1
|
Sun Y, Liang J, Zhang Z, Sun D, Li H, Chen L. Extraction, physicochemical properties, bioactivities and application of natural sweeteners: A review. Food Chem 2024; 457:140103. [PMID: 38905824 DOI: 10.1016/j.foodchem.2024.140103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Natural sweeteners generally refer to a sweet chemical component directly extracted from nature or obtained through appropriate modifications, mainly secondary metabolites of plants. Compared to the first-generation sweeteners represented by sucrose and the second-generation sweeteners represented by sodium cyclamate, natural sweeteners usually have high sweetness, low-calorie content, good solubility, high stability, and rarely toxic side effects. Historically, researchers mainly focus on the function of natural sweeteners as substitutes for sugars in the food industry. This paper reviews the bioactivities of several typical natural sweeteners, including anti-cancer, anti-inflammatory, antioxidant, anti-bacterial, and anti-hyperglycemic activities. In addition, we have summarized the extraction, physicochemical properties, and application of natural sweeteners. The article aimed to comprehensively collate vital information about natural sweeteners and review the potentiality of tapping bioactive compounds from natural products. Hopefully, this review provides insights into the further development of natural sweeteners as therapeutic agents and functional foods.
Collapse
Affiliation(s)
- Yanyu Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Weng C, Xu J, Ying X, Sun S, Hu Y, Wang X, He C, Lu B, Li M. The PDIA3-STAT3 protein complex regulates IBS formation and development via CTSS/MHC-II pathway-mediated intestinal inflammation. Heliyon 2024; 10:e36357. [PMID: 39286134 PMCID: PMC11403428 DOI: 10.1016/j.heliyon.2024.e36357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/06/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Irritable bowel syndrome (IBS) is a persistent functional gastrointestinal disorder characterised by abdominal pain and altered patterns of defecation. This study aims to clarify an increase in the expression and interaction of protein disulfide-isomerase A3 (PDIA3) and Signal Transducer and Activator of Transcription 3 (STAT3) within the membrane of dendritic cells (DCs) from individuals with IBS. Mechanistically, the heightened interaction between PDIA3 and STAT3 at the DC membrane results in reduced translocation of phosphorylated STAT3 (p-STAT3) into the nucleus. The reduction of p-STAT3 to nuclear transport subsequently increased the levels of cathepsin S (CTSS) and major histocompatibility complex class II (MHC-II). Consequently, activated DCs promote CD4+ T cell proliferation and cytokine secretion, including interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-9 (IL-9), and tumour necrosis factor-alpha (TNF-α), thereby contributing to the development of IBS. Importantly, the downregulation of PDIA3 and the administration of punicalagin (Pun), a crucial active compound found in pomegranate peel, alleviate IBS symptoms in rats, such as increased visceral hypersensitivity and abnormal stool characteristics. Collectively, these findings highlight the involvement of the PDIA3-STAT3 protein complex in IBS, providing a novel perspective on the modulation of immune and inflammatory responses. Additionally, this research advances our understanding of the role and mechanisms of PDIA3 inhibitors, presenting new therapeutic possibilities for managing IBS.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Xiao Ying
- Department of Gastroenterology, The First People's Hospital of Yongkang, Jinhua 321300, Zhejiang Province, China
| | - Shaopeng Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Yue Hu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Xi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310006, China
| | - Chenghai He
- Department of Internal Medicine, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Road, Hangzhou, Zhejiang Province, China
| | - Bin Lu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
3
|
Rodrigues CV, Pintado M. Hesperidin from Orange Peel as a Promising Skincare Bioactive: An Overview. Int J Mol Sci 2024; 25:1890. [PMID: 38339165 PMCID: PMC10856249 DOI: 10.3390/ijms25031890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The pursuit for better skin health, driven by collective and individual perceptions, has led to the demand for sustainable skincare products. Environmental factors and lifestyle choices can accelerate skin aging, causing issues like inflammation, wrinkles, elasticity loss, hyperpigmentation, and dryness. The skincare industry is innovating to meet consumers' requests for cleaner and natural options. Simultaneously, environmental issues concerning waste generation have been leading to sustainable strategies based on the circular economy. A noteworthy solution consists of citrus by-product valorization, as such by-products can be used as a source of bioactive molecules. Citrus processing, particularly, generates substantial waste amounts (around 50% of the whole fruit), causing unprecedented environmental burdens. Hesperidin, a flavonoid abundant in orange peels, is considered to hold immense potential for clean skin health product applications due to its antioxidant, anti-inflammatory, and anticarcinogenic properties. This review explores hesperidin extraction and purification methodologies as well as key skincare application areas: (i) antiaging and skin barrier enhancement, (ii) UV radiation-induced damage, (iii) hyperpigmentation and depigmentation conditions, (iv) wound healing, and (v) skin cancer and other cutaneous diseases. This work's novelty lies in the comprehensive coverage of hesperidin's promising skincare applications while also demonstrating its potential as a sustainable ingredient from a circular economy approach.
Collapse
Affiliation(s)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
4
|
Ahmed SS, Al-Mamun A, Hossain SI, Akter F, Ahammad I, Chowdhury ZM, Salimullah M. Virtual screening reveals liquiritigenin as a broad-spectrum inhibitor of SARS-CoV-2 variants of concern: an in silico study. J Biomol Struct Dyn 2022:1-19. [PMID: 35971968 DOI: 10.1080/07391102.2022.2111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The SARS-CoV-2 has severely impacted the lives of people worldwide. Global concern is on the rise due to a large number of unexpected mutations in the viral genome, resulting in new variants. Nature-based bioactive phytochemicals hold great promise as inhibitors against pathogenic viruses. The current study was aimed at evaluating some bioactive antiviral phytochemicals against SARS-CoV-2 variants of concern. A total of 46 phytochemicals were screened against the pathogenic spike protein of Alpha, Beta, Delta, Gamma, and Omicron variants. In addition to molecular docking, screening for favorable pharmacokinetic and pharmacodynamic properties such as absorption, distribution, metabolism, excretion, and toxicity was undertaken. For each of the aforementioned five SARS-CoV-2 variants of concern, a 100 ns molecular dynamics simulation was run to assess the stability of the complexes between their respective spike protein receptor-binding domain and the best-selected compound. From our current investigation, the natural compound liquiritigenin turned out to be the most promising potential lead compound against almost all the variants. These findings could pave the way for the development of effective medications against SARS-CoV-2 variants. However, in vivo trials in future studies are necessary for further validation of our results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Abdullah Al-Mamun
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Shah Imran Hossain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Farzana Akter
- Department of Botany, University of Dhaka, Dhaka, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| |
Collapse
|