1
|
Yamada S, Bartunek J, Povsic TJ, Cotter G, Davison BA, Edwards C, Behfar A, Metra M, Filippatos GS, Vanderheyden M, Wijns W, Terzic A. Cell Therapy Improves Quality-of-Life in Heart Failure: Outcomes From a Phase III Clinical Trial. Stem Cells Transl Med 2024; 13:116-124. [PMID: 38006196 PMCID: PMC10872684 DOI: 10.1093/stcltm/szad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with heart failure experience limitations in daily activity and poor quality-of-life. Prospective surveillance of health-related quality-of-life supplemented traditional death and hospitalization outcomes in the multinational, randomized, double-blinded CHART-1 clinical trial that assessed cardiopoiesis-guided cell therapy in ischemic heart failure patients with reduced left ventricular ejection fraction. The Minnesota Living with Heart Failure Questionnaire (MLHFQ), a Food and Drug Administration qualified instrument for evaluating therapeutic effectiveness, was applied through the 1-year follow-up. Cell treated (n = 109) and sham procedure (n = 140) cohorts reported improved MLHFQ scores comparable between the 2 study arms (mean treatment difference with baseline adjustment -3.2 points, P = .107). Superiority of cell treatment over sham in betterment of the MLHFQ score was demonstrated in patients with pre-existing advanced left ventricular enlargement (baseline-adjusted mean treatment difference -6.4 points, P = .009). In this highly responsive subpopulation, benefit on the MLHFQ score paralleled reduction in death and hospitalization post-cell therapy (adjusted Mann-Whitney odds 1.43, 95% CI, 1.01-2.01; P = .039). The potential of cell therapy in addressing the quality-of-life dimension of heart failure requires further evaluation for disease relief.
Collapse
Affiliation(s)
- Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
| | | | - Thomas J Povsic
- Program for Advanced Coronary Disease, Duke Clinical Research Institute and Duke University Medical Center, Durham, NC, USA
| | - Gad Cotter
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | - Beth A Davison
- Momentum Research, Inc., Durham, NC, USA
- Université Paris Cité; Inserm UMR-S 942, MASCOT, Paris, France
| | | | - Atta Behfar
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Spedali Civili, Brescia, Italy
| | - Gerasimos S Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | | | - William Wijns
- The Lambe Institute for Translational Medicine, the Smart Sensors Laboratory and CURAM, University of Galway, Galway, Ireland
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Qayyum AA, Mouridsen M, Nilsson B, Gustafsson I, Schou M, Nielsen OW, Hove JD, Mathiasen AB, Jørgensen E, Helqvist S, Joshi FR, Johansen EM, Follin B, Juhl M, Højgaard LD, Haack-Sørensen M, Ekblond A, Kastrup J. Danish phase II trial using adipose tissue derived mesenchymal stromal cells for patients with ischaemic heart failure. ESC Heart Fail 2023; 10:1170-1183. [PMID: 36638837 PMCID: PMC10053281 DOI: 10.1002/ehf2.14281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Patients suffering from chronic ischaemic heart failure with reduced left ventricular ejection fraction (HFrEF) have reduced quality-of-life, repetitive hospital admissions, and reduced life expectancy. Allogeneic cell therapy is currently investigated as a potential treatment option after initially encouraging results from clinical autologous and allogeneic trials in patients with HFrEF. We aimed to investigate the allogeneic Cardiology Stem Cell Centre Adipose tissue derived mesenchymal Stromal Cell product (CSCC_ASC) as an add-on therapy in patients with chronic HFrEF. METHODS AND RESULTS This is a Danish multi-centre double-blinded placebo-controlled phase II study with direct intra-myocardial injections of allogeneic CSCC_ASC. A total of 81 HFrEF patients were included and randomized 2:1 to CSCC_ASC or placebo injections. The inclusion criteria were reduced left ventricular ejection fraction (LVEF ≤ 45%), New York Heart Association (NYHA) class II-III despite optimal anti-congestive heart failure medication and no further revascularization options. Injections of 0.3 mL CSCC_ASC (total cell dose 100 × 106 ASCs) (n = 54) or isotonic saline (n = 27) were performed into the viable myocardium in the border zone of infarcted tissue using the NOGA Myostar® catheter (Biological Delivery System, Cordis, Johnson & Johnson, USA). The primary endpoint, left ventricular end systolic volume (LVESV), was evaluated at 6-month follow-up. The safety was measured during a 3-years follow-up period. RESULTS Mean age was 67.0 ± 9.0 years and 66.6 ± 8.1 years in the ASC and placebo