1
|
Burelo M, Hernández-Varela JD, Medina DI, Treviño-Quintanilla CD. Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling. Heliyon 2023; 9:e21374. [PMID: 37885729 PMCID: PMC10598529 DOI: 10.1016/j.heliyon.2023.e21374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Nowadays, the tendency to replace conventional fossil-based plastics is increasing considerably; there is a growing trend towards alternatives that involve the development of plastic materials derived from renewable sources, which are compostable and biodegradable. Indeed, only 1.5 % of whole plastic production is part of the small bioplastics market, even when these materials with a partial or full composition from biomass are rapidly expanding. A very interesting field of investigation is currently being developed in which the disposal and processing of the final products are evaluated in terms of reducing environmental harm. This review presents a compilation of polyethylene (PE) types, their uses, and current problems in the waste management of PE and recycling. Particularly, this review is based on the capabilities to synthesize bio-based PE from natural and renewable sources as a replacement for the raw material derived from petroleum. In addition to recent studies in degradation on different types of PE with weight loss ranges from 1 to 47 %, the techniques used and the main changes observed after degradation. Finally, perspectives are presented in the manuscript about renewable and non-renewable polymers, depending on the non-degradable, biodegradable, and compostable behavior, including composting recent studies in PE. In addition, it contributes to the 3R approaches to responsible waste management of PE and advancement towards an environmentally friendly PE.
Collapse
Affiliation(s)
- Manuel Burelo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Josué David Hernández-Varela
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Dora I. Medina
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Cecilia D. Treviño-Quintanilla
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| |
Collapse
|
2
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
3
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Aravind J, Kamaraj M, Govarthanan M. Polymeric biomolecules based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. CHEMOSPHERE 2022; 307:136008. [PMID: 35985386 DOI: 10.1016/j.chemosphere.2022.136008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The ever-exploding global population coupled with its anthropogenic impact has imparted unparalleled detrimental effects on the environment and mitigating them has emerged as the prime challenge and focus of the current century. The niche of nanotechnology empowered by composites of biopolymers in the handling of xenobiotics and environmental clean-up has an unlimited scope. The appositeness of biopolymer-nanoparticles (Bp-NPs) for environmental contaminant mitigation has received unique consideration due to its exclusive combination of physicochemical characteristics and other attributes. The current review furnishes exhaustive scrutiny of the current accomplishments in the development of Bp-NPs and biopolymer nanomaterials (Bp-NMs) from various polymeric biomolecules. Special attention was provided for polymeric biomolecules such as cellulose, lignin, starch, chitin, and chitosan, whereas limited consideration on gelatin, alginate, and gum for the development of Bp-NPs and Bp-NMs; together with coverage of literature. Promising applications of tailored biopolymer hybrids such as Bp-NPs and Bp-NMs on environmentally hazardous xenobiotics handling and pollution management are discussed as to their notable environmental applications.
Collapse
Affiliation(s)
- P Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, TamilNadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
4
|
Arifin HR, Djali M, Nurhadi B, Hasim SA, Hilmi A, Puspitasari AV. Improved properties of corn starch-based bio-nanocomposite film with different types of plasticizers reinforced by nanocrystalline cellulose. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2052085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Heni Radiani Arifin
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mohamad Djali
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Bambang Nurhadi
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Shafrina Azlin Hasim
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Amani Hilmi
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Almira Vania Puspitasari
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor, Indonesia
| |
Collapse
|
5
|
Effect of cellulose nanoparticles from garlic waste on the structural, mechanical, thermal, and dye removal properties of chitosan/alginate aerogels. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Kamaraj M, Manikandan A, Aravind J. Nanotechnological approaches as a promising way for heavy metal mitigation in an aqueous system. J Basic Microbiol 2021; 62:376-394. [PMID: 34609759 DOI: 10.1002/jobm.202100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
The ever-rising environmental problems because of heavy metals emerging from anthropogenic activities pose an impending threat to all biota globally. Considering their persistence and possibility in biomagnification, they are prominent among pollutants. There has been an apparent shift of research interest in advancing cost-effective and competent technologies to mitigate environmental contaminants, specifically heavy metals. In the recent two decades, tailored nanomaterials (NMs), nanoparticles, and NM-based adsorbents have been emerging for removing heavy metal pollution on a sustainable scale, especially the green synthesis of these nanoproducts effective and nonhazardous means. Hence, this review explores the various avenues in nanotechnology, an attempt to gauge nanotechnological approaches to mitigate heavy metals in the aqueous system, especially emphasizing the recent trends and advancements. Inputs on remediating heavy metal in sustainable and environmentally benign aspects recommended future directions to compensate for the voids in this domain have been addressed.
