cell Physiol 2019; 317:C82-C92. [PMID: 31017799 PMCID: PMC6689748 DOI: 10.1152/ajpcell.00418.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 11/22/2022]
Abstract
Extracellular vesicles released by cancer cells have recently been implicated in the differentiation of stromal cells to their activated, cancer-supporting states. Microvesicles, a subset of extracellular vesicles released from the plasma membrane of cancer cells, contain biologically active cargo, including DNA, mRNA, and miRNA, which are transferred to recipient cells and induce a phenotypic change in behavior. While it is known that microvesicles can alter recipient cell phenotype, little is known about how the physical properties of the tumor microenvironment affect fibroblast response to microvesicles. Here, we utilized cancer cell-derived microvesicles and synthetic substrates designed to mimic the stiffness of the tumor and tumor stroma to investigate the effects of microvesicles on fibroblast phenotype as a function of the mechanical properties of the microenvironment. We show that microvesicles released by highly malignant breast cancer cells cause an increase in fibroblast spreading, α-smooth muscle actin expression, proliferation, cell-generated traction force, and collagen gel compaction. Notably, our data indicate that these phenotypic changes occur only on stiff matrices mimicking the stiffness of the tumor periphery and are dependent on the cell type from which the microvesicles are shed. Overall, these results show that the effects of cancer cell-derived microvesicles on fibroblast activation are regulated by the physical properties of the microenvironment, and these data suggest that microvesicles may have a more robust effect on fibroblasts located at the tumor periphery to influence cancer progression.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Jian Zhang
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell University , Ithaca, New York
| | - Richard A Cerione
- Department of Biomedical Science, Cornell University , Ithaca, New York
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York
| | | |
Collapse
|
39
|
Latifkar A, Hur YH, Sanchez JC, Cerione RA, Antonyak MA. New insights into extracellular vesicle biogenesis and function. J Cell Sci 2019; 132:132/13/jcs222406. [PMID: 31263077 DOI: 10.1242/jcs.222406] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is becoming increasingly evident that most cell types are capable of forming and releasing multiple distinct classes of membrane-enclosed packages, referred to as extracellular vesicles (EVs), as a form of intercellular communication. Microvesicles (MVs) represent one of the major classes of EVs and are formed by the outward budding of the plasma membrane. The second major class of EVs, exosomes, are produced as components of multivesicular bodies (MVBs) and are released from cells when MVBs fuse with the cell surface. Both MVs and exosomes have been shown to contain proteins, RNA transcripts, microRNAs and even DNA that can be transferred to other cells and thereby trigger a broad range of cellular activities and biological responses. However, EV biogenesis is also frequently de-regulated in different pathologies, especially cancer, where MVs and exosomes have been suggested to promote tumor cell growth, therapy resistance, invasion and even metastasis. In this Review, we highlight some of the recent advances in this rapidly emerging and exciting field of cell biology, focusing on the underlying mechanisms that drive MV and exosome formation and release, with a particular emphasis on how EVs potentially impact different aspects of cancer progression and stem cell biology.
Collapse
Affiliation(s)
- Arash Latifkar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yun Ha Hur
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Julio C Sanchez
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA .,Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Gentile P, Garcovich S. Concise Review: Adipose-Derived Stem Cells (ASCs) and Adipocyte-Secreted Exosomal microRNA (A-SE-miR) Modulate Cancer Growth and proMote Wound Repair. J Clin Med 2019; 8:jcm8060855. [PMID: 31208047 PMCID: PMC6616456 DOI: 10.3390/jcm8060855] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been routinely used from several years in regenerative surgery without any definitive statement about their potential pro-oncogenic or anti-oncogenic role. ASCs has proven to favor tumor progression in several experimental cancer models, playing a central role in regulating tumor invasiveness and metastatic potential through several mechanisms, such as the paracrine release of exosomes containing pro-oncogenic molecules and the induction of epithelial-mesenchymal transition. However, the high secretory activity and the preferential tumor-targeting make also ASCs a potentially suitable vehicle for delivery of new anti-cancer molecules in tumor microenvironment. Nanotechnologies, viral vectors, drug-loaded exosomes, and micro-RNAs (MiR) represent additional new tools that can be applied for cell-mediated drug delivery in a tumor microenvironment. Recent studies revealed that the MiR play important roles in paracrine actions on adipose-resident macrophages, and their dysregulation has been implicated in the pathogenesis of obesity, diabetes, and diabetic complications as wounds. Numerous MiR are present in adipose tissues, actively participating in the regulation of adipogenesis, adipokine secretion, inflammation, and inter-cellular communications in the local tissues. These results provide important insights into Adipocyte-secreted exosomal microRNA (A-SE-MiR) function and they suggest evaluating the potential role of A-SE-MiR in tumor progression, the mechanisms underlying ASCs-cancer cell interplay and clinical safety of ASCs-based therapies.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery Unit, University of "Tor Vergata", 00133 Rome, Italy.
