1
|
Montejano‐Nares E, Ivars‐Barceló F, Osman SM, Luque R. Modeling and Thermodynamic Studies of γ-Valerolactone Production from Bio-derived Methyl Levulinate. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200208. [PMID: 37020618 PMCID: PMC10069308 DOI: 10.1002/gch2.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Indexed: 06/19/2023]
Abstract
The exploitation of biomass to reduce the dependency on fossil fuels represents a challenge that needs to be solved as soon as possible. Nowadays, one of the most fashionable processes is γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML). Deep understanding of the thermodynamic aspects involved in this process is key for a successful outcome, but detailed studies are missing in the existing literature. A thermodynamic study of the reaction of γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML) is performed by the Gibbs free energy minimization method. The effect of various reaction conditions (temperature, concentration, flow rate) and the implication of possible intermediates and byproducts are assessed. Conversion and selectivity are calculated from the simulation of the ML hydrogenation using isopropanol as the hydrogen donor under continuous flow conditions. Significant increases in GVL selectivity can be achieved under dry conditions, keeping the high conversion. Comparison between theoretical and experimental results from a previous article discloses the effect of using 5%RuTiO2 catalysts, which increases the selectivity from 3-40% to 41-98%. Enthalpy and Gibbs free energy of the reactions at issue are also calculated from models using Barin equations according to Aspen Physical Property System parameters.
Collapse
Affiliation(s)
- Elena Montejano‐Nares
- Departamento de Química Inorgánica y Química TécnicaFacultad de CienciasUNEDAv. Esparta s/nLas Rozas de MadridMadrid28232Spain
- Departamento de Química OrgánicaEdif. Marie CurieUniversidad de CórdobaCtra Nnal IV‐A, Km 396CórdobaE14014Spain
| | - Francisco Ivars‐Barceló
- Departamento de Química Inorgánica y Química TécnicaFacultad de CienciasUNEDAv. Esparta s/nLas Rozas de MadridMadrid28232Spain
| | - Sameh M. Osman
- Chemistry DepartmentCollege of ScienceKing Saud UniversityP.O. Box 2455Riyadh11451Saudi Arabia
| | - Rafael Luque
- Departamento de Química OrgánicaEdif. Marie CurieUniversidad de CórdobaCtra Nnal IV‐A, Km 396CórdobaE14014Spain
- Universidad ECOTECKm 13.5 SamborondónSamborondónEC092302Ecuador
| |
Collapse
|
2
|
Li B, Guo H, Xiong Z, Xiong L, Yao S, Wang M, Zhang H, Chen X. The solvent-free hydrogenation of butyl levulinate to γ-valerolactone and 1,4-pentanediol over skeletal Cu-Al-Zn catalyst. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
3
|
Qu R, Junge K, Beller M. Hydrogenation of Carboxylic Acids, Esters, and Related Compounds over Heterogeneous Catalysts: A Step toward Sustainable and Carbon-Neutral Processes. Chem Rev 2023; 123:1103-1165. [PMID: 36602203 DOI: 10.1021/acs.chemrev.2c00550] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The catalytic hydrogenation of esters and carboxylic acids represents a fundamental and important class of organic transformations, which is widely applied in energy, environmental, agricultural, and pharmaceutical industries. Due to the low reactivity of the carbonyl group in carboxylic acids and esters, this type of reaction is, however, rather challenging. Hence, specifically active catalysts are required to achieve a satisfactory yield. Nevertheless, in recent years, remarkable progress has been made on the development of catalysts for this type of reaction, especially heterogeneous catalysts, which are generally dominating in industry. Here in this review, we discuss the recent breakthroughs as well as milestone achievements for the hydrogenation of industrially important carboxylic acids and esters utilizing heterogeneous catalysts. In addition, related catalytic hydrogenations that are considered of importance for the development of cleaner energy technologies and a circular chemical industry will be discussed in detail. Special attention is paid to the insights into the structure-activity relationship, which will help the readers to develop rational design strategies for the synthesis of more efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Ruiyang Qu
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
4
|
García-Sancho C, Mérida-Robles JM, Cecilia-Buenestado JA, Moreno-Tost R, Maireles-Torres PJ. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. Int J Mol Sci 2023; 24:2443. [PMID: 36768767 PMCID: PMC9916970 DOI: 10.3390/ijms24032443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.
