1
|
Filho JBG, Silva IF, Alafandi M, Rabeah J. Aerobic Oxidation of 5-Hydroxymethylfurfural (HMF) in Aqueous Medium over Fe-Doped-Poly(heptazine imide) Photocatalysts: Unveiling the Bad Role of Hydroxyl Radical Generation on the Catalytic Performance. Molecules 2023; 28:8077. [PMID: 38138567 PMCID: PMC10745455 DOI: 10.3390/molecules28248077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
5-hydroxymethylfurfural (HMF) oxidation in aqueous media using visible photocatalysis is a green and sustainable route for the valorization of lignocellulosic biomass derivatives. Several semiconductors have already been applied for this purpose; however, the use of Poly(heptazine imides), which has high crystallinity and a special cation exchange property that allows the replacement of the cation held between the layers of C3N4 structure by transition metal ions (TM), remains scarce. In this study, PHI(Na) was synthesized using a melamine/NaCl method and used as precursor to prepare metal (Fe, Co, Ni, or Cu)-doped PHI catalysts. The catalysts were tested for selective oxidation of HMF to 2,5-diformylfuran (DFF) in water and O2 atmosphere under blue LED radiation. The catalytic results revealed that the 0.1 wt% PHI(Fe) catalyst is the most efficient photocatalyst while higher Fe loading (1 and 2 wt%) favors the formation of Fe3+ clusters, which are responsible for the drop in HMF oxidation. Moreover, the 0.1 wt% PHI(Fe) photocatalyst has strong oxidative power due to its efficiency in H2O2 production, thus boosting the generation of nonselective hydroxyl radicals (●OH) via different pathways that can destroy HMF. We found that using 50 mM, the highest DFF production rate (393 μmol·h-1·g-1) was obtained in an aqueous medium under visible light radiation.
Collapse
Affiliation(s)
- José B. G. Filho
- Leibniz Institute for Catalysis (LIKAT Rostock), D-18059 Rostock, Germany; (J.B.G.F.); (M.A.)
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, MG, Brazil
| | - Ingrid F. Silva
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Potsdam Science Park, Am Mühlenberg 1, D-14476 Potsdam, Germany;
| | - Mamdouh Alafandi
- Leibniz Institute for Catalysis (LIKAT Rostock), D-18059 Rostock, Germany; (J.B.G.F.); (M.A.)
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock), D-18059 Rostock, Germany; (J.B.G.F.); (M.A.)
| |
Collapse
|
2
|
Chu S, Shao J, Qu H, Wang X, Xiao R, Zhang H. Band Structure Engineering of Polyimide Photocatalyst for Efficient and Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. CHEMSUSCHEM 2023; 16:e202300886. [PMID: 37498683 DOI: 10.1002/cssc.202300886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Solar-driven high-value utilization of biomass and its derivatives has attracted tremendous attention in replacing fossil sources to generate chemicals. Developing high-performance photocatalysts to selectively catalyze bio-platform molecules remains a challenge. Herein, biomass-based 5-hydroxymethylfurfural (HMF) was efficiently and selectively photooxidized to 2, 5-diformylfuran (DFF) using a metal-free polyimide (PI). PI with moderate photooxidation capacity delivered high DFF selectivity of 91 % and high apparent quantum efficiency of 1.13 %, nearly 7 times higher than that of graphitic carbon nitride. Experimental measurements and theoretical calculations revealed that the band structure and photooxidation capability of PI can be continuously modulated by varying the molar ratio of amine and anhydride. Mechanism analysis depicted that holes and superoxide radicals play crucial roles in the efficient photooxidation of HMF to DFF. This work provides guidance on designing efficient polymeric photocatalysts for oxidating biomass and its derivatives to value-added chemicals.
Collapse
Affiliation(s)
- Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jingjing Shao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hongyu Qu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Xintie Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
3
|
Pham VN, Lee S, Lee H, Kim HS. Revealing Photocatalytic Performance of Zn xCd 1-xS Nanoparticles Depending on the Irradiation Wavelength. Inorg Chem 2023; 62:3703-3711. [PMID: 36795758 DOI: 10.1021/acs.inorgchem.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Photocatalysts are useful for various applications, including the conservation and storage of energy, wastewater treatment, air purification, semiconductors, and production of high-value-added products. Herein, ZnxCd1-xS nanoparticle (NP) photocatalysts with different concentrations of Zn2+ ions (x = 0.0, 0.3, 0.5, or 0.7) were successfully synthesized. The photocatalytic activities of ZnxCd1-xS NPs varied with the irradiation wavelength. X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible spectroscopy were used to characterize the surface morphology and electronic properties of the ZnxCd1-xS NPs. In addition, in situ X-ray photoelectron spectroscopy was performed to investigate the effect of the concentration of Zn2+ ions on the irradiation wavelength for photocatalytic activity. Furthermore, wavelength-dependent photocatalytic degradation (PCD) activity of the ZnxCd1-xS NPs was investigated using biomass-derived 2,5-hydroxymethylfurfural (HMF). We observed that the selective oxidation of HMF using ZnxCd1-xS NPs resulted in the formation of 2,5-furandicarboxylic acid via 5-hydroxymethyl-2-furancarboxylic acid or 2,5-diformylfuran. The selective oxidation of HMF was dependent on the irradiation wavelength for PCD. Moreover, the irradiation wavelength for the PCD depended on the concentration of Zn2+ ions in the ZnxCd1-xS NPs.
