1
|
Arndt P, Turkowski K, Cekay M, Eul B, Grimminger F, Savai R. Endothelin and the tumor microenvironment: a finger in every pie. Clin Sci (Lond) 2024; 138:617-634. [PMID: 38785410 PMCID: PMC11130555 DOI: 10.1042/cs20240426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the development of cancer. Within this complex milieu, the endothelin (ET) system plays a key role by triggering epithelial-to-mesenchymal transition, causing degradation of the extracellular matrix and modulating hypoxia response, cell proliferation, composition, and activation. These multiple effects of the ET system on cancer progression have prompted numerous preclinical studies targeting the ET system with promising results, leading to considerable optimism for subsequent clinical trials. However, these clinical trials have not lived up to the high expectations; in fact, the clinical trials have failed to demonstrate any substantiated benefit of targeting the ET system in cancer patients. This review discusses the major and recent advances of the ET system with respect to TME and comments on past and ongoing clinical trials of the ET system.
Collapse
Affiliation(s)
- Philipp F. Arndt
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Kati Turkowski
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| | - Michael J. Cekay
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Centre (UGMLC), Member of the Cardio-Pulmonary Institute (CPI), Member of the German Centre for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of the CPI, Bad Nauheim, Germany
| |
Collapse
|
2
|
Del Rio D, Masi I, Caprara V, Ottavi F, Albertini Petroni G, Salvati E, Trisciuoglio D, Giannitelli SM, Bagnato A, Mauri E, Spadaro F, Rosanò L. The β-arrestin1/endothelin axis bolsters ovarian fibroblast-dependent invadosome activity and cancer cell metastatic potential. Cell Death Dis 2024; 15:358. [PMID: 38777849 PMCID: PMC11111729 DOI: 10.1038/s41419-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of β-arrestin1 (β-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/β-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin β1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or β-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/β-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.
Collapse
Affiliation(s)
- Danila Del Rio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Gabriele Albertini Petroni
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Erica Salvati
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Emanuele Mauri
- Department of Chemistry Materials and Chemical Engineering, University Politecnico di Milano, 20133, Milano, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy.
| |
Collapse
|
3
|
Shen LP, Jiang HT. Pan-cancer and single-cell analysis of actin cytoskeleton genes related to disulfidptosis. Open Med (Wars) 2024; 19:20240929. [PMID: 38584831 PMCID: PMC10997004 DOI: 10.1515/med-2024-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Disulfidptosis was recently reported to be caused by abnormal disulfide accumulation in cells with high SLC7A11 levels subjected to glucose starvation, suggesting that targeting disulfidptosis was a potential strategy for cancer treatment. We analyzed the relationships between gene expression and mutations and prognoses of patients. In addition, the correlation between gene expression and immune cell infiltration was explored. The potential regulatory mechanisms of these genes were assessed by investigating their related signaling pathways involved in cancer, their expression patterns, and their cellular localization. Most cancer types showed a negative correlation between the gene-set variation analysis (GSVA) scores and infiltration of B cells and neutrophils, and a positive correlation between GSVA scores and infiltration of natural killer T and induced regulatory T cells. Single-cell analysis revealed that ACTB, DSTN, and MYL6 were highly expressed in different bladder urothelial carcinoma subtypes, but MYH10 showed a low expression. Immunofluorescence staining showed that actin cytoskeleton proteins were mainly localized in the actin filaments and plasma membrane. Notably, IQGAP1 was localized in the cell junctions. In conclusion, this study provided an overview of disulfidptosis-related actin cytoskeleton genes in pan-cancer. These genes were associated with the survival of patients and might be involved in cancer-related pathways.