groups, respectively. LVESV was unchanged from baseline to 6-month follow-up in the ASC (125.7 ± 68.8 mL and 126.3 ± 72.5 mL, P = 0.827) and placebo (134.6 ± 45.8 mL and 135.3 ± 49.6 mL, P = 0.855) group without any differences between the groups (0.0 mL (95% CI -9.1 to 9.0 mL, P = 0.992). Neither were there significant changes in left ventricular end diastolic volume or LVEF within the two groups or between groups -5.7 mL (95% CI -16.7 to 5.3 mL, P = 0.306) and -1.7% (95% CI -4.4. to 1.0, P = 0.212), respectively). NYHA classification and 6-min walk test did not alter significantly in the two groups (P > 0.05). The quality-of-life, total symptom, and overall summary score improved significantly only in the ASC group but not between groups. There were 24 serious adverse events (SAEs) in the ASC group and 11 SAEs in the placebo group without any significant differences between the two groups at 1-year follow-up. Kaplan-Meier plot using log-rank test of combined cardiac events showed an overall mean time to event of 30 ± 2 months in the ASC group and 29 ± 2 months in the placebo group without any differences between the groups during the 3 years follow-up period (P = 0.994). CONCLUSIONS Intramyocardial CSCC_ASC injections in patients with chronic HFrEF were safe but did not improve myocardial function or structure, nor clinical symptoms.
Collapse
Affiliation(s)
- Abbas Ali Qayyum
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Mette Mouridsen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Brian Nilsson
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ida Gustafsson
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Olav Wendelboe Nielsen
- Department of Cardiology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Dahlgaard Hove
- Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Erik Jørgensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steffen Helqvist
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bjarke Follin
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Juhl
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Højgaard
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Ekblond
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jens Kastrup
- Department of Cardiology and Cardiology Stem Cell Centre, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Žorž N, Poglajen G, Frljak S, Knezevič I, Vrtovec B. Transendocardial CD34 + Cell Therapy Improves Local Mechanical Dyssynchrony in Patients With Nonischemic Dilated Cardiomyopathy. Cell Transplant 2022; 31:9636897221080384. [PMID: 35320035 PMCID: PMC8949703 DOI: 10.1177/09636897221080384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated the effects of cell therapy on local mechanical dyssynchrony (LMD) in patients with nonischemic dilated cardiomyopathy (NICM). We analyzed electromechanical data of 30 NICM patients undergoing CD34+ cell transplantation. All patients underwent bone marrow stimulation; CD34+ cells were collected by apheresis and injected transendocardially. At baseline and at 6 months after therapy, we performed electromechanical mapping and measured unipolar voltage (UV) and LMD at cell injection sites. LMD was defined as a temporal difference between global and segmental peak systolic displacement normalized to the average duration of the RR interval. Favorable clinical response was defined as increase in the left ventricular ejection fraction (LVEF) ≥5% between baseline and 6 months. Using paired electromechanical point-by-point analysis, we were able to identify 233 sites of CD34+ cell injections in 30 patients. We found no overall differences in local UV between baseline and 6 months (10.7 ± 4.1 mV vs 10.0 ± 3.6 mV, P = 0.42). In contrast, LMD decreased significantly (17 ± 17% at baseline vs 13 ± 12% at 6 months, P = 0.00007). Favorable clinical response at 6 months was found in 19 (63%) patients (group A), and 11 (37%) patients did not respond to cell therapy (group B). At baseline, the two groups did not differ in age, gender, LVEF, or N terminal-pro brain natriuretic peptide (NT-proBNP) levels. Similarly, we found no differences in baseline UV (9.5 ± 2.9 mV in group A vs 8.6 ± 2.4 mV in group B, P = 0.41) or LMD at cell injection sites (17 ± 19% vs 16 ± 14%, P = 0.64). In contrast, at 6 months, we found higher UV in group A (10.0 ± 3.1 mV vs 7.4 ± 1.9 mV in group B, P = 0.04). Furthermore, when compared with group B, patients in group A displayed a significantly lower LMD (11 ± 12% vs 16 ± 10%, P = 0.002). Thus, it appears that favorable clinical effects of cell therapy in NICM patients may be associated with a decrease of LMD at cell injection sites.