Collapse
Affiliation(s)
- Vy Ngoc Pham
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sangyeob Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Hangil Lee
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyun Sung Kim
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Liu ZJ, Zhang WD, Yu YX. Edge-grafting carbon nitride with aromatic rings for highly-efficient charge separation and enhanced photocatalytic hydrogen evolution. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01598f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Edge-modification of g-C3N4 induces highly-efficient charge separation through directional transfer of electrons from the center to the edge of the framework.
Collapse
Affiliation(s)
- Zhang-Jie Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| | - Wei-De Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| | - Yu-Xiang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, PR China
| |
Collapse
|
5
|
Huang D, Wang H, Wu Y. Photocatalytic Aerobic Oxidation of Biomass-Derived 5-HMF to DFF over MIL-53(Fe)/g-C 3N 4 Composite. Molecules 2022; 27:molecules27238537. [PMID: 36500631 PMCID: PMC9740462 DOI: 10.3390/molecules27238537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
A MIL-53(Fe)/g-C3N4 heterogeneous composite was synthesized and applied in photocatalytic oxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-diformylfuran (DFF). The systematic investigation indicated that the introduction of MIL-53(Fe) into g-C3N4 increased the specific surface area, broadened the visible-light response region, and promoted the separation efficiency of the photo-generated electron-hole pairs. The 10% MIL-53(Fe)/g-C3N4 heterogeneous composite achieved the best photocatalytic oxidation activity with 74.5% of 5-HMF conversion under simulated sunlight, which was much higher than that of pristine g-C3N4 and MIL-53(Fe). The MIL-53(Fe)/g-C3N4 composite displayed good photocatalytic reusability and stability. Based on the characterization results and photocatalytic performance, a Z-scheme photocatalytic mechanism of the MIL-53(Fe)/g-C3N4 composite was suggested, and a possible reaction route was deduced.
Collapse
|
6
|
Yang C, Xu S, Peng F, Zhou W, Zhou Q, Chen X, Zhang B, Deng K. Coherent experimental and simulation approach to explore the cis/trans isomeric effects of cobalt thioporphyrazines on their photocatalytic performance. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Nguyen QNB, Phan HB, Nguyen TH, Doan VTC, Nguyen LB, Nguyen HT, Tran PH. Direct and low-cost transformation of glucose to 2,5-diformylfuran by AlCl3·6H2O, sulfur, and dimethyl sulfoxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Ayoub N, Toufaily J, Guénin E, Enderlin G. Metal vs. Metal-Free Catalysts for Oxidation of 5-Hydroxymethylfurfural and Levoglucosenone to Biosourced Chemicals. CHEMSUSCHEM 2022; 15:e202102606. [PMID: 35073445 DOI: 10.1002/cssc.202102606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic feedstocks, such as forestry biomass and agricultural crop residues, can be utilized to generate biofuels and biochemicals. Converting these organic waste materials into biochemicals is widely regarded as a remedial approach to develop a sustainable, clean, and green energy source. Nevertheless, are these methods sustainable and clean? Prior studies have shown that most such conversions use metals - including heavy metals or noble metals - as catalysts. In addition to the fact that many metals (e. g., aluminum, cobalt, titanium, platinum) have been listed as critical minerals, these methods suffer from high cost, deactivation, and leakage problems and the release of toxic wastes. This Review summarizes catalytic methods using metal and metal-free catalysts for the oxidation of the platform molecules 5-hydroxymethylfurfural and levoglucosenone and demonstrates the potential and effectiveness of metal-free catalysts.
Collapse
Affiliation(s)
- Nadim Ayoub
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Joumana Toufaily
- Laboratoire de Matériaux, Catalyse, Environnement et Méthodes analytiques (MCEMA-CHAMSI), EDST Université Libanaise, Campus Rafic Hariri, Hadath, Beyrouth, Lebanon
| | - Erwann Guénin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| | - Gérald Enderlin
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203, Compiègne Cedex
| |
Collapse
|
9
|
Hoang Tran P. Recent Approaches in the Catalytic Transformation of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Diformylfuran. CHEMSUSCHEM 2022; 15:e202200220. [PMID: 35307983 DOI: 10.1002/cssc.202200220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The conversion of biomass into a great variety of valuable chemicals, polymers, and fuels gives a sustainable alternative for the insufficiency of non-renewable fossil fuel resources and reduces environmental pollution. 5-Hydroxymethylfurfural (HMF), converted from sustainable carbohydrates, is a significant building block chemical, and the selective oxidation of HMF into 2,5-diformylfuran (DFF) presents an ongoing challenge. DFF is a versatile platform molecule derived from biomass and has promising application in pharmaceuticals and polymers. This Review provides an overview of the latest developments of efficient catalytic systems for the sustainable conversion of HMF to DFF.
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
Meng Y, Yang S, Li H. Electro- and Photocatalytic Oxidative Upgrading of Bio-based 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202102581. [PMID: 35050546 DOI: 10.1002/cssc.202102581] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Conversion of biomass into biofuels and high value-added chemicals is a promising strategy to solve the increasingly deteriorating environmental problems caused by fossil energy consumption. The development of efficient technologies and methods is the premise and guarantee to realize the high-value conversion of biomass. 5-Hydroxymethylfurfural (HMF), as a versatile biomass platform compound, is generated via dehydration of hexoses (e. g., fructose and glucose) derived from cellulosic biomass. This Review gives an overview of the advances and challenges of electro- and photocatalytic oxidation of biomass-derived HMF to high-value chemicals such as 2,5-formylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). These strategies and methods for the preparation of high-value chemicals by electro- and photocatalytic oxidation of HMF, coupled with, for example, hydrogen evolution reaction, organic substrate reduction, CO2 reduction reaction, or N2 reduction reaction, were summarized and discussed. Moreover, the catalytic efficiency and mechanism of different types of catalysts were also introduced in these conversion systems.