Collapse
Affiliation(s)
| | - Josefa María Mérida-Robles
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Ramón Moreno-Tost
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
5
|
To DT, Chiang YC, Lee JF, Chen CL, Lin YC. Nitrogen-Doped Co Catalyst Derived from Carbothermal Reduction of Cobalt Phyllosilicate and its Application in Levulinic Acid Hydrogenation to γ-Valerolactone. Catal Letters 2022. [DOI: 10.1007/s10562-021-03784-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Córdova-Pérez GE, Cortez-Elizalde J, Silahua-Pavón AA, Cervantes-Uribe A, Arévalo-Pérez JC, Cordero-Garcia A, de los Monteros AEE, Espinosa-González CG, Godavarthi S, Ortiz-Chi F, Guerra-Que Z, Torres-Torres JG. γ-Valerolactone Production from Levulinic Acid Hydrogenation Using Ni Supported Nanoparticles: Influence of Tungsten Loading and pH of Synthesis. NANOMATERIALS 2022; 12:nano12122017. [PMID: 35745357 PMCID: PMC9228888 DOI: 10.3390/nano12122017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022]
Abstract
γ-Valerolactone (GVL) has been considered an alternative as biofuel in the production of carbon-based chemicals; however, the use of noble metals and corrosive solvents has been a problem. In this work, Ni supported nanocatalysts were prepared to produce γ-Valerolactone from levulinic acid using methanol as solvent at a temperature of 170 °C utilizing 4 MPa of H2. Supports were modified at pH 3 using acetic acid (CH3COOH) and pH 9 using ammonium hydroxide (NH4OH) with different tungsten (W) loadings (1%, 3%, and 5%) by the Sol-gel method. Ni was deposited by the suspension impregnation method. The catalysts were characterized by various techniques including XRD, N2 physisorption, UV-Vis, SEM, TEM, XPS, H2-TPR, and Pyridine FTIR. Based on the study of acidity and activity relation, Ni dispersion due to the Lewis acid sites contributed by W at pH 9, producing nanoparticles smaller than 10 nm of Ni, and could be responsible for the high esterification activity of levulinic acid (LA) to Methyl levulinate being more selective to catalytic hydrogenation. Products and by-products were analyzed by 1H NMR. Optimum catalytic activity was obtained with 5% W at pH 9, with 80% yield after 24 h of reaction. The higher catalytic activity was attributed to the particle size and the amount of Lewis acid sites generated by modifying the pH of synthesis and the amount of W in the support due to the spillover effect.
Collapse
Affiliation(s)
- Gerardo E. Córdova-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Jorge Cortez-Elizalde
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adib Abiu Silahua-Pavón
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adrián Cervantes-Uribe
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Juan Carlos Arévalo-Pérez
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Adrián Cordero-Garcia
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Alejandra E. Espinosa de los Monteros
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
| | - Claudia G. Espinosa-González
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Srinivas Godavarthi
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Filiberto Ortiz-Chi
- Investigadoras e Investigadores por Mexico, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Básicas, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (C.G.E.-G.); (S.G.); (F.O.-C.)
| | - Zenaida Guerra-Que
- Tecnológico Nacional de México Campus Villahermosa, Laboratorio de Investigción 1 Área de Nanotecnología, Km. 3.5 Carretera Villahermosa–Frontera, Cd. Industrial, Villahermosa CP 86010, Tabasco, Mexico;
| | - José Gilberto Torres-Torres
- Laboratorio de Nanomateriales Catalíticos Aplicados al Desarrollo de Fuentes de Energía y Remediación Ambiental, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco (CICTAT), DACB, Universidad Juárez Autónoma de Tabasco, Km.1 Carretera Cunduacán-Jalpa de Méndez, Cunduacan CP 86690, Tabasco, Mexico; (G.E.C.-P.); (J.C.-E.); (A.A.S.-P.); (A.C.-U.); (J.C.A.-P.); (A.C.-G.); (A.E.E.d.l.M.)
