1
|
Tan N, Wang Y, Ren L, Tie F, Hu N, Wang H, Dong Q. Network Pharmacology and Molecular Dynamics Simulations Reveal the Mechanism of Total Alkaloid Components in Anisodus Tanguticus (Maxim.) Pascher in Treating Inflammation and Pain. Chem Biodivers 2025; 22:e202401199. [PMID: 39313870 DOI: 10.1002/cbdv.202401199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
This study aimed to elucidate the mechanism that total alkaloids in Anisodus tanguticus (AT)(Maxim.) Pascher played anti-inflammatory and analgesic effects. In this paper, the anti-inflammatory effect in the total alkaloids of AT was confirmed via lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 cells and the main components of AT were immediately analyzed by UPLC/MS. Disease targets were obtained in GeneCards and DisGeNET. Targets of major compounds were searched in ETCM, TCMSP and other databases. The protein-protein interaction (PPI) network was constructed using STRING database, and Cytoscape was used for core targets screening. GO and KEGG enrichment analysis were performed using Daivid database. Sailvina was used for molecular docking. Molecular dynamics simulation analysis was performed using the Amber 20 program. The results showed that the main components in AT were anisodamine, atropine, fabiatrin, scopolamine, scopoletin and scopolin, possibly exerting anti-inflammatory and analgesic effects through pathways such as EGFR tyrosine kinase inhibitor resistance and IL-17 signaling pathway. Fabiatrin and scopolin could be potential drugs with good anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- Nixia Tan
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
- Medical College of Qinghai University, Xining, 810016, China
| | - Yue Wang
- Medical College of Qinghai University, Xining, 810016, China
| | | | - Fangfang Tie
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Na Hu
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Honglun Wang
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| | - Qi Dong
- CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, 810008, China
| |
Collapse
|
2
|
Ye M, Fan Y, Fu C, He H, Xiao J. Biocompatible recombinant type III collagen enhancing skin repair and anti-wrinkle effects. Biomater Sci 2024; 12:6114-6122. [PMID: 39436415 DOI: 10.1039/d4bm01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Treating sunburn and other UV-induced skin damage issues remains a significant challenge in the field of dermatology. In this study, we synthesized a highly bioactive recombinant type III collagen (rCol III) to accelerate the healing of UV-damaged skin. The high-purity rCol III demonstrated excellent biocompatibility and bioactivity, significantly promoting the adhesion, proliferation, and migration of HFF-1 cells. In a mouse UV-damage model, Combo evaluations demonstrated that rCol III contributed to restore transepidermal water loss (TEWL) values of UV-damaged skin to normal levels. Histological analysis further confirmed that rCol III substantially accelerated skin repair by enhancing collagen regeneration. Additionally, rCol III facilitated the regeneration of zebrafish tail fin tissue and alleviated shrinkage caused by excessive UV exposure. The biocompatible and bioactive rCol III offers a novel strategy for treating UV-induced skin damage, holding immense potential for applications in skin tissue engineering.
Collapse
Affiliation(s)
- Mingzhu Ye
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Yirui Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Caihong Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Huixia He
- College of School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China.
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Lawrence J, Seelig D, Demos-Davies K, Ferreira C, Ren Y, Wang L, Alam SK, Yang R, Guedes A, Craig A, Hoeppner LH. Radiation dermatitis in the hairless mouse model mimics human radiation dermatitis. Sci Rep 2024; 14:24819. [PMID: 39438583 PMCID: PMC11496547 DOI: 10.1038/s41598-024-76021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
Over half of all people diagnosed with cancer receive radiation therapy. Moderate to severe radiation dermatitis occurs in most human radiation patients, causing pain, aesthetic distress, and a negative impact on tumor control. No effective prevention or treatment for radiation dermatitis exists. The lack of well-characterized, clinically relevant animal models of human radiation dermatitis contributes to the absence of strategies to mitigate radiation dermatitis. Here, we establish and characterize a hairless SKH-1 mouse model of human radiation dermatitis by correlating temporal stages of clinical and pathological skin injury. We demonstrate that a single ionizing radiation treatment of 30 Gy using 6 MeV electrons induces severe clinical grade 3 peak toxicity at 12 days, defined by marked erythema, desquamation and partial ulceration, with resolution occurring by 25 days. Histopathology reveals that radiation-induced skin injury features temporally unique inflammatory changes. Upregulation of epidermal and dermal TGF-ß1 and COX-2 protein expression occurs at peak dermatitis, with sustained epidermal TGF-ß1 expression beyond resolution. Specific histopathological variables that remain substantially high at peak toxicity and early clinical resolution, including epidermal thickening, hyperkeratosis and dermal fibroplasia/fibrosis, serve as specific measurable parameters for in vivo interventional preclinical studies that seek to mitigate radiation-induced skin injury.