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| |
Collapse
|
41
|
Abstract
Obesity is associated with both increased cancer incidence and progression in multiple tumour types, and is estimated to contribute to up to 20% of cancer-related deaths. These associations are driven, in part, by metabolic and inflammatory changes in adipose tissue that disrupt physiological homeostasis both within local tissues and systemically. However, the mechanisms underlying the obesity-cancer relationship are poorly understood. In this Review, we describe how the adipose tissue microenvironment (ATME) evolves during body-weight gain, and how these changes might influence tumour initiation and progression. We focus on multiple facets of ATME physiology, including inflammation, vascularity and fibrosis, and discuss therapeutic interventions that have the potential to normalize the ATME, which might be translationally relevant for cancer prevention and therapy. Given that the prevalence of obesity is increasing on an international scale, translational research initiatives are urgently needed to provide mechanistic explanations for the obesity-cancer relationship, and how to best identify high-risk individuals without relying on crude measures, such as BMI.
Collapse
Affiliation(s)
- Daniela F Quail
- Goodman Cancer Research Centre, Department of Physiology, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
42
|
Wells A, Clark A, Bradshaw A, Ma B, Edington H. The great escape: How metastases of melanoma, and other carcinomas, avoid elimination. Exp Biol Med (Maywood) 2019; 243:1245-1255. [PMID: 30764707 DOI: 10.1177/1535370218820287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Cancers kill mainly because metastatic disease is resistant to systemic therapies. It was hoped that newer targeted and immunomodulatory interventions could overcome these issues. However, recent findings point to a generalized resistance to elimination imparted by both cancer-intrinsic and -extrinsic changes to provide survival advantages to the disseminated tumor cells. Here, we present a novel conceptual framework for the microenvironmental inputs and changes that contribute to this generalized therapeutic resistance. In addition we address the issues of experimental systems in terms of studying this phenomenon with their advantages and limitations. This is meant to spur studies into this critical aspect of tumor progression that directly leads to cancer mortality.
Collapse
Affiliation(s)
- Alan Wells
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,4 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,5 Hillman Cancer Centers of UPMC, Pittsburgh, PA 15232, USA
| | - Amanda Clark
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew Bradshaw
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Bo Ma
- 1 Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,3 Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.,5 Hillman Cancer Centers of UPMC, Pittsburgh, PA 15232, USA
| | - Howard Edington
- 6 Department of Surgery, Allegheny Health Network, Pittsburgh, PA 15224, USA
| |
Collapse
|
43
|
Wang Y, Shi W, Kuss M, Mirza S, Qi D, Krasnoslobodtsev A, Zeng J, Band H, Band V, Duan B. 3D Bioprinting of Breast Cancer Models for Drug Resistance Study. ACS Biomater Sci Eng 2018; 4:4401-4411. [PMID: 33418833 DOI: 10.1021/acsbiomaterials.8b01277] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, People’s Republic of China
| | | | | | | | - Dianjun Qi
- Department of General Practice, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Shenyang, Liaoning, People’s Republic of China
| | - Alexey Krasnoslobodtsev
- Department of Physics, University of Nebraska at Omaha, 6001 Dodge Street, Omaha 68182, Nebraska, United States
| | - Jiping Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, People’s Republic of China
| | | | | | | |
Collapse
|
44
|
The Crosstalk between Cancer Stem Cells and Microenvironment Is Critical for Solid Tumor Progression: The Significant Contribution of Extracellular Vesicles. Stem Cells Int 2018; 2018:6392198. [PMID: 30532788 PMCID: PMC6247433 DOI: 10.1155/2018/6392198] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Several evidences nowadays demonstrated the critical role of the microenvironment in regulating cancer stem cells and their involvement in tumor progression. Extracellular vesicles (EVs) are considered as one of the most effective vehicles of information among cells. Accordingly, a number of studies led to the recognition of stem cell-associated EVs as new complexes able to contribute to cell fate determination of either normal or tumor cells. In this review, we aim to highlight an existing bidirectional role of EV-mediated communication—from cancer stem cells to microenvironment and also from microenvironment to cancer stem cells—in the most widespread solid cancers as prostate, breast, lung, and colon tumors.