- Correspondence: ; Tel.: +52-191-4336-0300; Fax: +52-191-4336-0928
| |
Collapse
|
7
|
Aubrecht J, Pospelova V, Kikhtyanin O, Veselý M, Kubička D. Critical evaluation of parameters affecting Cu nanoparticles formation and their activity in dimethyl adipate hydrogenolysis. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Dutta S, Bhat NS. Recent Advances in the Value Addition of Biomass‐Derived Levulinic Acid: A Review Focusing on its Chemical Reactivity Patterns. ChemCatChem 2021. [DOI: 10.1002/cctc.202100032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| | - Navya Subray Bhat
- Department of Chemistry National Institute of Technology Karnataka Surathkal Mangalore 575025 India
| |
Collapse
|
9
|
|
10
|
Supported Bimetallic Catalysts for the Solvent-Free Hydrogenation of Levulinic Acid to γ-Valerolactone: Effect of Metal Combination (Ni-Cu, Ni-Co, Cu-Co). Catalysts 2020. [DOI: 10.3390/catal10111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
γ-valerolactone (GVL) is an important value-added chemical with potential applications as a fuel additive, a precursor for valuable chemicals, and polymer synthesis. Herein, different monometallic and bimetallic catalysts supported on γ-Al2O3 nanofibers (Ni, Cu, Co, Ni-Cu, Ni-Co, Cu-Co) were prepared by the incipient wetness impregnation method and employed in the solvent-free hydrogenation of levulinic acid (LA) to GVL. The influence of metal loading, metal combination, and ratio on the activity and selectivity of the catalysts was investigated. XRD, SEM-EDS, TEM, H2-TPR, XPS, NH3-TPD, and N2 adsorption were used to examine the structure and properties of the catalysts. In this study, GVL synthesis involves the single-step dehydration of LA to an intermediate, followed by hydrogenation of the intermediate to GVL. Ni-based catalysts were found to be highly active for the reaction. [2:1] Ni-Cu/Al2O3 catalyst showed 100.0% conversion of LA with >99.0% selectivity to GVL, whereas [2:1] Ni-Co/Al2O3 yielded 100.0% conversion of LA with 83.0% selectivity to GVL. Moreover, reaction parameters such as temperature, H2 pressure, time, and catalyst loading were optimized to obtain the maximum GVL yield. The solvent-free hydrogenation process described in this study propels the future industrial production of GVL from LA.
Collapse
|
11
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
12
|
Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into γ-Valerolactone without the Addition of Molecular Hydrogen. ENERGIES 2020. [DOI: 10.3390/en13133448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γ-Valerolactone (GVL) is a valuable chemical that can be used as a clean additive for automotive fuels. This compound can be produced from biomass-derived compounds. Levulinic acid (LA) is a compound that can be obtained easily from biomass and it can be transformed into GVL by dehydration and hydrogenation using metallic catalysts. In this work, catalysts of Ni (a non-noble metal) supported on a series of natural and low-cost clay-materials have been tested in the transformation of LA into GVL. Catalysts were prepared by a modified wet impregnation method using oxalic acid trying to facilitate a suitable metal dispersion. The supports employed are attapulgite and two sepiolites with different surface areas. Reaction tests have been undertaken using an aqueous medium at moderate reaction temperatures of 120 and 180 °C. Three types of experiments were undertaken: (i) without H2 source, (ii) using formic acid (FA) as hydrogen source and (iii) using Zn in order to transform water in hydrogen through the reaction Zn + H2O → ZnO + H2. The best results have been obtained combining Zn (which plays a double role as a reactant for hydrogen formation and as a catalyst) and Ni/attapulgite. Yields to GVL higher than 98% have been obtained at 180 °C in the best cases. The best catalytic performance has been related to the presence of tiny Ni particles as nickel crystallites larger than 4 nm were not present in the most efficient catalysts.