Collapse
Affiliation(s)
- Li-ping Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Han-tao Jiang
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| |
Collapse
|
4
|
Fang RY, Liu YW, Goan YG, Lin JJ, Su JH, Wu WT, Wu YJ. Suppression of Migration and Invasion by 4-Carbomethoxyl-10-Epigyrosanoldie E from the Cultured Soft Coral Sinularia sandensis through the MAPKs Pathway on Oral Cancer Cells. Adv Pharmacol Pharm Sci 2024; 2024:6695837. [PMID: 38374934 PMCID: PMC10876307 DOI: 10.1155/2024/6695837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
The primary reason for cancer-related fatalities is metastasis. The compound 4-carbomethoxyl-10-epigyrosanoldie E, derived from the Sinularia sandensis soft coral species grown in cultures, exhibits properties that counteract inflammation. Moreover, it has been observed to trigger both apoptosis and autophagy within cancerous cells. This research focuses on examining the inhibitory impact of 4-carbomethoxyl-10-epigyrosanoldie E on the migration and invasion processes in Cal-27 and Ca9-22 oral cancer cell lines. To assess how this compound affects cell migration and invasion, the Boyden chamber assay was employed. Furthermore, Western blot analysis was utilized to explore the underlying molecular mechanisms. In a dose-dependent manner, 4-carbomethoxyl-10-epigyrosanoldie E notably decreased the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9, along with urokinase-type plasminogen activator (uPA), in both Cal-27 and Ca9-22 cell lines. Conversely, it elevated the concentrations of tissue inhibitors of metalloproteinases-1 (TIMP-1) and TIMP-2. In addition, the treatment with this compound led to the inhibition of phosphorylation in extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). It also curtailed the expression of several key proteins including focal adhesion kinase (FAK), protein kinase C (PKC), growth factor receptor-bound protein 2 (GRB2), Rac, Ras, Rho A, mitogen-activated protein kinase kinase kinase 3 (MEKK3), and mitogen-activated protein kinase kinase 7 (MKK7). Furthermore, the expression levels of IQ-domain GTPase-activating protein 1 (IQGAP1) and zonula occludens-1 (ZO-1) were significantly reduced by the compound. The ability of 4-carbomethoxyl-10-epigyrosanoldie E to inhibit the migration and invasion of Cal-27 and Ca9-22 oral cancer cells was observed to be dose dependent. This inhibitory effect is primarily attributed to the suppression of MMP-2 and MMP-9 expression, as well as the downregulation of the mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Rou-Yi Fang
- Department of Pharmacy, Kaohsiung Veterans General Hospital, Pingtung Branch, Kaohsiung, Taiwan
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yueh-Wen Liu
- Department of Cosmetics and Fashion Styling, Cheng Shiu University, Kaohsiung, Taiwan
| | - Yih-Gang Goan
- Division of Thoracic Surgery Department of Surgery, Pingtung Veterans General Hospital, Pingtung, Taiwan
| | - Jen-Jie Lin
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
| | - Jui-Hsin Su
- National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| | - Wen-Tung Wu
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Yu-Jen Wu
- Yu Jun Biotechnology Co., Ltd., Kaohsiung, Taiwan
| |
Collapse
|
5
|
Díaz Méndez AB, Sacconi A, Tremante E, Lulli V, Caprara V, Rosanò L, Goeman F, Carosi M, Di Giuliani M, Vari G, Silvani A, Pollo B, Garufi C, Ramponi S, Simonetti G, Ciusani E, Mandoj C, Scalera S, Villani V, Po A, Ferretti E, Regazzo G, Rizzo MG. A diagnostic circulating miRNA signature as orchestrator of cell invasion via TKS4/TKS5/EFHD2 modulation in human gliomas. J Exp Clin Cancer Res 2023; 42:66. [PMID: 36932446 PMCID: PMC10022260 DOI: 10.1186/s13046-023-02639-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ana Belén Díaz Méndez
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Biostatistics and Bioinformatics Unit, Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Tremante
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Valentina Lulli
- grid.416651.10000 0000 9120 6856Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Caprara
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- grid.417520.50000 0004 1760 5276Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, Italy
| | - Frauke Goeman
- grid.417520.50000 0004 1760 5276SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- grid.417520.50000 0004 1760 5276Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Giuliani
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Giulia Vari
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
- grid.7841.aPhD Program in Molecular Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Silvani
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Garufi
- grid.416308.80000 0004 1805 3485Medical-Oncology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Sara Ramponi
- grid.416308.80000 0004 1805 3485Medical-Oncology Unit, San Camillo Forlanini Hospital, Rome, Italy
| | - Giorgia Simonetti
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilio Ciusani
- grid.417894.70000 0001 0707 5492Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Mandoj
- grid.417520.50000 0004 1760 5276Clinical Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefano Scalera