Collapse
Affiliation(s)
- Ye Meng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, P. R. China
| |
Collapse
|
11
|
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. NANOMATERIALS 2022; 12:nano12101679. [PMID: 35630900 PMCID: PMC9147642 DOI: 10.3390/nano12101679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023]
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes.
Collapse
|
12
|
Yao Y, Chen S, Zhang M. Sustainable Approaches to Selective Conversion of Cellulose Into 5-Hydroxymethylfurfural Promoted by Heterogeneous Acid Catalysts: A Review. Front Chem 2022; 10:880603. [PMID: 35620654 PMCID: PMC9127155 DOI: 10.3389/fchem.2022.880603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) as a triply catalytic product is a value-added refining chemical in industry production. 5-HMF as biomass feedstock enables to be transformed into other high-value industrial compounds, such as 2,5-furandicarboxylic acid (FDCA), 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), 5-formyl-2-furancarboxylic acid (FFCA), 2,5-diformylfuran (DFF), 2,5-bis(aminomethyl)furan (BAMF), and 2,5-dimethylfuran (DMF). Hence, catalytic conversion of biomass into 5-HMF has been given much more attention by chemists. In this review, some latest studies about the conversion of cellulose to 5-HMF have been introduced systematically. Solid acids such as heterogeneous catalysts have been widely applied in the conversion of cellulose into 5-HMF. Therefore, some novel solid acids with Brønsted and/or Lewis acidic sites, such as sulfonated solid acids, carbon-based acids, and zeolite particles employed for biomass conversions are listed.
Collapse
|
13
|
Torregrosa-Chinillach A, Chinchilla R. Visible Light-Induced Aerobic Oxidative Dehydrogenation of C-N/C-O to C=N/C=O Bonds Using Metal-Free Photocatalysts: Recent Developments. Molecules 2022; 27:497. [PMID: 35056812 PMCID: PMC8780101 DOI: 10.3390/molecules27020497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Performing synthetic transformation using visible light as energy source, in the presence of a photocatalyst as a promoter, is currently of high interest, and oxidation reactions carried out under these conditions using oxygen as the final oxidant are particularly convenient from an environmental point of view. This review summarizes the recent developments achieved in the oxidative dehydrogenation of C-N and C-O bonds, leading to C=N and C=O bonds, respectively, using air or pure oxygen as oxidant and metal-free homogeneous or recyclable heterogeneous photocatalysts under visible light irradiation.
Collapse
Affiliation(s)
| | - Rafael Chinchilla
- Department of Organic Chemistry, Faculty of Sciences, Institute of Organic Synthesis (ISO), University of Alicante, Apdo. 99, 03080 Alicante, Spain;
| |
Collapse
|
14
|
Ma J, Liu K, Yang X, Jin D, Li Y, Jiao G, Zhou J, Sun R. Recent Advances and Challenges in Photoreforming of Biomass-Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. CHEMSUSCHEM 2021; 14:4903-4922. [PMID: 34636483 DOI: 10.1002/cssc.202101173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Photoreforming of biomass into hydrogen, biofuels, and chemicals is highly desired, yet this field of research is still in its infancy. Developing an efficient, novel, and environmentally friendly photocatalyst is key to achieving these goals. To date, the nonmetallic and eco-friendly material carbon nitride has found many uses in reactions such as water splitting, CO2 reduction, N2 fixation, and biorefinery, owing to its outstanding photocatalytic activity. However, a narrow light absorption range and fast charge recombination are often encountered in the pristine carbon nitride photocatalytic system, which resulted in unsatisfying photocatalytic activity. To improve the photocatalytic performance of pure carbon nitride in biomass reforming, modification is needed. In this Review, the design and preparation of functional carbon nitride, as well as its photocatalytic properties for the synthesis of hydrogen, biofuels, and chemicals through biomass reforming, are discussed alongside potential avenues for its future development.
