1
|
Arnold S, Kitching AR, Witko-Sarsat V, Wiech T, Specks U, Klapa S, Comdühr S, Stähle A, Müller A, Lamprecht P. Myeloperoxidase-specific antineutrophil cytoplasmic antibody-associated vasculitis. THE LANCET. RHEUMATOLOGY 2024; 6:e300-e313. [PMID: 38574743 DOI: 10.1016/s2665-9913(24)00025-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 04/06/2024]
Abstract
Myeloperoxidase (MPO)-specific antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (MPO-ANCA-associated vasculitis) is one of two major ANCA-associated vasculitis variants characterised by systemic necrotising vasculitis with few or no immune deposits. MPO-ANCA-associated vasculitis predominantly affects small blood vessels and, in contrast to its counterpart proteinase 3-ANCA-associated vasculitis, is generally not associated with granulomatous inflammation. The kidneys and lungs are the most commonly affected organs. The pathogenesis of MPO-ANCA-associated vasculitis is characterised by loss of tolerance to the neutrophil enzyme MPO. This loss of tolerance leads to a chronic immunopathological response where neutrophils become both the target and effector of autoimmunity. MPO-ANCA drives neutrophil activation, leading in turn to tissue and organ damage. Clinical trials have improved the therapeutic approach to MPO-ANCA-associated vasculitis. However, there remains substantial unmet need regarding relapse frequency, toxicity of current treatment, and long-term morbidity. In this Series paper, we present the current state of research regarding pathogenesis, diagnosis, and treatment of MPO-ANCA-associated vasculitis.
Collapse
Affiliation(s)
- Sabrina Arnold
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia; Departments of Nephrology and Pediatric Nephrology, Monash Health, Clayton, VIC, Australia
| | - Veronique Witko-Sarsat
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Cité et Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Thorsten Wiech
- Section of Nephropathology, Institute of Pathology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Sebastian Klapa
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Sara Comdühr
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Anja Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
2
|
Qiu J, Chi H, Gan C, Zhou X, Chen D, Yang Q, Chen Y, Wang M, Yang H, Jiang W, Li Q. A high-impact FN1 variant correlates with fibronectin-mediated glomerulopathy via decreased binding to collagen type IV. Pathology 2023; 55:498-507. [PMID: 36774238 DOI: 10.1016/j.pathol.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 01/22/2023]
Abstract
The glomerular basement membrane (GBM) consists of laminins, collagen IV, nidogens, and fibronectin and is essential for filtration barrier integrity in the kidney. Critically, structural and functional abnormalities in the GBM are involved in chronic kidney disease (CKD) occurrence and development. Fibronectin is encoded by FN1 and is essential for podocyte-podocyte and podocyte-matrix interactions. However, disrupted or disordered fibronectin occurs in many kidney diseases. In this study, we identified a novel mutation (c.3415G>A) in FN1 that causes glomerular fibronectin-specific deposition in a gain-of-function manner, that may be associated with thin basement membrane nephropathy (TBMN) and expand the spectrum of phenotypes seen in glomerulopathy with fibronectin deposits (GFND). Our studies confirmed this variant increased fibronectin's ability to bind to integrin, thereby maintaining podocyte adhesion. Also, we hypothesised that TBMN arose as the fibronectin variant exhibited a decreased capacity to bind COL4A3/4. Our study is the first to identify and link this novel pathogenic mutation (c.3415G>A) in FN1 to GFND as well as TBMN, which may broaden the phenotype and mutation spectrums of the FN1 gene. We believe our data will positively impact genetic counselling and prenatal diagnostics for GFND with TBMN and other associated conditions that may be commonly benign conditions in humans, and may not require proteinuria-lowering treatments or renal biopsy.