- grid.417520.50000 0004 1760 5276SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- grid.6530.00000 0001 2300 0941PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Villani
- grid.417520.50000 0004 1760 5276Neuro-Oncology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Agnese Po
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Elisabetta Ferretti
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Giulia Regazzo
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Maria Giulia Rizzo
- grid.417520.50000 0004 1760 5276Department of Research, Advanced Diagnostics and Technological Innovation, Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
6
|
Brown Y, Hua S, Tanwar PS. Extracellular Matrix in High-Grade Serous Ovarian Cancer: Advances in Understanding of Carcinogenesis and Cancer Biology. Matrix Biol 2023; 118:16-46. [PMID: 36781087 DOI: 10.1016/j.matbio.2023.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is notoriously known as the "silent killer" of post-menopausal women as it has an insidious progression and is the deadliest gynaecological cancer. Although a dual origin of HGSOC is now widely accepted, there is growing evidence that most cases of HGSOC originate from the fallopian tube epithelium. In this review, we will address the fallopian tube origin and involvement of the extracellular matrix (ECM) in HGSOC development. There is limited research on the role of ECM at the earliest stages of HGSOC carcinogenesis. Here we aim to synthesise current understanding on the contribution of ECM to each stage of HGSOC development and progression, beginning at serous tubal intraepithelial carcinoma (STIC) precursor lesions and proceeding across key events including dissemination of tumourigenic fallopian tube epithelial cells to the ovary, survival of these cells in peritoneal fluid as multicellular aggregates, and colonisation of the ovary. Likewise, as part of the metastatic series of events, serous ovarian cancer cells survive travel in peritoneal fluid, attach to, migrate across the mesothelium and invade into the sub-mesothelial matrix of secondary sites in the peritoneal cavity. Halting cancer at the pre-metastatic stage and finding ways to stop the dissemination of ovarian cancer cells from the primary site is critical for improving patient survival. The development of drug resistance also contributes to poor survival statistics in HGSOC. In this review, we provide an update on the involvement of the ECM in metastasis and drug resistance in HGSOC. Interplay between different cell-types, growth factor gradients as well as evolving ECM composition and organisation, creates microenvironment conditions that promote metastatic progression and drug resistance of ovarian cancer cells. By understanding ECM involvement in the carcinogenesis and chemoresistance of HGSOC, this may prompt ideas for further research for developing new early diagnostic tests and therapeutic strategies for HGSOC with the end goal of improving patient health outcomes.
Collapse
Affiliation(s)
- Yazmin Brown
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Pradeep S Tanwar
- Global Centre for Gynaecological Diseases, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.; Cancer Detection and Therapy Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia..
| |
Collapse
|
7
|
Song F, Dai Q, Grimm MO, Steinbach D. The Antithetic Roles of IQGAP2 and IQGAP3 in Cancers. Cancers (Basel) 2023; 15:cancers15041115. [PMID: 36831467 PMCID: PMC9953781 DOI: 10.3390/cancers15041115] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The scaffold protein family of IQ motif-containing GTPase-activating proteins (IQGAP1, 2, and 3) share a high degree of homology and comprise six functional domains. IQGAPs bind and regulate the cytoskeleton, interact with MAP kinases and calmodulin, and have GTPase-related activity, as well as a RasGAP domain. Thus, IQGAPs regulate multiple cellular processes and pathways, affecting cell division, growth, cell-cell interactions, migration, and invasion. In the past decade, significant evidence on the function of IQGAPs in signal transduction during carcinogenesis has emerged. Compared with IQGAP1, IQGAP2 and IQGAP3 were less analyzed. In this review, we summarize the different signaling pathways affected by IQGAP2 and IQGAP3, and the antithetic roles of IQGAP2 and IQGAP3 in different types of cancer. IQGAP2 expression is reduced and plays a tumor suppressor role in most solid cancer types, while IQGAP3 is overexpressed and acts as an oncogene. In lymphoma, for example, IQGAPs have partially opposite functions. There is considerable evidence that IQGAPs regulate a multitude of pathways to modulate cancer processes and chemoresistance, but some questions, such as how they trigger this signaling, through which domains, and why they play opposite roles on the same pathways, are still unanswered.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07740 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
8
|