Collapse
|
45
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
46
|
Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018; 7:cells7080093. [PMID: 30071693 PMCID: PMC6115997 DOI: 10.3390/cells7080093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.
Collapse
Affiliation(s)
- James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
47
|
Sato S, Weaver AM. Extracellular vesicles: important collaborators in cancer progression. Essays Biochem 2018; 62:149-163. [PMID: 29666212 PMCID: PMC6377252 DOI: 10.1042/ebc20170080] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/07/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane vesicles that are released from cells and mediate cell-cell communication. EVs carry protein, lipid, and nucleic acid cargoes that interact with recipient cells to alter their phenotypes. Evidence is accumulating that tumor-derived EVs can play important roles in all steps of cancer progression. Here, we review recent studies reporting critical roles for EVs in four major areas of cancer progression: promotion of cancer invasiveness and motility, enhancement of angiogenesis and vessel permeability, conditioning premetastatic niches, and immune suppression.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
48
|
Peng J, Wang W, Hua S, Liu L. Roles of Extracellular Vesicles in Metastatic Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2018; 12:1178223418767666. [PMID: 29881285 PMCID: PMC5987895 DOI: 10.1177/1178223418767666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/27/2018] [Indexed: 01/29/2023]
Abstract
Cells can secrete extracellular vesicles (EVs) to communicate with neighboring or
distant cells by EVs which are composed of a lipid bilayer containing
transmembrane proteins and enclosing cytosolic proteins, lipids, and nucleic
acids. Breast Cancer is the most frequently diagnosed malignancy with more than
1 million new cases each year and ranks the leading cause of cancer mortality in
women worldwide. In this review, we will discuss recent progresses of the roles
and mechanisms of cancer-derived EVs in metastatic breast cancer, with a special
attention on tumor microenvironment construction, progression, and
chemo/radiotherapy responses. This review also covers EV roles as biomarker and
therapeutic target in clinical application.
Collapse
Affiliation(s)
- Junya Peng
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wenqian Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Surong Hua
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Lulu Liu
- Department of Center Lab, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Lu H, Bowler N, Harshyne LA, Craig Hooper D, Krishn SR, Kurtoglu S, Fedele C, Liu Q, Tang HY, Kossenkov AV, Kelly WK, Wang K, Kean RB, Weinreb PH, Yu L, Dutta A, Fortina P, Ertel A, Stanczak M, Forsberg F, Gabrilovich DI, Speicher DW, Altieri DC, Languino LR. Exosomal αvβ6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 2018. [PMID: 29530483 DOI: 10.1016/j.matbio.2018.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Therapeutic approaches aimed at curing prostate cancer are only partially successful given the occurrence of highly metastatic resistant phenotypes that frequently develop in response to therapies. Recently, we have described αvβ6, a surface receptor of the integrin family as a novel therapeutic target for prostate cancer; this epithelial-specific molecule is an ideal target since, unlike other integrins, it is found in different types of cancer but not in normal tissues. We describe a novel αvβ6-mediated signaling pathway that has profound effects on the microenvironment. We show that αvβ6 is transferred from cancer cells to monocytes, including β6-null monocytes, by exosomes and that monocytes from prostate cancer patients, but not from healthy volunteers, express αvβ6. Cancer cell exosomes, purified via density gradients, promote M2 polarization, whereas αvβ6 down-regulation in exosomes inhibits M2 polarization in recipient monocytes. Also, as evaluated by our proteomic analysis, αvβ6 down-regulation causes a significant increase in donor cancer cells, and their exosomes, of two molecules that have a tumor suppressive role, STAT1 and MX1/2. Finally, using the Ptenpc-/- prostate cancer mouse model, which carries a prostate epithelial-specific Pten deletion, we demonstrate that αvβ6 inhibition in vivo causes up-regulation of STAT1 in cancer cells. Our results provide evidence of a novel mechanism that regulates M2 polarization and prostate cancer progression through transfer of αvβ6 from cancer cells to monocytes through exosomes.