Collapse
Affiliation(s)
- Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA.
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA.
- Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 55455, USA.
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA.
| | - Davis Seelig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA
| | - Kimberly Demos-Davies
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
| | - Clara Ferreira
- Department of Radiation Oncology, Medical School, University of Minnesota, 516 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Yanan Ren
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
- Department of Urology, Northwestern University, 303 E Superior Street, Chicago, IL, 60611, USA
| | - Li Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Sk Kayum Alam
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
- Department of Urology, Northwestern University, 303 E Superior Street, Chicago, IL, 60611, USA
| | - Alonso Guedes
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
| | - Angela Craig
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St Paul, MN, 55108, USA
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA
- Hennepin Healthcare Research Institute, 701 Park Ave, Suite S3, Minneapolis, MN, 55415, USA
| | - Luke H Hoeppner
- Masonic Cancer Center, University of Minnesota, 425 East River Parkway, Minneapolis, MN, 55455, USA.
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
4
|
Dong Y, Su J, Guo X, Zhang Q, Zhu S, Zhang K, Zhu H. Multifunctional protocatechuic acid-polyacrylic acid hydrogel adhesives for wound dressings. J Mater Chem B 2024; 12:6617-6626. [PMID: 38896436 DOI: 10.1039/d4tb00425f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Multifunctional hydrogel adhesives are highly desirable in wound healing applications, yet their preparation often requires complex material system design to achieve. Herein, a straightforward one-pot two-step polymerization method is developed to prepare adhesive hydrogels for wound dressing based on protocatechuic acid (PCA), polyacrylic acid (PAA), and polyamidoamine-epichlorohydrin (PAE), where PCA provides the catechol groups for strong adhesion, PAA serves as the primary polymer matrix, and PAE acts as a bridge connecting PCA and PAA. This design results in a PAA-PAE-PCA hydrogel having a remarkable instant 90-degree peeling interfacial toughness of 431 J m-2 on porcine skin, which is further amplified to 615 J m-2 after 30 minutes. The hydrogel also possesses the desired features for wound dressing, such as self-healing, antioxidant, anti-UV and antibacterial properties, good cytocompatibility, strong adhesion in use and weak adhesion on removal, as well as reversible and wet adhesion. Finally, in vivo data reveal that the PAA-PAE-PCA hydrogels can significantly accelerate wound healing, as evidenced by a noticeable reduction in the wound area and a diminished inflammatory response. Collectively, these results endorse the obtained multifunctional hydrogel as a promising candidate for wound healing and related fields.
Collapse
Affiliation(s)
- Yue Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Jingjing Su
- School of Life Science, Zhengzhou University, Henan 450001, China.
| | - Xiwei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Henan 450001, China.