Masi I, Ottavi F, Del Rio D, Caprara V, Vastarelli C, Giannitelli SM, Fianco G, Mozetic P, Buttarelli M, Ferrandina G, Scambia G, Gallo D, Rainer A, Bagnato A, Spadaro F, Rosanò L. The interaction of β-arrestin1 with talin1 driven by endothelin A receptor as a feature of α5β1 integrin activation in high-grade serous ovarian cancer. Cell Death Dis 2023; 14:73. [PMID: 36717550 PMCID: PMC9886921 DOI: 10.1038/s41419-023-05612-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Dissemination of high-grade serous ovarian cancer (HG-SOC) in the omentum and intercalation into a mesothelial cell (MC) monolayer depends on functional α5β1 integrin (Intα5β1) activity. Although the binding of Intα5β1 to fibronectin drives these processes, other molecular mechanisms linked to integrin inside-out signaling might support metastatic dissemination. Here, we report a novel interactive signaling that contributes to Intα5β1 activation and accelerates tumor cells toward invasive disease, involving the protein β-arrestin1 (β-arr1) and the activation of the endothelin A receptor (ETAR) by endothelin-1 (ET-1). As demonstrated in primary HG-SOC cells and SOC cell lines, ET-1 increased Intβ1 and downstream FAK/paxillin activation. Mechanistically, β-arr1 directly interacts with talin1 and Intβ1, promoting talin1 phosphorylation and its recruitment to Intβ1, thus fueling integrin inside-out activation. In 3D spheroids and organotypic models mimicking the omentum, ETAR/β-arr1-driven Intα5β1 signaling promotes the survival of cell clusters, with mesothelium-intercalation capacity and invasive behavior. The treatment with the antagonist of ETAR, Ambrisentan (AMB), and of Intα5β1, ATN161, inhibits ET-1-driven Intα5β1 activity in vitro, and tumor cell adhesion and spreading to intraperitoneal organs and Intβ1 activity in vivo. As a prognostic factor, high EDNRA/ITGB1 expression correlates with poor HG-SOC clinical outcomes. These findings highlight a new role of ETAR/β-arr1 operating an inside-out integrin activation to modulate the metastatic process and suggest that in the new integrin-targeting programs might be considered that ETAR/β-arr1 regulates Intα5β1 functional pathway.
Collapse
Affiliation(s)
- Ilenia Masi
- Institute of Molecular Biology and Pathology, CNR, Rome, 00185, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology, CNR, Rome, 00185, Italy
| | - Danila Del Rio
- Institute of Molecular Biology and Pathology, CNR, Rome, 00185, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy
| | | | - Sara Maria Giannitelli
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Giulia Fianco
- Institute of Molecular Biology and Pathology, CNR, Rome, 00185, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
- San Raffaele Hospital, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Via Olgettina, 60, Milan, 20132, Italy
| | - Marianna Buttarelli
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome, 00168, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Gabriella Ferrandina
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome, 00168, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Giovanni Scambia
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome, 00168, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Daniela Gallo
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica-Sezione di Ginecologia ed Ostetricia-Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, Rome, 00168, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo A. Gemelli 8, Rome, 00168, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), c/o Campus Ecotekne, via Monteroni, Lecce, 73100, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, 00185, Italy.
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy.
| |
Collapse
|
9
|
Aamna B, Kumar Dan A, Sahu R, Behera SK, Parida S. Deciphering the signaling mechanisms of β-arrestin1 and β-arrestin2 in regulation of cancer cell cycle and metastasis. J Cell Physiol 2022; 237:3717-3733. [PMID: 35908197 DOI: 10.1002/jcp.30847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022]
Abstract
β-Arrestins are ubiquitously expressed intracellular proteins with many functions which interact directly and indirectly with a wide number of cellular partners and mediate downstream signaling. Originally, β-arrestins were identified for their contribution to GPCR desensitization to agonist-mediated activation, followed by receptor endocytosis and ubiquitylation. However, current investigations have now recognized that in addition to GPCR arresting (hence the name arrestin). β-Arrestins are adaptor proteins that control the recruitment, activation, and scaffolding of numerous cytoplasmic signaling complexes and assist in G-protein receptor signaling, thus bringing them into close proximity. They have participated in various cellular processes such as cell proliferation, migration, apoptosis, and transcription via canonical and noncanonical pathways. Despite their significant recognition in several physiological processes, these activities are also involved in the onset and progression of various cancers. This review delivers a concise overview of the role of β-arrestins with a primary emphasis on the signaling processes which underlie the mechanism of β-arrestins in the onset of cancer. Understanding these processes has important implications for understanding the therapeutic intervention and treatment of cancer in the future.