Collapse
Affiliation(s)
- Peraman Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Palanisamy Suresh Babu
- Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha School of Engineering, Thandalam, Chennai, Tamil Nadu, India.,Department of Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | | | - Murugesan Kamaraj
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Arumugam Manikandan
- Department of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Jeyaseelan Aravind
- Department of Civil Engineering, Environmental Research, Dhirajlal Gandhi College of Technology, Salem, Tamil Nadu, India
| |
Collapse
|
7
|
Can Sustainable Packaging Help to Reduce Food Waste? A Status Quo Focusing Plant-Derived Polymers and Additives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of sustainable packaging is part of the European Green Deal and plays a key role in the EU’s social and political strategy. One option is the use of renewable resources and biomass waste as raw materials for polymer production. Lignocellulose biomass from annual and perennial industrial crops and agricultural residues are a major source of polysaccharides, proteins, and lignin and can also be used to obtain plant-based extracts and essential oils. Therefore, these biomasses are considered as potential substitute for fossil-based resources. Here, the status quo of bio-based polymers is discussed and evaluated in terms of properties related to packaging applications such as gas and water vapor permeability as well as mechanical properties. So far, their practical use is still restricted due to lower performance in fundamental packaging functions that directly influence food quality and safety, the length of shelf life, and thus the amount of food waste. Besides bio-based polymers, this review focuses on plant extracts as active packaging agents. Incorporating extracts of herbs, flowers, trees, and their fruits is inevitable to achieve desired material properties that are capable to prolong the food shelf life. Finally, the adoption potential of packaging based on polymers from renewable resources is discussed from a bioeconomy perspective.
Collapse
|
8
|
Marques de Farias P, Barros de Vasconcelos L, da Silva Ferreira ME, Alves Filho EG, De Freitas VAA, Tapia-Blácido DR. Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: A comparison with lignin and propolis extract. Int J Biol Macromol 2021; 183:614-626. [PMID: 33933543 DOI: 10.1016/j.ijbiomac.2021.04.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
The potential use of nopal cladode flour (NC) as reinforcing/bioactive agent in cassava starch-based films was evaluated and compared with the use of propolis extract or lignin, which are commonly used for these purposes. Cassava starch-based films containing untreated NC (S-NC), NC treated at pH 12 (S-NC12), aqueous propolis extract at two different concentrations (SP1 or SP2), or lignin (S-L) were produced by the casting technique; glycerol was used as plasticizer. NC12 and NC affected the mechanical properties of the cassava starch-based film similarly as compared to propolis extract and lignin. Moreover, NC and NC12 had different performance as reinforcing and antioxidant agent in cassava starch-based film. Thus, S-NC12 film was more elongable (28.5 ± 6.5%), more hydrophobic (contact angle: 70.8° ± 0.1), less permeable to water vapor (0.8 ± 0.0 × 10-10 g·m-1·s-1·Pa-1) and had better antioxidant activity by ABTS•+ (44.70 ± 0.3 μM Trolox·g-1 of film) than the S-NC film. SEM and TGA analysis of films showed that NC12 was better incorporated into the cassava starch matrix than NC, lignin and propolis extract. Overall, nopal cladode flour has potential use in the production of active biodegradable packaging for the food preservation with high oxidation rate.