Collapse
Affiliation(s)
- Jiliang Ma
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, 250353, P. R. China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, 350108, P. R. China
| | - Kangning Liu
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Xiaopan Yang
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Dongnv Jin
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Yancong Li
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Gaojie Jiao
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulosic Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, 116034, P. R. China
| |
Collapse
|
15
|
Sharma S, Kumar S, Arumugam SM, Palanisami M, Shanmugam V, Elumalai S. Nb
2
O
5
/g‐C
3
N
4
Heterojunction Facilitates 2,5‐Diformylfuran Production via Photocatalytic Oxidation of 5‐Hydroxymethylfurfural under Direct Sunlight Irradiation. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Shelja Sharma
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
- Department of Chemistry University of Sciences Chandigarh University Gharuan, Mohali Punjab 140413 India
| | - Sandeep Kumar
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
- SSB University Institute of Chemical Engineering and Technology Panjab University Chandigarh 160014 India
| | - Senthil Murugan Arumugam
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | | | - Vijayakumar Shanmugam
- Chemical Biology Unit Institute of Nano Science and Technology Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| |
Collapse
|
16
|
Zhou Y, Liu J, Long J. Photocatalytic oxidation 5-Hydroxymethylfurfural to 2, 5-diformylfuran under air condition over porous TiO2@MOF. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Li X, Deng Y, Zhao Z, Liu Y, Zhang C, Fu Z. A green catalyst-free concomitant air oxidation of DMSO and cumene to form methylsulfonylmethane (dimethylsulfone). J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1982943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaolong Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Youer Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Zhiying Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Yachun Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Chao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| | - Zaihui Fu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and advanced materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, People’s Republic of China
| |
Collapse
|
18
|
Li C, Li J, Qin L, Yang P, Vlachos DG. Recent Advances in the Photocatalytic Conversion of Biomass-Derived Furanic Compounds. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02551] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chen Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Ling Qin
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, People’s Republic of China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy Street, Newark, Delaware19716, United States
| |
Collapse
|
19
|
Zeng P, Zhang WD. Photocatalytic hydrogen evolution over a nickel complex anchoring to thiophene embedded g-C 3N 4. J Colloid Interface Sci 2021; 596:75-88. [PMID: 33838327 DOI: 10.1016/j.jcis.2021.03.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/18/2022]
Abstract
Evolution of hydrogen from water by utilizing solar energy and photocatalysts is one of the most promising ways to solve energy crisis. However, designing a cost-effective and stable photocatalyst without any noble metals is of vital importance for this process. Herein, an extremely active molecular complex cocatalyst NiL2(Cl)2 is successfully designed. After being covalently linked to thiophene-embedded polymeric carbon nitride (TPCN), the hybrid catalyst NiL2(Cl)2/TPCN exhibits extraordinary H2 production activity of 95.8 μmol h-1 without Pt (λ ≥ 420 nm), together with a remarkable apparent quantum yield of 6.68% at 450 nm. In such a composite catalyst, the embedded π-electron-rich thiophene-ring not only extends the π-conjugated system to enhance visible light absorption, but also promotes the charge separation through electron-withdrawing effect. It turns out that the CN covalent bonds formed between NiL2(Cl)2 and TPCN skeleton accelerate the transfer of electrons to the Ni active sites. Our finding reveals that the strategy of embedding π-electron-rich compounds to graphitic carbon nitride provides potentials to develop excellent photocatalysts. The strong covalent combination of molecular complexes cocatalyst onto organic semiconductors represents an important step towards designing noble-metal-free photocatalysts with superior activity and high stability for visible light driven hydrogen evolution.
Collapse
Affiliation(s)
- Peng Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, PR China
| | - Wei-De Zhang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, PR China.
| |
Collapse
|
20
|
Cheng L, Huang D, Zhang Y, Wu Y. Photocatalytic selective oxidation of HMF to DFF over Bi
2
WO
6
/mpg–C
3
N
4
composite under visible light. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lili Cheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science Zhejiang Normal University Jinhua China
| | - Danyao Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science Zhejiang Normal University Jinhua China
| | - Yun Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science Zhejiang Normal University Jinhua China
| | - Ying Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science Zhejiang Normal University Jinhua China
| |
Collapse
|
21
|
Navakoteswara Rao V, Malu TJ, Cheralathan KK, Sakar M, Pitchaimuthu S, Rodríguez-González V, Mamatha Kumari M, Shankar MV. Light-driven transformation of biomass into chemicals using photocatalysts - Vistas and challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:111983. [PMID: 33529884 DOI: 10.1016/j.jenvman.2021.111983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass has become an important sustainable resource for fuels, chemicals and energy. It is an attractive source for alternative fuels and green chemicals because it is non-edible and widely available in the planet in huge volumes. The use of biomass as starting material to produce fuels and chemicals leads to closed carbon cycle and promotes circular economy. Although there are many thermo-chemical methods such as pyrolysis, liquefaction and gasification close at hand for processing lignocellulosic biomass and transforming the derived compounds into valuable chemicals and fuels, the photocatalytic method is more advantageous as it utilizes light and ambient conditions for reforming the said compounds. Appraisal of recent literature indicates a variety of photocatalytic systems involving different catalysts, reactors and conditions studied for this purpose. This article reviews the recent developments on the photocatalytic oxidation of biomass and its derivatives into value-added chemicals. The nature of the biomass and derived molecules, nature of the photocatalysts, efficiency of the photocatalysts in terms of conversion and selectivity, influence of reaction conditions and light sources, effect of additives and mechanistic pathways are discussed. Importance has been given also to discuss the complementary technologies that could be coupled with photocatalysis for better conversion of biomass and biomass-derived molecules to value-added chemicals. A summary of these aspects, conclusions and future prospects are given in the end.
Collapse
Affiliation(s)
- Vempuluru Navakoteswara Rao
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Thayil Jayakumari Malu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | | | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, Karnataka, India
| | - Sudhagar Pitchaimuthu
- Multifunctional Photocatalyst and Coatings Group, SPECIFIC, Materials Research Centre, College of Engineering, Swansea University (Bay Campus), Fabian Way, Crymlyn Burrows, Swansea, SA1 8EN, Wales, United Kingdom
| | - Vicente Rodríguez-González
- Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - Murikinati Mamatha Kumari
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Muthukonda Venkatakrishnan Shankar
- Nano Catalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India.