Collapse
Affiliation(s)
- Neža Žorž
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Gregor Poglajen
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Frljak
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ivan Knezevič
- Department of Cardiovascular Surgery, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Bojan Vrtovec
- Advanced Heart Failure and Transplantation Center, Department of Cardiology, University Medical Center Ljubljana, Ljubljana, Slovenia.,Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Yamada S, Bartunek J, Behfar A, Terzic A. Mass Customized Outlook for Regenerative Heart Failure Care. Int J Mol Sci 2021; 22:11394. [PMID: 34768825 PMCID: PMC8583673 DOI: 10.3390/ijms222111394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jozef Bartunek
- Cardiovascular Center, OLV Hospital, 9300 Aalst, Belgium
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Family Comprehensive Cardiac Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (S.Y.); (A.B.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Yamada S, Jeon R, Garmany A, Behfar A, Terzic A. Screening for regenerative therapy responders in heart failure. Biomark Med 2021; 15:775-783. [PMID: 34169733 PMCID: PMC8252977 DOI: 10.2217/bmm-2020-0683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
Risk of outcome variability challenges therapeutic innovation. Selection of the most suitable candidates is predicated on reliable response indicators. Especially for emergent regenerative biotherapies, determinants separating success from failure in achieving disease rescue remain largely unknown. Accordingly, (pre)clinical development programs have placed increased emphasis on the multi-dimensional decoding of repair capacity and disease resolution, attributes defining responsiveness. To attain regenerative goals for each individual, phenotype-based patient selection is poised for an upgrade guided by new insights into disease biology, translated into refined surveillance of response regulators and deep learning-amplified clinical decision support.
Collapse
Affiliation(s)
- Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Department of Medicine, Division of Geriatric Medicine & Gerontology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryounghoon Jeon
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
| | - Armin Garmany
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine, Regenerative Sciences Track, Rochester, MN 55905, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Rochester, MN 55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Arrell DK, Crespo-Diaz RJ, Yamada S, Jeon R, Garmany A, Park S, Adolf JP, Livia C, Hillestad ML, Bartunek J, Behfar A, Terzic A. Secretome signature of cardiopoietic cells echoed in rescued infarcted heart proteome. Stem Cells Transl Med 2021; 10:1320-1328. [PMID: 34047493 PMCID: PMC8380441 DOI: 10.1002/sctm.20-0509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Stem cell paracrine activity is implicated in cardiac repair. Linkage between secretome functionality and therapeutic outcome was here interrogated by systems analytics of biobanked human cardiopoietic cells, a regenerative biologic in advanced clinical trials. Protein chip array identified 155 proteins differentially secreted by cardiopoietic cells with clinical benefit, expanded into a 520 node network, collectively revealing inherent vasculogenic properties along with cardiac and smooth muscle differentiation and development. Next generation RNA sequencing, refined by pathway analysis, pinpointed miR-146 dependent regulation upstream of the decoded secretome. Intracellular and extracellular integration unmasked commonality across cardio-vasculogenic processes. Mirroring the secretome pattern, infarcted hearts benefiting from cardiopoietic cell therapy restored the disease proteome engaging cardiovascular system functions. The cardiopoietic cell secretome thus confers a therapeutic molecular imprint on recipient hearts, with response informed by predictive systems profiling.