Collapse
Affiliation(s)
- Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Sagarika Parida
- Department of Botany, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
10
|
Del Bufalo D, Di Martile M, Valentini E, Manni I, Masi I, D'Amore A, Filippini A, Nicoletti C, Zaccarini M, Cota C, Castro MV, Quezada MJ, Rosanò L, Lopez-Bergami P, D'Aguanno S. Bcl-2-like protein-10 increases aggressive features of melanoma cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:11-26. [PMID: 36046354 PMCID: PMC9400776 DOI: 10.37349/etat.2022.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Aim: B-cell lymphoma-2 (Bcl-2)-like protein-10 (Bcl2L10) is the less studied
member of Bcl-2 family proteins, with the controversial role in different
cancer histotypes. Very recently, Bcl2L10 expression in melanoma tumor
specimens and its role in melanoma response to therapy have been
demonstrated. Here, the involvement of Bcl2L10 on the in
vitro and in vivo properties associated with
melanoma aggressive features has been investigated. Methods: Endogenous Bcl2L10 protein expression was detected by western blotting
analysis in a panel of patient-derived and commercially available human
melanoma cells. In vitro assays to evaluate clonogenicity,
cell proliferation, cell migration, cell invasion, and in
vitro capillary-like structure formation [vasculogenic
mimicry (VM)] have been performed by using human melanoma cells
stably overexpressing Bcl2L10 or transiently transfected for loss/gain
function of Bcl2L10, grown under two- or three-dimensional (3D) conditions
Xenograft melanoma model was employed to evaluate in vivo
tumor growth and angiogenesis. Results: Results demonstrated that Bcl2L10 acts as an inducer of in
vitro cell migration, invasion, and VM, while in
vitro cell proliferation, in vivo tumor
growth, as well as colony formation properties were not affected. Dissecting
different signaling pathways, it was found that Bcl2L10 positively affects
the phosphorylation of extracellular-signal-regulated kinase (ERK) and the
expression of markers of cell invasion, such as urokinase plasminogen
activator receptor (uPAR) and matrix metalloproteinases (MMPs). Of note,
Bcl2L10-dependent in vitro migration, invasion, and VM are
linked to uPAR. Bcl2L10 also negatively regulates the intracellular calcium
level. Finally, reduced invasion capability in 3D spheroid invasion assay of
melanoma cells transiently overexpressing Bcl2L10 was observed after
treatment with inhibitors of MMPs and uPAR. Conclusions: Overall, data reported in this paper provide evidence supporting a positive
role of Bcl2L10 in melanoma aggressive features.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, National Research Council, 00161 Rome, Italy
| | - Antonella D'Amore
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Antonio Filippini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Carmine Nicoletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Dermatological Molecular Biology and Dermatopathology Unit, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Carlo Cota
- Genetic Research, Dermatological Molecular Biology and Dermatopathology Unit, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Maria Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council, 00161 Rome, Italy
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo, Universidad Maimónides, Buenos Aires C1405BCK, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1405BCK, Argentina
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
11
|
Del Rio D, Masi I, Caprara V, Spadaro F, Ottavi F, Strippoli R, Sandoval P, López-Cabrera M, Sainz de la Cuesta R, Bagnato A, Rosanò L. Ovarian Cancer-Driven Mesothelial-to-Mesenchymal Transition is Triggered by the Endothelin-1/β-arr1 Axis. Front Cell Dev Biol 2021; 9:764375. [PMID: 34926453 PMCID: PMC8672058 DOI: 10.3389/fcell.2021.764375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Transcoelomic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and host components. Tumor-derived factors might allow the conversion of mesothelial cells (MCs) into tumor-associated MCs, providing a favorable environment for SOC cell dissemination. However, factors and molecular mechanisms involved in this process are largely unexplored. Here we investigated the tumor-related endothelin-1 (ET-1) as an inducer of changes in MCs supporting SOC progression. Here, we report a significant production of ET-1 from MCs associated with the expression of its cognate receptors, ETA and ETB, along with the protein β-arrestin1. ET-1 triggers MC proliferation via β-arrestin1-dependent MAPK and NF-kB pathways and increases the release of cancer-related factors. The ETA/ETB receptor activation supports the genetic reprogramming of mesothelial-to-mesenchymal transition (MMT), with upregulation of mesenchymal markers, as fibronectin, α-SMA, N-cadherin and vimentin, NF-kB-dependent Snail transcriptional activity and downregulation of E-cadherin and ZO-1, allowing to enhanced MC migration and invasion, and SOC transmesothelial migration. These effects are impaired by either blockade of ETAR and ETBR or by β-arrestin1 silencing. Notably, in peritoneal metastases both ETAR and ETBR are co-expressed with MMT markers compared to normal control peritoneum. Collectively, our report shows that the ET-1 axis may contribute to the early stage of SOC progression by modulating MC pro-metastatic behaviour via MMT.