| |
Collapse
|
22
|
Chen H, Wan K, Zheng F, Zhang Z, Zhang H, Zhang Y, Long D. Recent Advances in Photocatalytic Transformation of Carbohydrates Into Valuable Platform Chemicals. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.615309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In response to the less accessible fossil resources and deteriorating environmental problems, catalytic conversion of the abundant and renewable lignocellulosic biomass to replace fossil resources for the production of value-added chemicals and fuels is of great importance. Depolymerization of carbohydrate and its derivatives can obtain a series of C5-C6 monosaccharides (e.g., glucose and xylose) and their derived platform compounds (e.g., HMF and furfural). Selective transformation of lignocellulose using sustainable solar energy via photocatalysis has attract broad interest from a growing scientific community. The unique photogenerated reactive species (e.g., h+, e−, •OH, •O2−, and 1O2), novel reaction pathways as well as the mild reaction conditions make photocatalysis a “dream reaction.” This review is aimed to provide an overview of the up-to-date contributions achieved in the selective photocatalytic transformation of carbohydrate and its derivatives. Photocatalytic methods, properties and merits of different catalytic systems are well summarized. We then put forward future perspective and challenges in this field.
Collapse
|
23
|
Zhao H, Li CF, Yong X, Kumar P, Palma B, Hu ZY, Van Tendeloo G, Siahrostami S, Larter S, Zheng D, Wang S, Chen Z, Kibria MG, Hu J. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn 1-xCd xS homojunction. iScience 2021; 24:102109. [PMID: 33615204 PMCID: PMC7881236 DOI: 10.1016/j.isci.2021.102109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
Photocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of Zn1-xCdxS solid solution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized Zn0.6Cd0.4S catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 ± 27.6 μmol·h−1·gcat.−1), glucose conversion (~90%), and lactic acid selectivity (~87%) without any co-catalyst under visible light irradiation. The periodic WZ/ZB phase in twinning superlattice facilitates better charge separation, while superoxide radical (⋅O2-) and photogenerated holes drive the glucose transformation and water oxidation reactions, respectively. This work demonstrates that rational photocatalyst design could realize an efficient and concomitant production of hydrogen and value-added chemicals from glucose photocatalysis. Zn1-xCdxS ZB-WZ homojunction was designed to improve charge separation efficiency Bandgap engineering improved the hydrogen production from glucose photoreforming Optimized Zn0.6Cd0.4S ZB-WZ exhibited high lactic acid yield and selectivity Rational photocatalyst design realizes biomass valorization and H2 coproduction
Collapse
Affiliation(s)
- Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Chao-Fan Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.,Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Xue Yong
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Bruna Palma
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Zhi-Yi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.,Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Gustaaf Van Tendeloo
- Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China.,Electron Microscopy for Materials Science (EMAT), University of Antwerp, 171Groenenborgerlaan, B-2020 Antwerp, Belgium
| | - Samira Siahrostami
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Stephen Larter
- Department of Geosciences, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Dewen Zheng
- Research Institute of Petroleum Exploration and Development (RIPED), CNPC, Beijing 100083, China
| | - Shanyu Wang
- Research Institute of Petroleum Exploration and Development (RIPED), CNPC, Beijing 100083, China
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
24
|
Affiliation(s)
- Chenchen Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yong Na
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
25
|
Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2021; 49:4273-4306. [PMID: 32453311 DOI: 10.1039/d0cs00041h] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.
Collapse
Affiliation(s)
- C Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, P. R. China
| | - E Paone
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy. and Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
| | - D Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain.
| | - R Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain. and Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| | - F Mauriello
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| |
Collapse
|
26
|
Su T, Zhao D, Wang Y, Lü H, Varma RS, Len C. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2021; 14:266-280. [PMID: 33200564 DOI: 10.1002/cssc.202002232] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Indexed: 06/11/2023]
Abstract
5-Hydroxymethylfurfural (HMF) has been identified as one of the most promising biomass-based multi-purpose platform molecules. Innovative protocols, namely electrocatalysis, photocatalysis, and microwave (MW)-assisted chemistry, as well as continuous-flow systems, add a new dimension and another promising toolbox for the oxidation of HMF in recent years. This Minireview deals with recent progress in the catalytic oxidation of HMF to 2,5-furandicarboxylic acid (FDCA) and other intermediates using noble, non-noble, and metal-free systems deploying emerging protocols. Selective HMF downstream oxidation products could be obtained not only via common catalyst modifications, namely nature of the metal, preparative method, and the property of deployed support, but also by using innovative processes.
