1
|
Reguero-Márquez GA, Lunagómez-Rocha MA, Cervantes-Uribe A, Angel GD, Rangel I, Torres-Torres JG, González F, Godavarthi S, Arevalo-Perez JC, Espinosa de los Monteros AE, Silahua-Pavon AA. Photodegradation of 2,4-D (dichlorophenoxyacetic acid) with Rh/TiO 2; comparative study with other noble metals (Ru, Pt, and Au). RSC Adv 2022; 12:25711-25721. [PMID: 36199326 PMCID: PMC9460574 DOI: 10.1039/d2ra03552a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this work the effect of noble metal on the photodegradation of 2,4-dichlorophenoxyacetic acid herbicide using TiO2 as support was studied. The metals and concentration were: Rh, Ru, Pt and Au and 1, 0.98, 1.89, and 1.91 wt% respectively. Rhodium was taken as reference for this experiment. The samples were characterized by X-Ray Diffraction (XRD), UV-vis absorption spectra, N2 physisorption (BET Specific Surface Area), High Annular Angle Analysis Darkfield (HAADF) and Transmission Electron Microscopy Scanning (STEM), H2 chemisorption, optical emission spectroscopy with inductive coupling plasma analysis (ICP-OES), solid fluorescence, X-ray Photoelectron Spectroscopy (XPS) and OH quantification. The presence of the anatase crystalline phase was mostly confirmed in all samples. The band gap decreased with the presence of metal (from 3.24 to 2.92 eV). The specific area was a function of the metal particle size. The metal particle diameter showed the following sequence Pt > Ru > Au > Rh. By XPS, TiO2 does not manifest changes in oxidation states, but when impregnated with metals, only Pt shows the highest abundance of any oxidized state (Pt2+). The presence of metal reveals less electron–hole recombination compared with titanium oxide. The results of photocatalytic activity showed that Pt and Rh are the two metals with the highest mineralization (99.0 and 98.3%, respectively). The optimum catalyst for the photocatalytic degradation of 2,4-D was Rh (1%)/TiO2 by UV radiation. The Rh presents a strong metal-support interaction and improves the photocatalytic properties of TiO2, modifying its band gap energy.![]()
Collapse
Affiliation(s)
- G. A. Reguero-Márquez
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| | - M. A. Lunagómez-Rocha
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| | - A. Cervantes-Uribe
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| | - G. del Angel
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Área de Catálisis, CBI, Av. San Rafael Atlixco No. 186, CP 09340, México DF, Mexico
| | - I. Rangel
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Área de Catálisis, CBI, Av. San Rafael Atlixco No. 186, CP 09340, México DF, Mexico
| | - J. G. Torres-Torres
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| | - F. González
- Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Área de Catálisis, CBI, Av. San Rafael Atlixco No. 186, CP 09340, México DF, Mexico
| | - S. Godavarthi
- Investigadoras e Investigadores por México-Universidad Juárez Autónoma de Tabasco, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Km.1 carretera Cunduacán-Jalpa de Méndez, C. P. 86690 Cunduacán, Tabasco, Mexico
| | - J. C. Arevalo-Perez
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| | - A. E. Espinosa de los Monteros
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| | - A. A. Silahua-Pavon
- Universidad Juárez Autónoma de Tabasco, Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y de Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Km. 1 Carretera Cunduacán-Jalpa de Méndez AP. 24, C. P. 86690, Cunduacán, Tabasco, Mexico
| |
Collapse
|
2
|
Enhanced Photodegradation of p-Nitrobenzoic Acid by Binary Mixtures with Ba 2+/TiO 2 and MCM-41. MATERIALS 2021; 14:ma14092404. [PMID: 34063100 PMCID: PMC8125084 DOI: 10.3390/ma14092404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
A novel Ba(II)/TiO2-MCM-41 composite was synthesized using binary mixtures with Ba2+/TiO2 and MCM-41, and Ba2+ as a doping ion of TiO2. The specific surface area and pore structure characterizations confirm that a mesoporous structure with a surface area of 341.2 m2/g and a narrow pore size distribution ranging from 2 to 4 nm was achieved using Ba(II)/TiO2-MCM-41. Ba(II)/TiO2 particles were synthesized into 10-15 nm particles and were well dispersed onto MCM-41. The diffraction peaks in the XRD patterns of TiO2-MCM-41 and Ba(II)/TiO2-MCM-41 were all attributed to anatase TiO2. By taking advantage of MCM-41 and Ba2+, the photocatalytic performance of Ba(II)/TiO2-MCM-41 was remarkably enhanced by suppressing its rutile phase, by lowering the band gap energy, and by facilitating the dispersion of TiO2. Therefore, the photodegradation efficiencies of p-nitrobenzoic acid (4 × 10-4 mol/L) by various photocatalysts (60 min) under UV light irradiation are arranged in the following order: Ba(II)/TiO2-MCM-41 (91.7%) > P25 (86.3%) > TiO2-MCM-41 (80.6%) > Ba(II)/TiO2 (55.7%) > TiO2 (53.9%). The Ba(II)/TiO2-MCM-41 composite was reused for five cycles and maintained a high catalytic activity (73%).