Collapse
Affiliation(s)
- Danila Del Rio
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Pilar Sandoval
- Centro de Biología Molecular "Severo Ochoa" (CBM), Spanish Council for Scientific Research (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular "Severo Ochoa" (CBM), Spanish Council for Scientific Research (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy.,Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
12
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
13
|
Wei T, Lambert PF. Role of IQGAP1 in Carcinogenesis. Cancers (Basel) 2021; 13:3940. [PMID: 34439095 PMCID: PMC8391515 DOI: 10.3390/cancers13163940] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/31/2022] Open
Abstract
Scaffolding proteins can play important roles in cell signaling transduction. IQ motif-containing GTPase-activating protein 1 (IQGAP1) influences many cellular activities by scaffolding multiple key signaling pathways, including ones involved in carcinogenesis. Two decades of studies provide evidence that IQGAP1 plays an essential role in promoting cancer development. IQGAP1 is overexpressed in many types of cancer, and its overexpression in cancer is associated with lower survival of the cancer patient. Here, we provide a comprehensive review of the literature regarding the oncogenic roles of IQGAP1. We start by describing the major cancer-related signaling pathways scaffolded by IQGAP1 and their associated cellular activities. We then describe clinical and molecular evidence for the contribution of IQGAP1 in different types of cancers. In the end, we review recent evidence implicating IQGAP1 in tumor-related immune responses. Given the critical role of IQGAP1 in carcinoma development, anti-tumor therapies targeting IQGAP1 or its associated signaling pathways could be beneficial for patients with many types of cancer.
Collapse
Affiliation(s)
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| |
Collapse
|
14
|
Zhang N, Wang G, Sun G. Actin-binding protein, IQGAP1, regulates LPS-induced RPMVECs hyperpermeability and ICAM-1 upregulation via Rap1/Src signalling pathway. Cell Signal 2021; 85:110067. [PMID: 34147590 DOI: 10.1016/j.cellsig.2021.110067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022]
Abstract
Pulmonary microvascular barrier dysfunction is a hallmark feature of acute lung injury (ALI). IQGAP1 is a ubiquitously expressed scaffolding protein known to regulate cancer metastasis, angiogenesis, and barrier stability. However, the function of IQGAP1 in lipopolysaccharide (LPS)-induced microvascular endothelial hyperpermeability remains poorly understood. In the present study, we demonstrated that IQGAP1 was markedly upregulated in LPS-induced ALI models and rat pulmonary microvascular endothelial cells (RPMVECs). Lentivirus-mediated knockdown of IQGAP1 significantly attenuated the formation of actin stress fibers, phosphorylation of myosin light chain (MLC), and disruption of VE-cadherin, thereby protecting the RPMVECs barrier failure from LPS damage. In addition, IQGAP1 depletion reduced the reactive oxygen species (ROS)-mediated increase in intracellular adhesion molecule-1 (ICAM-1) in RPMVECs stimulated with LPS. Mechanistically, we found that the upregulation of IQGAP1 affected the activity of Rap1 and the downstream phosphorylation of Src. In conclusion, these findings reveal an essential mechanism by which increased IQGAP1 in LPS-treated RPMVECs promotes barrier dysfunction and ICAM-1 upregulation, at least in part by regulating Rap1/Src signalling, indicating that IQGAP1 may be a potential therapeutic target to prevent endothelial hyperpermeability and inflammation in ALI.