Collapse
Affiliation(s)
- Ting Su
- Green Chemistry Center, College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P.R. China
| | - Deyang Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai, 264025, P.R. China
| | - Yantao Wang
- School of Resources Environmental & Chemical Engineering, Nanchang University, No 999 Xuefu Avenue, Honggutan New District, Nanchang, 330031, P.R. China
| | - Hongying Lü
- Green Chemistry Center, College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Christophe Len
- Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, CNRS, 11 rue Pierre et Marie Curie, 75005, Paris, France
- Sorbonne Universités, Université de Technologie de Compiegne, Centre de recherches Royallieu, CS, 60319, 60203 Compiegne cedex, France
| |
Collapse
|
27
|
Hu W, She J, Fu Z, Yang B, Zhang H, Jiang D. Highly efficient and tunable visible-light-catalytic synthesis of 2,5-diformylfuran using HBr and molecular oxygen. RSC Adv 2021; 11:23365-23373. [PMID: 35479798 PMCID: PMC9036589 DOI: 10.1039/d1ra00865j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/11/2023] Open
Abstract
This paper discloses that inexpensive hydrobromic acid (HBr) is active and highly selective to the photo-oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) with dioxygen (O2) or even with water under visible light illumination, which can achieve the highest 89.1% DFF yield in DMSO at 80 °C under pure O2 atmosphere. More importantly, under bifunctional acid-photooxidation catalysis of HBr, fructose can be directly converted to DFF and its two-step cascade conversion in DMSO provides a far higher DFF yield (80.2%) than the one-step cascade conversion in MeCN (42.1%). The results of HMF photooxidation catalyzed by hydrohalic acids, free radical quenching tests and EPR spectrum support that the Br atom and superoxide (O2−˙) anion radicals generated by HBr photolysis in O2 are active species for the oxidation of HMF to DFF and their activities are adjusted by the reaction medium. This photo-synthetic protocol is very simple and practical, especially with low operating costs, showing a good industrial application prospect. HBr is a very cheap and efficient bifunctional catalyst for the synthesis of DFF from the photooxidation of HMF by O2 and from the cascade conversion of fructose via a one-step or especially the two-step protocol.![]()
Collapse
Affiliation(s)
- Wenwei Hu
- College of Chemical Engineering
- Hunan Chemical Vocational Technology College
- Zhuzhou 412000
- P. R. China
| | - Jialuo She
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Zaihui Fu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Bo Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Huanhuan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| | - Dabo Jiang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources
- College of Chemistry and Chemical Engineering
- Hunan Normal University
- Changsha 410081
- P. R. China
| |
Collapse
|
28
|
de Assis GC, Silva IMA, dos Santos TG, dos Santos TV, Meneghetti MR, Meneghetti SMP. Photocatalytic processes for biomass conversion. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02358b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review focuses on the photocatalytic conversion of biomass, emphasizing several types of systems, including different photocatalysts and biomass derivatives.
Collapse
Affiliation(s)
- Geovânia C. de Assis
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Igor M. A. Silva
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Tiago G. dos Santos
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Thatiane V. dos Santos
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Simoni M. P. Meneghetti
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| |
Collapse
|
29
|
Photocatalytic Oxidation of HMF under Solar Irradiation: Coupling of Microemulsion and Lyophilization to Obtain Innovative TiO 2-Based Materials. Molecules 2020; 25:molecules25225225. [PMID: 33182578 PMCID: PMC7696902 DOI: 10.3390/molecules25225225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/17/2022] Open
Abstract
The photocatalytic oxidation of biomass-derived building blocks such as 5-hydroxymethylfurfural (HMF) is a promising reaction for obtaining valuable chemicals and the efficient long-term storage of solar radiation. In this work, we developed innovative TiO2-based materials capable of base-free HMF photo-oxidation in water using simulated solar irradiation. The materials were prepared by combining microemulsion and spray-freeze drying (SFD), resulting in highly porous systems with a large surface area. The effect of titania/silica composition and the presence of gold-copper alloy nanoparticles on the properties of materials as well as photocatalytic performance were evaluated. Among the lab-synthesized photocatalysts, Ti15Si85 SFD and Au3Cu1/Ti15Si85 SFD achieved the higher conversions, while the best selectivity was observed for Au3Cu1/Ti15Si85 SFD. The tests with radical scavengers for both TiO2-m and Au3Cu1/Ti15Si85 SFD suggested that primary species responsible for the selective photo-oxidation of HMF are photo-generated electrons and/or superoxide radicals.
Collapse
|
30
|
9,10-Dihydroanthracene auto-photooxidation efficiently triggered photo-catalytic oxidation of organic compounds by molecular oxygen under visible light. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou JJ. Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03480] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianlong Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
32
|
Rangarajan G, Yan N, Farnood R. High‐performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Goutham Rangarajan
- Department of Chemical Engineering & Applied Chemistry University of Toronto Toronto Ontario Canada
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore Singapore
| | - Ramin Farnood
- Department of Chemical Engineering & Applied Chemistry University of Toronto Toronto Ontario Canada
| |
Collapse
|
33
|
de Almeida Ribeiro RS, Monteiro Ferreira LE, Rossa V, Lima CGS, Paixão MW, Varma RS, de Melo Lima T. Graphitic Carbon Nitride-Based Materials as Catalysts for the Upgrading of Lignocellulosic Biomass-Derived Molecules. CHEMSUSCHEM 2020; 13:3992-4004. [PMID: 33448696 DOI: 10.1002/cssc.202001017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/27/2020] [Indexed: 06/12/2023]
Abstract
The use of graphitic carbon nitride (g-C3N4)-based catalysts in the upgrading of lignocellulosic biomass significantly contributes to the greener production of biofuels, polymer precursors, and building blocks. In recent years, several catalysts based on g-C3N4 have been developed and applied in both photocatalyzed and non-photocatalyzed (thermal) reactions. This Review provides an overview on the upgrading of lignocellulosic biomass deploying several compositions of g-C3N4-based catalysts.