Collapse
Affiliation(s)
- D Kent Arrell
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ruben J Crespo-Diaz
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, USA
| | - Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Division of Geriatric & Gerontology Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryounghoon Jeon
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Armin Garmany
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Alix School of Medicine, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Sungjo Park
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey P Adolf
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Christopher Livia
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Alix School of Medicine, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota, USA
| | - Matthew L Hillestad
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Suzuki H, Ohtake T, Tsukiyama T, Morota M, Ishioka K, Moriya H, Mochida Y, Hidaka S, Sato T, Asahara T, Kobayashi S. Acute kidney injury successfully treated with autologous granulocyte colony-stimulating factor-mobilized peripheral blood CD34-positive cell transplantation: A first-in-human report. Stem Cells Transl Med 2021; 10:1253-1257. [PMID: 33955678 PMCID: PMC8380438 DOI: 10.1002/sctm.20-0561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
A 36-year-old man with severe acute kidney injury (AKI) was admitted to Shonan Kamakura General Hospital in Japan. He was diagnosed with refractory hypertension based on a severely elevated blood pressure of 224/116 mmHg and retinal, cardiac, and brain damage revealed by electrocardiogram, fundoscopy, and magnetic resonance imaging, respectively. Although hemodialysis was withdrawn following strict blood pressure control by an angiotensin receptor blocker, severe kidney insufficiency persisted. Therefore, we performed an autologous granulocyte colony-stimulating factor-mobilized peripheral blood CD34-positive cell transplantation. Collected CD34-positive cells were directly infused to both renal arteries. The patient's general condition was unremarkable after intervention, and the serum creatinine level gradually improved to 2.96 mg/dL 23 weeks after cell therapy. Although transient fever and thrombocytosis were observed after intervention, no major adverse events were observed. This patient is the first case in a phase I/II clinical trial of autologous granulocyte colony-stimulating factor-mobilized peripheral blood CD34-positive cell transplantation for severe AKI with a CD34-positive cell dose-escalating protocol (trial number jRCTb030190231).
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayasu Ohtake
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Toshitaka Tsukiyama
- Department of Radiology and Interventional Radiology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Marie Morota
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Kunihiro Ishioka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Hidekazu Moriya
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Yasuhiro Mochida
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Sumi Hidaka
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Tsutomu Sato
- Clinical Laboratory, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Takayuki Asahara
- Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
8
|
Yamada S, Behfar A, Terzic A. Regenerative medicine clinical readiness. Regen Med 2021; 16:309-322. [PMID: 33622049 PMCID: PMC8050983 DOI: 10.2217/rme-2020-0178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine, poised to transform 21st century healthcare, has aspired to enrich care options by bringing cures to patients in need. Science-driven responsible and regulated translation of innovative technology has enabled the launch of previously unimaginable care pathways adopted prudently for select serious diseases and disabilities. The collective resolve to advance the design, manufacture and validity of affordable regenerative solutions aims to democratize such health benefits for all. The objective of this Review is to outline the framework and prerequisites that underpin clinical readiness of regenerative care. Integrated research and development, specialized workforce education and accessible evidence-based practice implementation are at the core of realizing an equitable regenerative medicine vision.
Collapse
Affiliation(s)
- Satsuki Yamada
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Division of Geriatric Medicine & Gerontology, Department of Medicine, Mayo Clinic, Rochester, 55905 MN, USA
| | - Atta Behfar
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, 55905 MN, USA
| | - Andre Terzic
- Center for Regenerative Medicine, Marriott Heart Disease Research Program, Van Cleve Cardiac Regenerative Medicine Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, 55905 MN, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Department of Clinical Genomics, Mayo Clinic, Rochester, 55905 MN, USA
| |
Collapse
|