Collapse
|
13
|
Efficient formation of γ-valerolactone in the vapor-phase hydrogenation of levulinic acid over Cu-Co/alumina catalyst. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Cai M, Wang X, Chen Y, Dai L. Oxidative lactonization of diethylene glycol to high-value-added product 1,4-dioxan-2-one promoted by a highly efficacious and selective catalyst ZnO-ZnCr2O4. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Tukacs JM, Sylvester Á, Kmecz I, Jones RV, Óvári M, Mika LT. Continuous flow hydrogenation of methyl and ethyl levulinate: an alternative route to γ-valerolactone production. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182233. [PMID: 31218045 PMCID: PMC6549990 DOI: 10.1098/rsos.182233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Heterogeneous continuous transformation of methyl levulinate (ML) and ethyl levulinate (EL) to γ-valerolactone (GVL), as a promising C5-platform molecule was studied at 100°C. It was proved that the H-Cube® continuous hydrogenation system equipped with 5% Ru/C CatCart® is suitable for the reduction of both levulinate esters. While excellent conversion rates (greater than 99.9%) of ML and EL could be achieved in water and corresponding alcohols, the selectivities of GVL were primarily affected by the solvent used. In water, 100% conversion and ca 50% selectivity that represent ca 0.45 molGVL gmetal -1 h-1 productivity towards GVL, were obtained under 100 bar of total system pressure. The application of alcohols as a solvent, which maintained high conversion rates up to 1 ml min-1 flow rate, resulted in lower productivities (less than 0.2 molGVL gmetal -1 h-1) of GVL. Therefore, from a synthesis point of view, the corresponding 4-hydroxyvalerate esters could be obtained even at a higher reaction rate. The addition of sulfonated triphenylphosphine ligand (TPPTS) allowed reduction of the system pressure and resulted in the higher selectivity towards GVL.
Collapse
Affiliation(s)
- József M. Tukacs
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Áron Sylvester
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Ildikó Kmecz
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| | - Richard V. Jones
- ThalesNano Nanotechnology Inc, Záhony u. 7, Budapest H-1031, Hungary
| | - Mihály Óvári
- MTA Centre for Ecological Research, Institute for Danube Research, Karolina u. 29, Budapest H-1113, Hungary
| | - László T. Mika
- Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary
| |
Collapse
|
16
|
A unique nickel-base nitrogen-oxygen bidentate ligand catalyst for carbonylation of acetylene to acrylic acid. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Novodárszki G, Solt HE, Valyon J, Lónyi F, Hancsók J, Deka D, Tuba R, Mihályi MR. Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00168a] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Levulinic acid can be hydrodeoxygenated either to γ-valerolactone or to 2-methyltetrahydrofuran over the Co/SiO2 catalyst. Selectivity was controlled by the hydrogenation activity of the catalyst.
Collapse
Affiliation(s)
- Gyula Novodárszki
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Hanna E. Solt
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - József Valyon
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Ferenc Lónyi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Jenő Hancsók
- Institute of Chemical and Process Engineering
- University of Pannonia
- Veszprém H-8201
- Hungary
| | - Dhanapati Deka
- Biomass Conversion Laboratory
- Department of Energy
- Tezpur University
- Tezpur-784028
- India
| | - Róbert Tuba
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| | - Magdolna R. Mihályi
- Institute of Materials and Environmental Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest H-1117
- Hungary
| |
Collapse
|
18
|
Mallesham B, Sudarsanam P, Venkata Shiva Reddy B, Govinda Rao B, Reddy BM. Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone. ACS OMEGA 2018; 3:16839-16849. [PMID: 31458310 PMCID: PMC6644063 DOI: 10.1021/acsomega.8b02008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/27/2018] [Indexed: 06/10/2023]
Abstract
Selective transformation of levulinic acid (LA) to γ-valerolactone (GVL) using novel heterogeneous catalysts is one of the promising strategies for viable biomass processing. In this framework, we developed a continuous flow process for the selective hydrogenation of LA to GVL using several nanostructured Ni/SiO2 catalysts. The structural, textural, acidic, and redox properties of Ni/SiO2 catalysts, tuned by selectively varying the Ni amount from 5 to 40 wt %, were critically investigated using numerous materials characterization techniques. Electron microscopy images showed the formation of uniformly dispersed Ni nanoparticles on the SiO2 support, up to 30% Ni loading (average particle size is 9.2 nm), followed by a drastic increase in the particles size (21.3 nm) for 40% Ni-loaded catalyst. The fine dispersion of Ni particles has elicited a synergistic metal-support interaction, especially in 30% Ni/SiO2 catalyst, resulting in enhanced acidic and redox properties. Among the various catalysts tested, the 30% Ni/SiO2 catalyst showed the best performance with a remarkable 98% selectivity of GVL at complete conversion of LA for 2 h reaction time. Interestingly, this catalyst showed a steady selectivity to GVL (>97%), with a 54.5% conversion of LA during 20 h time-on-stream. The best performance of 30% Ni/SiO2 catalyst was attributed to well-balanced catalytic properties, such as ample amounts of strong acidic sites and abundant active metal sites. The obtained results show a great potential of applying earth-abundant nickel/silica catalysts for upgrading biomass platform molecules into value-added chemicals and high-energy-density fuels.