Collapse
Affiliation(s)
- Patrícia Marques de Farias
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Lucicleia Barros de Vasconcelos
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Márcia Eliana da Silva Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Elenilson G Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Victor A A De Freitas
- Departamento de Ciências naturais, Universidade Federal de São João del-Rei, Building B, Office B.07, Minas Gerais, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 Bairro Monte Alegre- Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Plasticized Starch/Agar Composite Films: Processing, Morphology, Structure, Mechanical Properties and Surface Hydrophilicity. COATINGS 2021. [DOI: 10.3390/coatings11030311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural biopolymers, which are renewable, widely available, biodegradable, and biocompatible, have attracted huge interest in the development of biocomposite materials. Herein, formulation–property relationships for starch/agar composite films were investigated. First, rapid visco analysis was used to confirm the conditions needed for their gelation and to prepare filmogenic solutions. All the original crystalline and/or lamellar structures of starch and agar were destroyed, and films with cohesive and compact structures were formed, as shown by SEM, XRD, and SAXS. All the plasticized films were predominantly amorphous, and the polymorphs of the composite films were closer to that of the agar-only film. FTIR results suggest that the incorporation of agar restricted starch chain interaction and rearrangement. The addition of agar to starch increased both tensile strength and elongation at break, but the improvements were insignificant after the agar content was over 50 wt.%. Contact angle results indicate that compared with the other samples, the 4:6 (wt./wt.) starch/agar film was less hydrophilic. Thus, this work shows that agar dominates the structure and properties of starch/agar composites, and the best properties can be obtained with a certain starch/agar ratio. Such composite polysaccharide films with tailored mechanical properties and surface hydrophilicity could be useful in biodegradable packaging and biomedical applications (wound dressing and tissue scaffolding).
Collapse
|
10
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
11
|
Jiang B, Li S, Wu Y, Song J, Chen S, Li X, Sun H. Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1527783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bingxue Jiang
- School of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Shuai Li
- School of Food Quality and Safety, Jilin Agriculture Science and Technology College, Jilin, People's Republic of China
| | - Yuanyuan Wu
- School of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Jingxin Song
- School of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Shanshan Chen
- School of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Xinxin Li
- School of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Huimin Sun
- School of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
12
|
Aqlil M, Moussemba Nzenguet A, Essamlali Y, Snik A, Larzek M, Zahouily M. Graphene Oxide Filled Lignin/Starch Polymer Bionanocomposite: Structural, Physical, and Mechanical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10571-10581. [PMID: 29113432 DOI: 10.1021/acs.jafc.7b04155] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, graphene oxide (GO) was investigated as a potential nanoreinforcing agent in starch/lignin (ST/L) biopolymer matrix. Bionanocomposite films based on ST/L blend matrix and GO were prepared by solution-casting technique of the corresponding film-forming solution. The structures, morphologies, and properties of bionanocomposite films were characterized by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), ultraviolet-visible (UV-vis), SEM, and tensile tests. The experimental results showed that content of GO have a significant influence on the mechanical properties of the produced films. The results revealed that the interfacial interaction formed in the bionanocomposite films improved the compatibility between GO fillers and ST/L matrix. The addition of GO also reduced moisture uptake (Mu) and water vapor permeability of ST/L blend film. In addition, TGA showed that the thermal stability of bionanocomposite films was better than that of neat starch film. These findings confirmed the effectiveness of the proposed approach to produce biodegradable films with enhanced properties, which may be used in packaging applications.
Collapse
Affiliation(s)
- Meryem Aqlil
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles (MaCaVa), URAC 24, Université Hassan II Casablanca , FST Mohammedia B. P. 146, 20650 Casablanca, Morocco
| | - Annie Moussemba Nzenguet
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles (MaCaVa), URAC 24, Université Hassan II Casablanca , FST Mohammedia B. P. 146, 20650 Casablanca, Morocco
| | - Younes Essamlali
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles (MaCaVa), URAC 24, Université Hassan II Casablanca , FST Mohammedia B. P. 146, 20650 Casablanca, Morocco
- MAScIRFoundation, Nanotechnologie, VARENA Center, Rabat Design , Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| | - Asmae Snik
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles (MaCaVa), URAC 24, Université Hassan II Casablanca , FST Mohammedia B. P. 146, 20650 Casablanca, Morocco
| | - Mohamed Larzek
- OLAC: Omnium de l'anti corrosion , ZI Tit Melil, 29640 Casablanca, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles (MaCaVa), URAC 24, Université Hassan II Casablanca , FST Mohammedia B. P. 146, 20650 Casablanca, Morocco
- MAScIRFoundation, Nanotechnologie, VARENA Center, Rabat Design , Rue Mohamed El Jazouli, Madinat El Irfane, 10100 Rabat, Morocco
| |
Collapse
|
13
|
Lora JH. Lignin: A Platform for Renewable Aromatic Polymeric Materials. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2016. [DOI: 10.1007/978-3-662-53704-6_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|