Collapse
Affiliation(s)
- Ruan Stevan de Almeida Ribeiro
- Group of Catalysis and Biomass Valorization, Inorganic Chemistry Department, Institute of Chemistry, Fluminense Federal University Outeiro de São João Batista, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Luanne Ester Monteiro Ferreira
- Group of Catalysis and Biomass Valorization, Inorganic Chemistry Department, Institute of Chemistry, Fluminense Federal University Outeiro de São João Batista, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Vinicius Rossa
- Group of Catalysis and Biomass Valorization, Inorganic Chemistry Department, Institute of Chemistry, Fluminense Federal University Outeiro de São João Batista, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Carolina G S Lima
- Organic Chemistry Department, Institute of Chemistry, Fluminense Federal University Outeiro de São João Batista, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 -SP-310, São Carlos, São Paulo, Brazil
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Thiago de Melo Lima
- Group of Catalysis and Biomass Valorization, Inorganic Chemistry Department, Institute of Chemistry, Fluminense Federal University Outeiro de São João Batista, Campus do Valonguinho, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
García-López EI, Pomilla FR, Bloise E, Lü XF, Mele G, Palmisano L, Marcì G. C3N4 Impregnated with Porphyrins as Heterogeneous Photocatalysts for the Selective Oxidation of 5-Hydroxymethyl-2-Furfural Under Solar Irradiation. Top Catal 2020. [DOI: 10.1007/s11244-020-01293-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Selective Photocatalytic Oxidation of 5-HMF in Water over Electrochemically Synthesized TiO2 Nanoparticles. Processes (Basel) 2020. [DOI: 10.3390/pr8060647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
TiO2 nanoparticles were prepared via an electrochemical method using pulse alternating current and applied in the photocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF). Its physicochemical properties were characterized by SEM, HRTEM, XRD, and BET methods. The effect of scavenger and UVA light intensity was studied. The results revealed that electrochemically synthesized TiO2 nanoparticles exhibit higher DFF selectivity in the presence of methanol (up to 33%) compared with commercial samples.
Collapse
|
36
|
Ayed C, Huang W, Kizilsavas G, Landfester K, Zhang KAI. Photocatalytic Partial Oxidation of 5‐Hydroxymethylfurfural (HMF) to 2,5‐Diformylfuran (DFF) Over a Covalent Triazine Framework in Water. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000070] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Cyrine Ayed
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Graduate School for Excellence Materials Science in MainzJohannes Gutenberg University Mainz Staudingerweg 9 55128 Mainz Germany
| | - Wei Huang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Gönül Kizilsavas
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials ScienceFudan University Shanghai 200433 China
| |
Collapse
|
37
|
Hou F, Liu J, Zhang Y, Zhao C, Xiao X, Zou J, Li Q, Hu S, Wang H, Jiang B. Synthesis of metallic copper modified g-C 3N 4 by molecular self-assembly structure and its combined catalytic performance with activated sludge. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121754. [PMID: 31796362 DOI: 10.1016/j.jhazmat.2019.121754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/07/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Copper modified carbon nitride (CuCN) was prepared by a hydrothermal self-assembly reaction and following high temperature thermal polymerization process. Finally, the sample exhibits uniform one-dimensional tubular structure. Interestingly, the separation efficiency of electron-hole pair is improved, and more catalytic active sites are exposed due to the special hollow structure. Meanwhile, the presence of copper element narrows its band gap, leading to the enhancement of photocatalytic degradation performance under simulated sunlight. In addition, the effect of CuCN on dehydrogenase activity of activated sludge was determined by TTC reduction method. After adding CuCN-2, the activity of activated sludge reached 0.134 μmol g-1 min-1, which indicated that the prepared CuCN-2 had good biocompatibility. It is suitable for both photocatalytic process and activated sludge treatment process. Therefore, the combination of photocatalytic technology and activated sludge process can further completely degrade organic pollutants. We found that CuCN could protect the survival and growth of microorganisms in activated sludge, so that the degradation efficiency of CuCN to nitrobenzene could reach 94.4 %. Therefore, CuCN has broad application prospects in photocatalytic-activated sludge combined treatment.
Collapse
Affiliation(s)
- Feng Hou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jianan Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yanhong Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| | - Chen Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Shan Hu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Hong Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
38
|
Zhu Y, Zhang Y, Cheng L, Ismael M, Feng Z, Wu Y. Novel application of g-C3N4/NaNbO3 composite for photocatalytic selective oxidation of biomass-derived HMF to FFCA under visible light irradiation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2019.12.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Butburee T, Chakthranont P, Phawa C, Faungnawakij K. Beyond Artificial Photosynthesis: Prospects on Photobiorefinery. ChemCatChem 2020. [DOI: 10.1002/cctc.201901856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
- School of Chemistry Institute of Science Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC) National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park Pathum Thani 12120 Thailand
| |
Collapse
|
40
|
Wu X, Luo N, Xie S, Zhang H, Zhang Q, Wang F, Wang Y. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem Soc Rev 2020; 49:6198-6223. [DOI: 10.1039/d0cs00314j] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review highlights recent advances in photocatalytic transformations of lignocellulosic biomass (polysaccharides and lignin) into chemicals (in particular organic oxygenates).