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| |
Collapse
|
5
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
6
|
Yu Q, Zhao Y, Zhang X, Li W, Zhang H, Piao S, Li G, Yan M. The beneficial effect of Sanhuang ointment and its active constituents on experimental hemorrhoids in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117173. [PMID: 37741471 DOI: 10.1016/j.jep.2023.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanhuang ointment (SHO) has been widely used in the traditional Chinese medical system for 1500 years and has efficacy in clearing away heat and dampness, reducing swelling, and alleviating pain. Hemorrhoids will damage the normal physiological function of the body, resulting in obstructed defecation, accompanied by massive hemorrhage and necrosis of tissues and cells, which is easy to breed bacteria and cause infection. SHO can promote lesion healing in hemorrhoid rats, but the pharmacological mechanism underlying this effect remains unknown. AIM To evaluate the effect of SHO on experimental hemorrhoids in rats induced by croton oil and glacial acetic acid. MATERIALS AND METHODS In this research, the effective components of SHO were analyzed in detail by High performance liquid chromatography (HPLC) and Liquid chromatography/mass spectrometry (LC/MS). Hemorrhoids were induced by 6% balsam and glacial acetic acid respectively in the anorectal region of rats. SHO was administered externally to the anorectal region of rats at doses of 185 mg/g (crude drug/ointment), 370 mg/g (crude drug/ointment) and 740 mg/g (crude drug/ointment) for 11 days. Mayinglong musk hemorrhoids ointment (1 g/kg) and Taining cream (1 g/kg) were used as reference anti hemorrhoids drugs. On the 11th day, hemorrhoids were evaluated by measuring the biochemical parameters of hemorrhoids in rats and the histology of anorectal tissues. RESULTS Using high performance liquid chromatography liquid chromatography mass spectrometry, 41 compounds, including phenylpropionic acids and alkaloids, were identified. the fingerprints of 18 common peaks were identified. In Hemorrhoids like rats, acetic acid induced inflammation was inhibited in a dose-dependent manner during SHO treatment. In addition, the detailed experimental results show that SHO can effectively improve hemorrhoids by inhibiting the production of inflammatory cytokines in serum, reversing the down-regulation of vanillin subtype 1 (TRPV1), calcitonin gene related peptide (CGRP) and substance P (SP) levels of pain related genes in anal tissues, and the up regulation of Vascular endothelial growth factor (VEGF) levels of vascular growth related genes. CONCLUSION The results showed that SHO could alleviate the edema caused by the exudation of anorectal tissue fluid in rats by anti-inflammatory effect and reducing the Vascular permeability of rats. The study validates the traditional use of SHO in the treatment of hemorrhoids and demonstrates its anti-hemorrhoidal potential.
Collapse
Affiliation(s)
- Qian Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Zhao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xinyue Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Wenjie Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongyin Zhang
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Songlan Piao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Guangzhe Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial School-Enterprise Joint Technology Innovation Laboratory for Natural Plant-based Cosmetics and External Preparations, Changchun, Jilin, China.
| | - Mingming Yan
- Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial Science and Technology Innovation Center of Health Food of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, Jilin, China; Jilin Provincial School-Enterprise Joint Technology Innovation Laboratory for Natural Plant-based Cosmetics and External Preparations, Changchun, Jilin, China.
| |
Collapse
|
7
|