Collapse
Affiliation(s)
- Jiawen Qiu
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Chi
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chun Gan
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xindi Zhou
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Chen
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Yang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research and Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mo Wang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haiping Yang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Jiang
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Qiu Li
- Pediatric Research Institute, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Oszwald A, Mejía-Pedroza RA, Schachner H, Aigner C, Rees A, Kain R. Digital Spatial Profiling of Glomerular Gene Expression in Pauci-Immune Focal Necrotizing Glomerulonephritis. KIDNEY360 2023; 4:83-91. [PMID: 36700908 PMCID: PMC10101620 DOI: 10.34067/kid.000461202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/09/2022] [Indexed: 01/27/2023]
Abstract
Pauci-immune focal necrotizing glomerulonephritis (piFNGN) involves asynchronous onset and progression of injurious lesions in biopsies. Pathologists can describe this heterogeneity within a biopsy, but translating the information into prognostic or expression analyses is challenging. Understanding the underlying molecular processes could improve treatment; however, bulk or single-cell transcriptomic analyses of dissociated tissue disregard the heterogeneity of glomerular injury. We characterize protein and mRNA expression of individual glomeruli in 20 biopsies from 18 patients with antineutrophil cytoplasmic antibody-associated piFNGN using the NanoString digital spatial profiling (DSP) platform. For this purpose, circular annotations of glomeruli were analyzed using protein, immuno-oncology RNA, and Cancer Transcriptome Atlas panels (n=120, 72, and 48 glomeruli, respectively). Histologic evaluation of glomerular patterns of injury was performed in adjacent serial sections. Expression data were processed by log2 transformation, quantile normalization, and batch adjustment. DSP revealed distinct but overlapping gene expression profiles relating to the morphological evolution of injurious lesions, including dynamic expression of various immune checkpoint regulators. Enrichment analysis indicated deregulated pathways that underline known and highlight novel potential mechanisms of disease. Moreover, by capturing individual glomeruli, DSP describes heterogeneity between and within biopsies. We demonstrate the benefit of spatial profiling for characterization of heterogeneous glomerular injury, indicating novel molecular correlates of glomerular injury in piFNGN.
Collapse
Affiliation(s)
- André Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Helga Schachner
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christof Aigner
- Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew Rees
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Apte SS, Naba A. Beyond the matrisome: New frontiers in ECM research. Matrix Biol 2023; 115:133-138. [PMID: 36572230 DOI: 10.1016/j.matbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Kessler N, Viehmann SF, Krollmann C, Mai K, Kirschner KM, Luksch H, Kotagiri P, Böhner AM, Huugen D, de Oliveira Mann CC, Otten S, Weiss SA, Zillinger T, Dobrikova K, Jenne DE, Behrendt R, Ablasser A, Bartok E, Hartmann G, Hopfner KP, Lyons PA, Boor P, Rösen-Wolff A, Teichmann LL, Heeringa P, Kurts C, Garbi N. Monocyte-derived macrophages aggravate pulmonary vasculitis via cGAS/STING/IFN-mediated nucleic acid sensing. J Exp Med 2022; 219:213416. [PMID: 35997679 PMCID: PMC9402992 DOI: 10.1084/jem.20220759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022] Open
Abstract
Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-β, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-β-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.
Collapse
Affiliation(s)
- Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany,Nina Kessler:
| | - Susanne F. Viehmann
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Calvin Krollmann
- Medical Clinic and Polyclinic III, University Hospital Bonn, Bonn, Germany
| | - Karola Mai
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Katharina M. Kirschner
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hella Luksch
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Prasanti Kotagiri
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Alexander M.C. Böhner
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany,Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Dennis Huugen
- Department of Internal Medicine, Division of Clinical and Experimental Immunology, University of Maastricht, Maastricht, Netherlands
| | | | - Simon Otten
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefanie A.I. Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Kristiyana Dobrikova
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University, Munich, Germany,Max Planck Institute of Neurobiology, Planegg-Martinsried, Planegg, Germany
| | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | - Paul A. Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK,Cambridge Institute for Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Peter Boor
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus TU Dresden, Dresden, Germany
| | - Lino L. Teichmann
- Medical Clinic and Polyclinic III, University Hospital Bonn, Bonn, Germany
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University of Bonn, Bonn, Germany,Correspondence to Natalio Garbi:
| |
Collapse
|