Collapse
Affiliation(s)
- Na Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, People's Republic of China.
| |
Collapse
|
15
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
16
|
Masi I, Caprara V, Spadaro F, Chellini L, Sestito R, Zancla A, Rainer A, Bagnato A, Rosanò L. Endothelin-1 drives invadopodia and interaction with mesothelial cells through ILK. Cell Rep 2021; 34:108800. [PMID: 33657382 DOI: 10.1016/j.celrep.2021.108800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 01/02/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer cells use actin-based membrane protrusions, invadopodia, to degrade stroma and invade. In serous ovarian cancer (SOC), the endothelin A receptor (ETAR) drives invadopodia by a not fully explored coordinated function of β-arrestin1 (β-arr1). Here, we report that β-arr1 links the integrin-linked kinase (ILK)/βPIX complex to activate Rac3 GTPase, acting as a central node in the adhesion-based extracellular matrix (ECM) sensing and degradation. Downstream, Rac3 phosphorylates PAK1 and cofilin and promotes invadopodium-dependent ECM proteolysis and invasion. Furthermore, ETAR/ILK/Rac3 signaling supports the communication between cancer and mesothelial cells, favoring SOC cell adhesion and transmigration. In vivo, ambrisentan, an ETAR antagonist, inhibits the adhesion and spreading of tumor cells to intraperitoneal organs, and invadopodium marker expression. As prognostic factors, high EDNRA/ILK expression correlates with poor SOC clinical outcome. These findings provide a framework for the ET-1R/β-arr1 pathway as an integrator of ILK/Rac3-dependent adhesive and proteolytic signaling to invadopodia, favoring cancer/stroma interactions and metastatic behavior.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Lidia Chellini
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Rosanna Sestito
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Andrea Zancla
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome 00128, Italy; Department of Engineering, Università degli Studi Roma Tre, via Vito Volterra 62, Rome 00146, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome 00128, Italy; Institute of Nanotechnology (NANOTEC), National Research Council (CNR), c/o Campus Ecotekne, via Monteroni, Lecce 73100, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome 00128, Italy; Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome 00185, Italy.
| |
Collapse
|
17
|
Peng X, Wang T, Gao H, Yue X, Bian W, Mei J, Zhang Y. The interplay between IQGAP1 and small GTPases in cancer metastasis. Biomed Pharmacother 2021; 135:111243. [PMID: 33434854 DOI: 10.1016/j.biopha.2021.111243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 01/07/2023] Open
Abstract
The metastatic spread of tumor cells to distant anatomical locations is a critical cause for disease progression and leads to more than 90 % of cancer-related deaths. IQ motif-containing GTPase-activating protein 1 (IQGAP1), a prominent regulator in the cancer metastasis process, is a scaffold protein that interacts with components of the cytoskeleton. As a critical node within the small GTPase network, IQGAP1 acts as a binding partner of several small GTPases, which in turn function as molecular switches to control most cellular processes, including cell migration and invasion. Given the significant interaction between IQGAP1 and small GTPases in cancer metastasis, we briefly elucidate the role of IQGAP1 in regulating cancer metastasis and the varied interactions existing between IQGAP1 and small GTPases. In addition, the potential regulators for IQGAP1 activity and its interaction with small GTPases are also incorporated in this review. Overall, we comprehensively summarize the role of IQGAP1 in cancer tumorigenicity and metastasis, which may be a potential anti-tumor target to restrain cancer progression.
Collapse
Affiliation(s)
- Xiafeng Peng
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Tiejun Wang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| | - Han Gao
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| | - Xin Yue
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Weiqi Bian
- First Clinical Medicine College, Nanjing Medical University, Nanjing, 211166, China.
| | - Jie Mei
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China; Wuxi Clinical Medical College, Nanjing Medical University, Wuxi, 214023, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital, the Affiliated Hospital to Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
18
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
19
|
Masi I, Caprara V, Bagnato A, Rosanò L. Tumor Cellular and Microenvironmental Cues Controlling Invadopodia Formation. Front Cell Dev Biol 2020; 8:584181. [PMID: 33178698 PMCID: PMC7593604 DOI: 10.3389/fcell.2020.584181] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ilenia Masi
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| |
Collapse
|
20
|
Endothelin-1 axis fosters YAP-induced chemotherapy escape in ovarian cancer. Cancer Lett 2020; 492:84-95. [PMID: 32860850 DOI: 10.1016/j.canlet.2020.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/20/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022]
Abstract
The majority of ovarian cancer (OC) patients recur with a platinum-resistant disease. OC cells activate adaptive resistance mechanisms that are only partially described. Here we show that OC cells can adapt to chemotherapy through a positive-feedback loop that favors chemoresistance. In platinum-resistant OC cells we document that the endothelin-1 (ET-1)/endothelin A receptor axis intercepts the YAP pathway. This cross-talk occurs through the LATS/RhoA/actin-dependent pathway and contributes to prevent the chemotherapy-induced apoptosis. Mechanistically, β-arrestin1 (β-arr1) and YAP form a complex shaping TEAD-dependent transcriptional activity on the promoters of YAP target genes, including EDN1, which fuels a feed-forward signaling circuit that sustains a platinum-tolerant state. The FDA approved dual ET-1 receptor antagonist macitentan in co-therapy with cisplatin sensitizes resistant cells to the platinum-based therapy, reducing their metastatic potential. Furthermore, high ETAR/YAP gene expression signature is associated with a poor platinum-response in OC patients. Collectively, our findings identify in the networking between ET-1 and YAP pathways an escape strategy from chemotherapy. ET-1 receptor blockade interferes with such adaptive network and enhances platinum-induced apoptosis, representing a promising therapeutic opportunity to restore drug sensitivity in OC patients.