Sudhakaran G, Selvam M, Sreekutty AR, Chandran A, Almutairi BO, Arokiyaraj S, Raman P, Guru A, Arockiaraj J. Luteolin photo-protects zebrafish from environmental stressor ultraviolet radiation (UVB). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:720-734. [PMID: 37609830 DOI: 10.1080/15287394.2023.2249944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Ultraviolet B wavelength ray radiation (UVB) is an environmental stressor with detrimental effects to the aquatic and human systems but also enhances adverse effects when combined with several other environmental factors such as temperature and pollution. UV rays induce cellular oxidative damage and impair motility. This study aimed to examine the photo-protective activity of flavonoid luteolin against UV-B irradiation-induced oxidative stress and cellular damage using zebrafish. An in-vivo photoaging model was established using UV-B irradiation in zebrafish larvae exposed to 100 mJ/cm2. Data demonstrated that UV-B irradiation of swimming water enhanced production of ROS and superoxide anions as well as depleted total glutathione levels in zebrafish larvae. UV-B irradiation also triggered cellular damage and membrane rupture in zebra fish. Further, 100 mJ/cm2 of UV-B radiation exposure to adult-wild type zebrafish co-exposed with intraperitoneally (ip) injected luteolin upregulated the local neuroendocrine axes by activating vascular endothelial growth factor (VEGF) and elevating levels of pro-inflammatory cytokines IL-1β and TNF-α. Histologically, UV-B irradiation induced skin lesions and locomotory defects with clumping and degeneration of brain glial cells. However, luteolin effectively inhibited the excess production of reactive oxygen species (ROS) and decreased superoxide anion levels induced by UV-B irradiation. Luteolin restored the depleted glutathione levels. In addition, luteolin blocked apoptosis and lipidperoxidation. Luteolin protected adult zebrafish by downregulating the pro-inflammatory cytokine protein expression levels and diminishing VEGF activation. Luteolin also alleviated locomotory defects by inhibiting activation of microglia and inflammatory responses by preventing accumulation of glial cells and vacuolation. Data demonstrate that luteolin may protect zebrafish from UV-B-induced photodamage through DNA-protective, antioxidant and anti-inflammatory responses.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madesh Selvam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - A R Sreekutty
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Abhirami Chandran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, South Korea
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Chennai, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
8
|
García-Pérez O, Melgar-Vilaplana L, Sifaoui I, García-Bello MÁ, Córdoba-Lanús E, Fernández-de-Misa R. Expression of angiogenic and lymphangiogenic genes in primary cutaneous melanoma: relationship with angiolymphatic invasion and disease-free survival. Melanoma Res 2023; 33:375-387. [PMID: 37307530 PMCID: PMC10470437 DOI: 10.1097/cmr.0000000000000904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/09/2023] [Indexed: 06/14/2023]
Abstract
Melanoma is one of the most common cancers in the world. The main routes of tumor progression are related to angiogenesis and lymphangiogenesis. These routes can occur by local invasion, which is called angiolymphatic invasion (ALI). In this study, we assess gene expression of relevant biomarkers of angiogenesis and lymphangiogenesis in 80 FFPE melanoma samples to determine a molecular profile that correlates with ALI, tumor progression, and disease-free survival. The results were enhanced by a posttranscriptional analysis by an immunofluorescence assay. Three SNPs in the VEGFR-2 gene were genotyped in 237 malignant melanoma (MM) blood DNA samples by qPCR. A significant correlation was found for LYVE -1 and ALI, qualitative ( P = 0.017) and quantitative ( P = 0.005). An increased expression of protein LIVE-1 in ALI samples supported these results ( P = 0.032). VEGFR2 was lower in patients who showed disease progression ( P = 0.005) and protein VEGFR2 posttranscriptional expression decreased ( P = 0.016). DFS curves showed differences ( P = 0.023) for VEGFR2 expression detected versus the absence of VEGFR2 expression. No significant influence on DFS was detected for the remaining analyzed genes. Cox regression analysis suggested that VEGFR2 expression has a protective role (HR = 0.728; 95% CI = 0.552-0.962; P = 0.025) on disease progression. No significant association was found between any of the studied SNPs of VEGFR2 and DFS or progression rate. Our main results suggest that LYVE-1 gene expression is closely related to ALI; the relationship with the development of metastases in MM deserves further studies. Low expression of VEGFR2 was associated with disease progression and the expression of VEGFR2 correlates with an increased DFS.