Collapse
Affiliation(s)
- Baithy Mallesham
- Inorganic
and Physical Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Putla Sudarsanam
- Centre
for Surface Chemistry and Catalysis, Faculty of Bioscience Engineering, KU Leuven, Celestijnenlaan 200 F, B-3001 Heverlee, Belgium
| | - Bellala Venkata Shiva Reddy
- Inorganic
and Physical Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Bolla Govinda Rao
- Inorganic
and Physical Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| | - Benjaram M. Reddy
- Inorganic
and Physical Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
| |
Collapse
|
19
|
Mitta H, Seelam PK, Chary KVR, Mutyala S, Boddula R, Inamuddin, Asiri AM. Efficient Vapor-Phase Selective Hydrogenolysis of Bio-Levulinic Acid to γ-Valerolactone Using Cu Supported on Hydrotalcite Catalysts. GLOBAL CHALLENGES (HOBOKEN, NJ) 2018; 2:1800028. [PMID: 30774979 PMCID: PMC6360448 DOI: 10.1002/gch2.201800028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/01/2018] [Indexed: 10/13/2023]
Abstract
In this work, Cu nanoparticles (Cu NPs, 2-20 nm) supported on Hydrotalcite catalysts exhibit enhanced selectivity for γ-valerolactone (GVL) during hydrogenolysis of levulinic acid (LA). At 260 °C, over 3 wt% Cu achieved 87.5% of LA conversion with a maximum GVL selectivity (95%). In contrast, LA hydrogenolysis over 3Cu/Hydrotalcite catalyst is highly active and stable toward the production of GVL due to balanced acido-basicity and higher Cu dispersion with ultrasmall particle sizes, which are investigated through the temperature programmed desorption (TPD) of ammonia, N2O titration, and transmission electron microscopy (TEM) analysis. Hydrotalcite in combination with inexpensive Cu catalyst is found to be an efficient and environmentally benign for LA hydrogenolysis.