Collapse
|
21
|
Liu J, Ni X, Li Y, Chen M, Chen W, Wu Y, Chen B, Wu Y, Xu M. Downregulation of IQGAP1 inhibits epithelial-mesenchymal transition via the HIF1α/VEGF-A signaling pathway in gastric cancer. J Cell Biochem 2019; 120:15790-15799. [PMID: 31090961 DOI: 10.1002/jcb.28849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022]
Abstract
As an oncogene, IQ-domain GTPase-activating protein 1 (IQGAP1) regulates the epithelial-mesenchymal transition (EMT) of several cancers, such as breast cancer, thyroid cancer, and esophageal squamous cell carcinoma. However, the role of the scaffold protein IQGAP1 on EMT in gastric cancer remains unclear. Therefore, the present work was performed to address the question. Our results showed that IQGAP1 expression is upregulated in human gastric cancer specimens and cell lines. Furthermore, IQGAP1 knockdown inhibited the migratory ability of gastric cancer cells and reduced the expression of mesenchymal phenotype markers, including Slug, β-catenin, Snail, Vimentin, and N-cadherin, as well as vascular endothelial growth factor-A (VEGF-A) secretion in gastric cancer cells. Conversely, IQGAP1 downregulation increased the epithelial phenotype marker E-cadherin. Furthermore, IQGAP1 silencing not only downregulated hypoxia-inducible transcription factor 1α (HIF1α) but also limited its translocation from the cytosol to the nucleus. Collectively, our results indicated that EMT was regulated by IQGAP1, which was associated with VEGF-A, since other data demonstrated that HIF1α was involved in VEGF-A expression. Therefore, we speculated that IQGAP1 regulated EMT of gastric cancer partially via the HIF1α/VEGF-A signaling pathway. IQGAP1 may serve as an effective therapeutic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Junqiang Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Xiufan Ni
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yafang Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Mengjiao Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wei Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Ying Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Baoding Chen
- Department of Ultrasound, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
23
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Tocci P, Rosanò L, Bagnato A. Targeting Endothelin-1 Receptor/β-Arrestin-1 Axis in Ovarian Cancer: From Basic Research to a Therapeutic Approach. Front Endocrinol (Lausanne) 2019; 10:609. [PMID: 31551935 PMCID: PMC6737583 DOI: 10.3389/fendo.2019.00609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies imply a key role of endothelin-1 receptor (ET-1R), belonging to the largest family of G protein-coupled receptors (GPCR), in the regulation of a plethora of processes involved in tumorigenesis and metastatic progression. β-arrestin-1 (β-arr1) system has been recognized as a critical hub controlling GPCR signaling network, directing the GPCR's biological outcomes. In ovarian cancer, ET-1R/β-arr1 axis enables cancer cells to engage several integrated signaling, and represents an actionable target for developing novel therapeutic approaches. Preclinical research studies demonstrate that ET-1R blockade by the approved dual ETAR/ETBR antagonist macitentan counteracts β-arr1-mediated signaling network, and hampers the dialogue among cancer cells and the tumor microenvironment, interfering with metastatic progression and drug response. In light of major developments in the ET-1R signaling paradigm, this review article discusses the emerging evidence of the dual ET-1R antagonist treatment in cancer, and outlines our challenge in preclinical studies warranting the repurposing of ET-1R antagonists for the design of more effective clinical trials based on combinatorial therapies to overcome, or prevent, the onset of drug resistance.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- *Correspondence: Anna Bagnato
| |
Collapse
|