Collapse
Affiliation(s)
- Omar García-Pérez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife
- Universidad de La Laguna, Calle Padre Herrera, s/n
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), San Cristóbal de La Laguna
| | | | - Ines Sifaoui
- Universidad de La Laguna, Calle Padre Herrera, s/n
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), San Cristóbal de La Laguna
| | | | - Elizabeth Córdoba-Lanús
- Universidad de La Laguna, Calle Padre Herrera, s/n
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), San Cristóbal de La Laguna
| | - Ricardo Fernández-de-Misa
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife
- Universidad de La Laguna, Calle Padre Herrera, s/n
- Dermatology Department, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| |
Collapse
|
9
|
Lu W, Zhang J, Wu Y, Sun W, Jiang Z, Luo X. Engineered NF-κB siRNA-encapsulating exosomes as a modality for therapy of skin lesions. Front Immunol 2023; 14:1109381. [PMID: 36845116 PMCID: PMC9945116 DOI: 10.3389/fimmu.2023.1109381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Despite the protection and management of skin has been paid more and more attention, effective countermeasures are still lacking for patients suffering from UV or chemotherapy with damaged skin. Recently, gene therapy by small interfering RNA (siRNA) has emerged as a new therapeutic strategy for skin lesions. However, siRNA therapy has not been applied to skin therapy due to lack of effective delivery vector. Methods Here, we develop a synthetic biology strategy that integrates the exosomes with artificial genetic circuits to reprogram the adipose mesenchymal stem cell to express and assemble siRNAs into exosomes and facilitate in vivo delivery siRNAs for therapy of mouse models of skin lesions. Results Particularly, siRNA enriched exosomes (si-ADMSC-EXOs) could be directly taken up by the skin cells to inhibit the expression of skin injury related genes. When mice with skin lesions were smeared with si-ADMSC-EXOs, the repair of lesioned skin became faster and the expression of inflammatory cytokines were decreased. Discussion Overall, this study establishes a feasible therapeutic strategy for skin injury, which may offer an alternative to conventional biological therapies requiring two or more independent compounds.
Collapse
Affiliation(s)
- Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Jinzhong Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, Zhejiang, China
| | - Yungang Wu
- Department of the Orthopedics of Traditional Chinese Medicine (TCM), the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxue Sun
- Hemodialysis Room, Department of Nephrology, the First Hospital Affiliated of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zipei Jiang
- Department of Ophthalmology, the First Hospital Affiliated of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Luo
- Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Wounds and Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Intelligent Treatment and Life Support for Critical Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Zhejiang Engineering Research Center for Hospital Emergency and Process Digitization, Wenzhou, Zhejiang, China,*Correspondence: Xu Luo,
| |
Collapse
|
10
|
Song Y, Liu Q, Zhang Y, Zhang H, Li B. Clinical Efficacy of Medical Dextrose Tincture Liquid in the Treatment of Facial Photoaging. Dermatol Pract Concept 2023; 13:dpc.1301a15. [PMID: 36892373 PMCID: PMC9946104 DOI: 10.5826/dpc.1301a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Exogenous aging mainly refers to photo-aging, which is caused by environmental factors including ultraviolet exposure. Dextran is a homopolysaccharide composed of glucose as monosaccharide, and glucose units are connected by glycosidic bonds. OBJECTIVES The purpose of this study was to explore the clinical efficacy of medical dextrose tincture liquid (medical dextrose tincture) in the treatment of facial photoaging. METHODS Thirty-four volunteers were included in the randomized double-blind study. According to the random number table method, the subjects were randomized into control and treatment groups. The subjects in the control and treatment groups were treated with medical hyaluronic acid gel and medical dextrose tincture, respectively. They received mesotherapy therapy three times with an interval of 28 days between treatments. Video image acquisition was performed before treatment and 28 days after treatment. Skin moisture content, glossiness, heme content, collagen density, and elasticity were tested. The subjective evaluations of subjects and doctors before and after treatment were compared. RESULTS Compared with the pre-treatment baseline, medical dextran tincture significantly increased skin moisture retention, skin gloss, and skin collagen density (p<0.001). Additionally, the skin retraction time was significantly reduced, and the skin retraction time was also markedly decreased after treatment with medical dextran tincture (p<0.001). The effects of medical dextran tincture were more significant in comparison with medical hyaluronic acid gel (p<0.05). The subjective evaluation results of doctors showed that after 84 days of treatment, the overall skin photoaging score was significantly reduced (p<0.001). The subjective evaluation results of volunteers showed that the various skin problems of more than 50% of volunteers were improved after treatment. CONCLUSION Medical dextran tincture has obvious effects of moisturizing, increasing luster, improving skin redness, increasing skin collagen content and enhancing skin elasticity.