Collapse
Affiliation(s)
- Harisekhar Mitta
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- Catalysis DivisionCSIR—Indian Institute of Chemical TechnologyHyderabad500007TelanganaIndia
| | - Prem Kumar Seelam
- Environmental and Chemical Engineering UnitFaculty of TechnologyUniversity of OuluP.O. Box 4300FI‐90014OuluFinland
| | - K. V. Raghava Chary
- Catalysis DivisionCSIR—Indian Institute of Chemical TechnologyHyderabad500007TelanganaIndia
| | - Suresh Mutyala
- Catalysis DivisionCSIR—Indian Institute of Chemical TechnologyHyderabad500007TelanganaIndia
| | - Rajender Boddula
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Centre for Nanoscience and TechnologyNo. 11 ZhongGuanCun, BeiYiTiao100190BeijingP. R. China
| | - Inamuddin
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
- Centre of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddah21589Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
- Centre of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
20
|
Jin X, Fang T, Wang J, Liu M, Pan S, Subramaniam B, Shen J, Yang C, Chaudhari RV. Nanostructured Metal Catalysts for Selective Hydrogenation and Oxidation of Cellulosic Biomass to Chemicals. CHEM REC 2018; 19:1952-1994. [PMID: 30474917 DOI: 10.1002/tcr.201800144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/24/2018] [Indexed: 11/12/2022]
Abstract
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom-economical and energy-efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value-added chemicals from biomass resources.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Tianqi Fang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Jinyao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Mengyuan Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Siyuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Bala Subramaniam
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| | - Jian Shen
- College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Chaohe Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, 266580, China
| | - Raghunath V Chaudhari
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas, 66047, USA
| |
Collapse
|
21
|
Feng J, Gu X, Xue Y, Han Y, Lu X. Production of γ-valerolactone from levulinic acid over a Ru/C catalyst using formic acid as the sole hydrogen source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:426-432. [PMID: 29579653 DOI: 10.1016/j.scitotenv.2018.03.209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
Conversion of levulinic acid (LA) to γ-valerolactone (GVL) over a ruthenium-carbon (Ru/C) catalyst using formic acid (FA) as the sole hydrogen source in cellulose hydrolysis process was investigated. The reaction was accelerated using Ru(5wt%)/C as the catalyst and by adding triethylamine. The highest LA conversion (87.26%) and GVL yield (80.75%) were obtained using 10g/mol (LA) catalyst and 150mL/mol (LA) triethylamine at 160°C for 180min. In this reaction, the hydrogenation process can only be accomplished in the presence of FA, which is the byproduct of LA production from cellulose hydrolysis. The application of this new route not only improves the economy of the process, but also avoids the energy-costly separation of LA from the LA and FA aqueous mixture. A new reaction pathway for the conversion of LA and FA into GVL over Ru/C with triethylamine was proposed.
Collapse
Affiliation(s)
- Jing Feng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaochao Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yudan Xue
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Han
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| |
Collapse
|
22
|
Xu C, Ouyang W, Muñoz-Batista MJ, Fernández-García M, Luque R. Highly Active Catalytic Ruthenium/TiO 2 Nanomaterials for Continuous Production of γ-Valerolactone. CHEMSUSCHEM 2018; 11:2604-2611. [PMID: 29808554 DOI: 10.1002/cssc.201800667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Green energy production from renewable sources is an attractive, but challenging topic to face the likely energy crisis scenario in the future. In the current work, a series of versatile Ru/TiO2 catalysts were simply synthesized and employed in continuous-flow catalytic transfer hydrogenation of industrially derived methyl levulinate biowaste (from Avantium Chemicals B.V.) to form γ-valerolactone. Different analytical techniques were applied in the characterization of the as-synthesized catalysts, including XRD, SEM, energy-dispersion X-ray spectroscopy, TEM, and X-ray photoelectron spectroscopy. The effects of various reaction conditions (e.g., temperature, concentration, and flow rate) were investigated. Results suggested that optimum dispersion and distribution of Ru on the TiO2 surface could efficiently promote the production of γ-valerolactone; the 5 % Ru/TiO2 catalyst provided excellent catalytic performance and stability compared with commercial Ru catalysts.