Collapse
Affiliation(s)
- Xuejiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Nengchao Luo
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Haikun Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| | - Feng Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- Collaborative Innovation Center of Chemistry for Energy Materials
- National Engineering Laboratory for Green Chemical Productions of Alcohols
- Ethers and Esters
- College of Chemistry and Chemical Engineering
| |
Collapse
|
41
|
Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts 2019. [DOI: 10.3390/catal9120990] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a chemical which has gained wide importance in several industrial and research fields. Its mass production is mostly performed by the anthraquinone (AQ) oxidation reaction, leading to high energy consumption and significant generation of wastes. Other methods of synthesis found in the literature include the direct synthesis from oxygen and hydrogen. However, this H2O2 production process is prone to explosion hazard or undesirable by‑product generation. With the growing demand of H2O2, the development of cleaner and economically viable processes has been under intense investigation. Heterogeneous photocatalysis for H2O2 production has appeared as a promising alternative since it requires only an optical semiconductor, water, oxygen, and ideally solar light irradiation. Moreover, employing a metal-free semiconductor minimizes possible toxicity consequences and reinforces the sustainability of the process. The most studied metal‑free catalyst employed for H2O2 production is polymeric carbon nitride (CN). Several chemical and physical modifications over CN have been investigated together with the assessment of different sacrificial agents and light sources. This review shows the recent developments on CN materials design for enhancing the synthesis of H2O2, along with the proposed mechanisms of H2O2 production. Finally, the direct in situ generation of H2O2, when dealing with the photocatalytic synthesis of added-value organic compounds and water treatment, is discussed.
Collapse
|
42
|
Xue J, Huang C, Zong Y, Gu J, Wang M, Ma S. Fe (III)‐grafted Bi
2
MoO
6
nanoplates for enhanced photocatalytic activities on tetracycline degradation and HMF oxidation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinjuan Xue
- School of environmental and safety engineeringChangzhou University Changzhou 213164 China
| | - Chengjuan Huang
- School of environmental and safety engineeringChangzhou University Changzhou 213164 China
| | - Yuqing Zong
- School of environmental and safety engineeringChangzhou University Changzhou 213164 China
| | - Jiandong Gu
- College of Chemistry and Environmental EngineeringJiangsu University of Technology Changzhou 213001 China
| | - Mingxin Wang
- School of environmental and safety engineeringChangzhou University Changzhou 213164 China
| | - Shuaishuai Ma
- College of Chemistry and Environmental EngineeringJiangsu University of Technology Changzhou 213001 China
| |
Collapse
|
43
|
Zhang H, Feng Z, Zhu Y, Wu Y, Wu T. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on WO3/g-C3N4 composite under irradiation of visible light. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Jin X, Fang T, Wang J, Liu M, Pan S, Subramaniam B, Shen J, Yang C, Chaudhari RV. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. CHEM REC 2018; 19:1952-1994. [PMID: 30474917 DOI: 10.1002/tcr.201800144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Indexed: 11/12/2022]
Abstract
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom-economical and energy-efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value-added chemicals from biomass resources.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Siyuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| |
Collapse
|
45
|
Lolli A, Maslova V, Bonincontro D, Basile F, Ortelli S, Albonetti S. Selective Oxidation of HMF via Catalytic and Photocatalytic Processes Using Metal-Supported Catalysts. Molecules 2018; 23:molecules23112792. [PMID: 30373265 PMCID: PMC6278393 DOI: 10.3390/molecules23112792] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022] Open
Abstract
In this study, 5-hydroxymethylfurfural (HMF) oxidation was carried out via both the catalytic and the photocatalytic approach. Special attention was devoted to the preparation of the TiO2-based catalysts, since this oxide has been widely used for catalytic and photocatalytic application in alcohol oxidation reactions. Thus, in the catalytic process, the colloidal heterocoagulation of very stable sols, followed by the spray-freeze-drying (SFD) approach, was successfully applied for the preparation of nanostructured porous TiO2-SiO2 mixed-oxides with high surface areas. The versatility of the process made it possible to encapsulate Pt particles and use this material in the liquid-phase oxidation of HMF. The photocatalytic activity of a commercial titania and a homemade oxide prepared with the microemulsion technique was then compared. The influence of gold, base addition, and oxygen content on product distribution in the photocatalytic process was evaluated.
Collapse
Affiliation(s)
- Alice Lolli
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Valeriia Maslova
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
- C2P2, UMR 5265, CNRS⁻Univeristé de Lyon1 UCBL⁻CPE Lyon, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Danilo Bonincontro
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
- C2P2, UMR 5265, CNRS⁻Univeristé de Lyon1 UCBL⁻CPE Lyon, Université de Lyon, 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Simona Ortelli
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy.
| | - Stefania Albonetti
- Department of Industrial Chemistry "Toso Montanari", Bologna University, Viale Risorgimento 4, 40136 Bologna, Italy.
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
46
|
Parrino F, Bellardita M, García-López EI, Marcì G, Loddo V, Palmisano L. Heterogeneous Photocatalysis for Selective Formation of High-Value-Added Molecules: Some Chemical and Engineering Aspects. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03093] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- F. Parrino
- “Schiavello-Grillone” Photocatalysis Group, University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Viale delle Scienze, 90128 Palermo, Italy
| | - M. Bellardita
- “Schiavello-Grillone” Photocatalysis Group, University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Viale delle Scienze, 90128 Palermo, Italy
| | - E. I. García-López
- “Schiavello-Grillone” Photocatalysis Group, University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Viale delle Scienze, 90128 Palermo, Italy
| | - G. Marcì
- “Schiavello-Grillone” Photocatalysis Group, University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Viale delle Scienze, 90128 Palermo, Italy
| | - V. Loddo
- “Schiavello-Grillone” Photocatalysis Group, University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Viale delle Scienze, 90128 Palermo, Italy
| | - L. Palmisano
- “Schiavello-Grillone” Photocatalysis Group, University of Palermo, Department of Energy, Information Engineering and Mathematical Models (DEIM), Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
47
|
Marcì G, García-López E, Palmisano L. Polymeric carbon nitride (C3N4) as heterogeneous photocatalyst for selective oxidation of alcohols to aldehydes. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.03.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|