Collapse
Affiliation(s)
- Huimin Lu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Nicholas Bowler
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - D Craig Hooper
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shiv Ram Krishn
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Senem Kurtoglu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Carmine Fedele
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qin Liu
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, USA
| | - Hsin-Yao Tang
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - Andrew V Kossenkov
- Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - William K Kelly
- Departments of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kerith Wang
- Departments of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rhonda B Kean
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Lei Yu
- Flow Cytometry Core Facility, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anindita Dutta
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Paolo Fortina
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam Ertel
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dmitry I Gabrilovich
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Immunology, Microenvironment and Metastasis Program, Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, USA; Center for Systems and Computational Biology, Wistar Institute, Philadelphia, PA, USA
| | - Dario C Altieri
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Immunology, Microenvironment and Metastasis Program, Wistar Institute, Philadelphia, PA, USA
| | - Lucia R Languino
- Prostate Cancer Discovery and Development Program, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
50
|
Lourenço BN, Springer NL, Ferreira D, Oliveira C, Granja PL, Fischbach C. CD44v6 increases gastric cancer malignant phenotype by modulating adipose stromal cell-mediated ECM remodeling. Integr Biol (Camb) 2018; 10:145-158. [PMID: 29450424 PMCID: PMC5988203 DOI: 10.1039/c7ib00179g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD44, an abundantly expressed adhesion molecule, and its alternative splice variants have been associated with tumorigenesis and metastasis. In the context of gastric cancer (GC), de novo expression of CD44 variant 6 (CD44v6) is found in more than 60% of GCs, but its role in the pathogenesis and progression of this type of cancer remains unclear. Using a combination of media conditioning experiments and decellularized extracellular matrices (ECMs), this study investigates the hypothesis that CD44v6 overexpression enhances tumor cell malignant behavior by modulating stromal cell-mediated ECM remodeling. Our findings indicate that soluble factors secreted by CD44v6 expressing GC cells particularly increase proliferation and myofibroblastic differentiation of adipose stromal cells (ASCs). These changes in ASC phenotype mediate the deposition of fibrotic/desmoplastic ECM that, in turn, stimulates GC proliferation and inhibits GC clustering. Pharmacological inhibition of matrix metalloproteinase (MMP) activity in tumor cells abrogated matrix-induced changes in tumor cell malignant behavior. Additionally, studies in mice confirmed the pathological relevance of CD44v6 expression and consequential changes in ECM remodeling to gastric tumorigenesis in vivo. Collectively, these results indicate a direct link between CD44v6, ECM remodeling, and GC malignant behavior opening new insights into potential CD44v6-targeted therapies.
Collapse
Affiliation(s)
- Bianca N Lourenço
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 157 Weill Hall, Ithaca, NY 14853, USA. and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal and Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Nora L Springer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 157 Weill Hall, Ithaca, NY 14853, USA. and Biological and Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Daniel Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Portugal and Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Pedro L Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal and INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Portugal and Faculdade de Engenharia, Universidade do Porto, Portugal and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, 157 Weill Hall, Ithaca, NY 14853, USA. and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| |
Collapse
|