Collapse
|
3
|
Elgohary EA, Mohamed YMA, Rabie ST, Salih SA, Fekry AM, El Nazer HA. Highly selective visible-light-triggered CO 2 fixation to cyclic carbonates under mild conditions using TiO 2/multiwall carbon nanotubes (MWCNT) grafted with Pt or Pd nanoparticles. NEW J CHEM 2021. [DOI: 10.1039/d1nj03123f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Visible light-induced CO2 fixation to cyclic carbonates catalyzed by Pd//TiO2/MWCNT photocatalyst.
Collapse
Affiliation(s)
| | | | - Samira Taha Rabie
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| | | | - Amany Mohamed Fekry
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hossam A. El Nazer
- Photochemistry Department, National Research Center, Dokki, Giza, 12622, Egypt
| |
Collapse
|
4
|
Liu J, Weng M, Li S, Chen X, Cen J, Jie J, Xiao W, Zheng J, Pan F. High-throughput HSE study on the doping effect in anatase TiO2. Phys Chem Chem Phys 2020; 22:39-53. [DOI: 10.1039/c9cp04591k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic study on the doping effects of anatase TiO2 doped with 40 kinds of elements by high-throughput HSE06 calculations.
Collapse
Affiliation(s)
- Jiahua Liu
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Mouyi Weng
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Sibai Li
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Xin Chen
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jianhang Cen
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jianshu Jie
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Weiji Xiao
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Jiaxin Zheng
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| | - Feng Pan
- School of Advanced Materials
- Peking University
- Shenzhen Graduate School
- Shenzhen 518055
- China
| |
Collapse
|
5
|
Zhang W, Jiang H, Zhang W, Zang S. Constructing Rh–Rh 3+ modified Ta 2O 5@TaON@Ta 3N 5 with special double n–n mutant heterojunctions for enhanced photocatalytic H 2-evolution. RSC Adv 2020; 10:29424-29431. [PMID: 35521151 PMCID: PMC9055968 DOI: 10.1039/d0ra02214d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022] Open
Abstract
A multiple core–shell heterostructure Rh–Rh3+ modified Ta2O5@TaON@Ta3N5 nanophotocatalyst was successfully constructed through nitriding Rh3+-doped Ta2O5 nanoparticles, which exhibited a much higher carrier separation efficiency about one order of magnitude higher than the Ta2O5@Ta3N5 precursor, and thus an excellent visible light photocatalytic H2-evolution activity (83.64 μmol g−1 h−1), much superior to that of Rh anchored Ta2O5@TaON (39.41 μmol g−1 h−1), and improved stability due to the residual Rh–O/N in the Ta3N5 shell layer. Rh-modifying significantly extended light absorption to the overall visible region. Localized built-in electric fields with hierarchical potential gradients at the multiple interfaces including a Rh/Ta3N5 Schottky junction and double n–n Ta3N5/TaON/Ta2O5 mutant heterojunctions, drove charge carriers to directionally transfer from inside to outside, and efficiently separate. Enhanced photoactivity was ascribed to a synergetic effect of improved light absorption ability, increased carrier separation efficiency, and accelerated surface reaction. A promising strategy of developing excellent Ta3N5-based photocatalysts for solar energy conversion is provided by constructing double n–n mutant heterojunctions. Localized built-in electric fields at multiple hierarchical interfaces facilitate the efficient separation and fast inside-out directional transfer of photogenerated carriers.![]()
Collapse
Affiliation(s)
- Wenli Zhang
- Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin 150025
- P. R. China
| | - Hongquan Jiang
- Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin 150025
- P. R. China
| | - Wei Zhang
- Key Laboratory of Photonic and Electronic Bandgap Materials
- Ministry of Education
- Harbin Normal University
- Harbin 150025
- P. R. China
| | - Shuying Zang
- Key Laboratory of Remote Sensing Monitoring of Geographic Environment
- Colleges of Heilongjiang Province
- Harbin Normal University
- Harbin 150025
- P. R. China
| |
Collapse
|
9
|
Wojciechowska J, Gitzhofer E, Grams J, Ruppert AM, Keller N. Solar Light Induced Photon-Assisted Synthesis of TiO₂ Supported Highly Dispersed Ru Nanoparticle Catalysts. MATERIALS 2018; 11:ma11112329. [PMID: 30463255 PMCID: PMC6267277 DOI: 10.3390/ma11112329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/07/2022]
Abstract