Collapse
Affiliation(s)
- Chunping Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, Henan, 450002, PR China
| | - Weiyi Ouyang
- Departamento de Química Orgánica, Universidad de Córdoba, Edif. Marie Curie, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain
| | - Mario J Muñoz-Batista
- Departamento de Química Orgánica, Universidad de Córdoba, Edif. Marie Curie, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain
| | | | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edif. Marie Curie, Ctra Nnal IV-A, Km 396, E14014, Córdoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russia
| |
Collapse
|
23
|
Popova M, Djinović P, Ristić A, Lazarova H, Dražić G, Pintar A, Balu AM, Novak Tušar N. Vapor-Phase Hydrogenation of Levulinic Acid to γ-Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Front Chem 2018; 6:285. [PMID: 30065923 PMCID: PMC6056673 DOI: 10.3389/fchem.2018.00285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
The hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) in vapor-phase is economically more viable route if compared to reaction in liquid-phase. To improve the GVL yield in the vapor-phase reaction, the optimization of nickel modified zeolite as bi-functional catalyst (Ni/HZSM-5) was studied. Ni/HZSM-5 materials with fixed Al/Si molar ratio of 0.04 and different nominal Ni/Si molar ratios (from 0.01 to 0.05) were synthesized without the use of organic template and with the most affordable sources of silica and alumina. Materials were characterized by X-ray powder diffraction, SEM-EDX, TEM-EDX, pyridine TPD and DRIFTS, H2-TPR, N2 physisorption and isoelectric point. In the synthesized materials, 61–83% of nickel is present as bulk NiO and increases with nickel content. Additionally, in all catalysts, a small fraction of Ni2+ which strongly interacts with the zeolite support was detected (10–18%), as well as Ni2+ acting as charge compensating cations for Brønsted acid sites (7–21%). Increasing the nickel content in the catalysts leads to a progressive decrease of Brønsted acid sites (BAS) and concomitant increase of Lewis acid sites (LAS). When BAS/LAS is approaching to 1 and at the same time the amount of NiO reducible active sites is around 80%, the bi-functional Ni/HZSM-5-3 catalyst (Ni/Al = 0.59) leads to 99% conversion of LA and 100% selectivity to GVL at 320°C. This catalyst also shows stable levulinic acid hydrogenation to GVL in 3 reaction cycles conducted at 320°C. The concerted action of the following active sites in the catalyst is a key element for its optimized performance: (1) Ni metallic active sites with hydrogenation effect, (2) Lewis acid sites with dehydration effect, and (3) nickel aluminate sites with synergetic and stabilizing effects of all active sites in the catalyst.
Collapse
Affiliation(s)
- Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Alenka Ristić
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hristina Lazarova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Goran Dražić
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Albin Pintar
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Alina M Balu
- Departamento de Quimica Organica, Universidad de Cordoba, Córdoba, Spain
| | - Nataša Novak Tušar
- National Institute of Chemistry, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| |
Collapse
|
24
|
Yoshida R, Sun D, Yamada Y, Sato S. Stable Cu-Ni/SiO 2 catalysts prepared by using citric acid-assisted impregnation for vapor-phase hydrogenation of levulinic acid. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Yang J, Huang W, Liu Y, Zhou T. Enhancing the conversion of ethyl levulinate to γ-valerolactone over Ru/UiO-66 by introducing sulfonic groups into the framework. RSC Adv 2018; 8:16611-16618. [PMID: 35540507 PMCID: PMC9080342 DOI: 10.1039/c8ra01314d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
The conversion of ethyl levulinate (EL) to γ-valerolactone (GVL) is an important reaction in biomass conversion. This process undergoes two consecutive reactions: hydrogenation and transesterification of the intermediate compound, i.e. ethyl 4-hydroxypentanoate, which are catalyzed by metal nanoparticles and acid sites, respectively. In this study, we explored the catalytic activity of Ru supported on metal organic frameworks aiming to develop efficient metal-acid bifunctional catalysts for this green process. UiO-66 and its analogues with various substituted groups (-SO3H, -NH2 and -NO2) were employed in this study. The Ru particle size, oxidation state and reducibility were characterized by TEM, H2-TPR, and XPS. The results suggest that the introduction of functional groups reduces the hydrogenation activity of pristine Ru/UiO-66 to various extents. Catalyst modified with -SO3H group shows much higher acidic catalytic performance while showing hydrogenation activity towards C[double bond, length as m-dash]O bonds, thus improving the overall transformation of EL to GVL due to the presence of strong Brønsted acid sites.
Collapse
Affiliation(s)
- Jie Yang
- School of Mathematics and Physics, Shanghai University of Electric Power Shanghai 200090 China
| | - Wenjuan Huang
- School of Mathematics and Physics, Shanghai University of Electric Power Shanghai 200090 China
| | - Yongsheng Liu
- School of Mathematics and Physics, Shanghai University of Electric Power Shanghai 200090 China
| | - Tao Zhou
- School of Mathematics and Physics, Shanghai University of Electric Power Shanghai 200090 China
| |
Collapse
|
26
|
Double-active sites cooperatively catalyzed transfer hydrogenation of ethyl levulinate over a ruthenium-based catalyst. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|