Collapse
Affiliation(s)
- Yuexing Song
- Department of Cosmetic Dermatology, Xi'an EVERCARE Medical Beauty Hospital, Xi'an, China
| | - Qiuhui Liu
- Department of Cosmetic Dermatology, Beijing EVERCARE Medical Beauty Hospital, Beijing, China
| | - Yihan Zhang
- Department of Cosmetic Dermatology, Beijing EVERCARE Medical Beauty Hospital, Beijing, China
| | - Huina Zhang
- Beijing Evercare Medical Technology Group Co., Ltd, Beijing, China
| | - Bin Li
- Department of Cosmetic Dermatology, Beijing EVERCARE Medical Beauty Hospital, Beijing, China
| |
Collapse
|
11
|
Kandhwal M, Behl T, Singh S, Sharma N, Arora S, Bhatia S, Al-Harrasi A, Sachdeva M, Bungau S. Role of matrix metalloproteinase in wound healing. Am J Transl Res 2022; 14:4391-4405. [PMID: 35958464 PMCID: PMC9360851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of endopeptidases that play a vital role in the restoration of damaged skin. Through mediating various cellular events such as angiogenesis and vasodilation, MMPs are very crucial for the mechanism of wound healing. These enzymes are endopeptidases that are reliant on zinc which are concealed through the extracellular matrix (ECM). MMPs have different targets in different phases of wound healing through which they are capable of promoting timely healing in the body. This review discusses all the possible role of MMPs and their inhibitors that are involved during every step of the wound healing process. This review highlights the latest advances in the respective field about the regulation and mediation of MMPs in human skin and how these studies can be applied to other branches of medical sciences as well. Published papers were searched via MEDLINE, PubMed and MDPI from the available peer reviewed journals. Research done in the past suggests that active MMPs are involved in the healing progression of the wounds or they have a positive effect towards healing of wounds. Present studies in the relative field will further enhance the knowledge about enzymes working along with their inhibitors. These studies will help in a way to resolve some of the parameters that are necessary for modulating them either positively or negatively.
Collapse
Affiliation(s)
- Mimansa Kandhwal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun 248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Monika Sachdeva
- Fatima College of Health SciencesAl Ain 50, United Arab Emirates
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
12
|
Thakur MA, Khandelwal AR, Gu X, Rho O, Carbajal S, Kandula RA, DiGiovanni J, Nathan CAO. Inhibition of Fibroblast Growth Factor Receptor Attenuates Ultraviolet B-Induced Skin Carcinogenesis. J Invest Dermatol 2022; 142:2873-2884.e7. [PMID: 35551922 DOI: 10.1016/j.jid.2022.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Altered FGFR signaling has been shown to play a role in a number of cancers. However, the role of FGFR signaling in the development and progression of ultraviolet B-induced (UVB) induced cutaneous squamous cell carcinoma (cSCC) remains unclear. In the current study, the effect of UVB radiation on FGFR activation and its downstream signaling in mouse skin epidermis was examined. In addition, the impact of FGFR inhibition on UVB-induced signaling and skin carcinogenesis was also investigated. Exposure of mouse dorsal skin to UVB significantly increased phosphorylation of FGFRs in the epidermis as well as activation of downstream signaling pathways, including AKT/mTOR, STATs and MAPK. Topical application of the pan-FGFR inhibitor AZD4547 to mouse skin prior to exposure to UVB significantly inhibited FGFR phosphorylation as well as mTORC1, STAT3 and MAPK activation (i.e., phosphorylation). Moreover, AZD4547 pretreatment significantly inhibited UVB-induced epidermal hyperplasia and hyperproliferation and reduced infiltration of mast cells and macrophages into the dermis. AZD4547 treatment also significantly inhibited mRNA expression of inflammatory genes in the epidermis. Finally, mice treated topically with AZD4547 prior to UVB exposure showed decreased cSCC incidence and increased survival rate. Collectively, the current data supports the hypothesis that inhibition of FGFR in epidermis may provide a new strategy to prevent and/or treat UVB-induced cSCC.
Collapse
Affiliation(s)
- Megha A Thakur
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Steve Carbajal
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Rima A Kandula
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA; LiveStrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, LA, USA.
| |
Collapse
|