Ru/TiO2 are promising heterogeneous catalysts in different key-reactions taking place in the catalytic conversion of biomass towards fuel additives, biofuels, or biochemicals. TiO2 supported highly dispersed nanometric-size metallic Ru catalysts were prepared at room temperature via a solar light induced photon-assisted one-step synthesis in liquid phase, far smaller Ru nanoparticles with sharper size distribution being synthesized when compared to the catalysts that were prepared by impregnation with thermal reduction in hydrogen. The underlying strategy is based on the redox photoactivity of the TiO2 semi-conductor support under solar light for allowing the reduction of metal ions pre-adsorbed at the host surface by photogenerated electrons from the conduction band of the semi-conductor in order to get a fine control in terms of size distribution and dispersion, with no need of chemical reductant, final thermal treatment, or external hydrogen. Whether acetylacetonate or chloride was used as precursor, 0.6 nm sub-nanometric metallic Ru particles were synthesized on TiO2 with a sharp size distribution at a low loading of 0.5 wt.%. Using the chloride precursor was necessary for preparing Ru/TiO2 catalysts with a 0.8 nm sub-nanometric mean particle size at 5 wt.% loading, achieved in basic conditions for benefitting from the enhanced adsorption between the positively-charged chloro-complexes and the negatively-charged TiO2 surface. Remarkably, within the 0.5–5 wt.% range, the Ru content had only a slight influence on the sub-nanometric particle size distribution, thanks to the implementation of suitable photo-assisted synthesis conditions. We demonstrated further that a fine control of the metal Ru nanoparticle size on the TiO2 support was possible via a controlled nanocluster growth under irradiation, while the nanoparticles revealed a good resistance to thermal sintering.
Collapse
Affiliation(s)
- Joanna Wojciechowska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland.
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| | - Elisa Gitzhofer
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| | - Jacek Grams
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland.
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, ul. Żeromskiego 116, 90-924 Łódź, Poland.
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, CNRS/University of Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France.
| |
Collapse
|
10
|
Matos J, Llano B, Montaña R, Poon PS, Hidalgo MC. Design of Ag/ and Pt/TiO 2-SiO 2 nanomaterials for the photocatalytic degradation of phenol under solar irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18894-18913. [PMID: 29717427 DOI: 10.1007/s11356-018-2102-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
The design of hybrid mesoporous TiO2-SiO2 (TS1) materials decorated with Ag and Pt nanoparticles was performed. The photocatalytic degradation of phenol under artificial solar irradiation was studied and the activity and selectivity of the intermediate products were verified. TiO2-SiO2 was prepared by sol-gel method while Ag- and Pt-based photocatalysts (TS1-Ag and TS1-Pt) were prepared by photodeposition of the noble metals on TS1. Two series of photocatalysts were prepared varying Ag and Pt contents (0.5 and 1.0 wt%). An increase in the photocatalytic activity up to two and five times higher than TS1 was found on TS1-Ag-1.0 and TS1-Pt-1.0, respectively. Changes in the intermediate products were detected on Ag- and Pt-based photocatalysts with an increase in the catechol formation up to 3.3 and 6.6 times higher than that observed on TS1, respectively. A two-parallel reaction mechanism for the hydroquinone and catechol formation is proposed. A linear correlation between the photocatalytic activity and the surface concentration of noble metals was found indicating that the electron affinity of noble metals is the driven force for both the increase in the photoactivity and for the remarkable changes in the selectivity of products.
Collapse
Affiliation(s)
- Juan Matos
- Hybrid and Carbon Materials Group, Bioenergy Department, Technological Development Unit (UDT), University of Concepcion, Av. Cordillera, 2634, Parque Industrial Coronel, Coronel, Bio Bio, Chile.
| | - Biviana Llano
- Grupo Procesos Químicos Industriales, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Ricmary Montaña
- Hybrid and Carbon Materials Group, Bioenergy Department, Technological Development Unit (UDT), University of Concepcion, Av. Cordillera, 2634, Parque Industrial Coronel, Coronel, Bio Bio, Chile
| | - Po S Poon
- Hybrid and Carbon Materials Group, Bioenergy Department, Technological Development Unit (UDT), University of Concepcion, Av. Cordillera, 2634, Parque Industrial Coronel, Coronel, Bio Bio, Chile
| | - Maria C Hidalgo
- Instituto de Ciencia de Materiales de Sevilla (ICMS), Centro Mixto CSIC-Universidad de Sevilla, C/Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|