1
|
Oiffer T, Leipold F, Süss P, Breite D, Griebel J, Khurram M, Branson Y, de Vries E, Schulze A, Helm CA, Wei R, Bornscheuer UT. Chemo-Enzymatic Depolymerization of Functionalized Low-Molecular-Weight Polyethylene. Angew Chem Int Ed Engl 2024:e202415012. [PMID: 39317657 DOI: 10.1002/anie.202415012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Polyethylene (PE) is the most commonly used plastic type in the world, contributing significantly to the plastic waste crisis. Microbial degradation of PE in natural environments is unlikely due to its inert saturated carbon-carbon backbones, which are difficult to break down by enzymes, challenging the development of a biocatalytic recycling method for PE waste. Here, we demonstrated the depolymerization of low-molecular-weight (LMW) PE using an enzyme cascade that included a catalase-peroxidase, an alcohol dehydrogenase, a Baeyer Villiger monooxygenase, and a lipase after the polymer was chemically pretreated with m-chloroperoxybenzoic acid (mCPBA) and ultrasonication. In a preparative experiment with gram-scale pretreated polymers, GC-MS and weight loss determinations confirmed ~27 % polymer conversion including the formation of medium-size functionalized molecules such as ω-hydroxycarboxylic acids and α,ω-carboxylic acids. Additional analyses of LMWPE-nanoparticles using AFM showed that enzymatic depolymerization reduced the sizes of these mCPBA- and enzyme-treated LMWPE-nanoparticles. This multi-enzyme catalytic concept with distinct chemical steps represents a unique starting point for future development of bio-based recycling methods for polyolefin waste.
Collapse
Affiliation(s)
- Thomas Oiffer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | | | - Philipp Süss
- Enzymicals AG, Walther-Rathenau-Straße 49b, 17489, Greifswald, Germany
| | - Daniel Breite
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Jan Griebel
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Muhammad Khurram
- Institute of Physics, Dept. of Soft Matter and Biophysics, University of Greifswald, Felix-Hausdorff Str. 6, 17487, Greifswald, Germany
| | - Yannick Branson
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Erik de Vries
- Enzymicals AG, Walther-Rathenau-Straße 49b, 17489, Greifswald, Germany
| | - Agnes Schulze
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christiane A Helm
- Institute of Physics, Dept. of Soft Matter and Biophysics, University of Greifswald, Felix-Hausdorff Str. 6, 17487, Greifswald, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
2
|
Chen H, Liu R, Cai S, Zhang Y, Zhu C, Yu H, Li S. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli. Biotechnol J 2024; 19:e2300210. [PMID: 38403458 DOI: 10.1002/biot.202300210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 02/27/2024]
Abstract
ε-Caprolactone is an important non-toxic compound for polymer synthesis like polycaprolactone which has been widely used in drug delivery and degradable plastics. To meet the demand for a green economy, a bi-enzymatic cascade, consisting of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO), was designed and introduced into Escherichia coli to synthesize ε-caprolactone from cyclohexanol with a self-sufficient NADPH-cofactor regeneration system. To further improve the catalytic efficiency, a carbonyl group-dependent colorimetric method using inexpensive 2,4-dinitrophenylhydrazine (DNPH) was developed for assay of cyclohexanone, an intermediate production of cascade reaction. It can be used to screen mutant strains with high catalytic efficiency from high-throughput library by detecting the absorbance value in microtiter plates (MTP) instead of gas chromatography (GC) analysis. Moreover, an RBS combinatorial library was constructed for balancing the expression of ADH and CHMO from two independent transcriptional units. After the high-throughput screening based on intermediate product control, an optimal variant with higher substrate tolerance and long-term stability was obtained from RBS combinatorial library. Through a fed-batch process, ε-caprolactone production reached 148.2 mM after 70 h of reaction under the optimized conditions, which was the highest yield achieved to date.
Collapse
Affiliation(s)
- Hefeng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ran Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yingjiao Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hao Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
4
|
von Haugwitz G, Donnelly K, Di Filippo M, Breite D, Phippard M, Schulze A, Wei R, Baumann M, Bornscheuer UT. Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade. Angew Chem Int Ed Engl 2023; 62:e202216962. [PMID: 36637456 DOI: 10.1002/anie.202216962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.
Collapse
Affiliation(s)
- Gerlis von Haugwitz
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Kian Donnelly
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mara Di Filippo
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel Breite
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Max Phippard
- Aquapak Polymers Ltd, Hollymoor Point, Hollymoor Way, Rubery, B31 5HE, Birmingham, UK
| | - Agnes Schulze
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Marcus Baumann
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
5
|
Mansouri HR, Gracia Carmona O, Jodlbauer J, Schweiger L, Fink MJ, Breslmayr E, Laurent C, Feroz S, P. Goncalves LC, Rial DV, Mihovilovic MD, Bommarius AS, Ludwig R, Oostenbrink C, Rudroff F. Mutations Increasing Cofactor Affinity, Improve Stability and Activity of a Baeyer–Villiger Monooxygenase. ACS Catal 2022; 12:11761-11766. [PMID: 36249873 PMCID: PMC9552169 DOI: 10.1021/acscatal.2c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Hamid R. Mansouri
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Oriol Gracia Carmona
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Julia Jodlbauer
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Lorenz Schweiger
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michael J. Fink
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Erik Breslmayr
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Christophe Laurent
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Saima Feroz
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
- Department of Biosciences, College of Science, University of Hafr Al Batin, PO Box 1803, Hafr Al Batin, 39524, Saudi Arabia
| | - Leticia C. P. Goncalves
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d’Azur, 28 Avenue Valrose, 06108 Nice, France
| | - Daniela V. Rial
- Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Argentina
| | - Marko D. Mihovilovic
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Engineered Biosystems Building (EBB), Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, Georgia 30332, United States
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
6
|
Ma Y, Zhang N, Vernet G, Kara S. Design of fusion enzymes for biocatalytic applications in aqueous and non-aqueous media. Front Bioeng Biotechnol 2022; 10:944226. [PMID: 35935496 PMCID: PMC9354712 DOI: 10.3389/fbioe.2022.944226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Biocatalytic cascades play a fundamental role in sustainable chemical synthesis. Fusion enzymes are one of the powerful toolboxes to enable the tailored combination of multiple enzymes for efficient cooperative cascades. Especially, this approach offers a substantial potential for the practical application of cofactor-dependent oxidoreductases by forming cofactor self-sufficient cascades. Adequate cofactor recycling while keeping the oxidized/reduced cofactor in a confined microenvironment benefits from the fusion fashion and makes the use of oxidoreductases in harsh non-aqueous media practical. In this mini-review, we have summarized the application of various fusion enzymes in aqueous and non-aqueous media with a focus on the discussion of linker design within oxidoreductases. The design and properties of the reported linkers have been reviewed in detail. Besides, the substrate loadings in these studies have been listed to showcase one of the key limitations (low solubility of hydrophobic substrates) of aqueous biocatalysis when it comes to efficiency and economic feasibility. Therefore, a straightforward strategy of applying non-aqueous media has been briefly discussed while the potential of using the fusion oxidoreductase of interest in organic media was highlighted.
Collapse
Affiliation(s)
- Yu Ma
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Ningning Zhang
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Guillem Vernet
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Selin Kara,
| |
Collapse
|
7
|
Yang G, Luo S, Mu X, Yuan F, Ma J. Solvent‐dependent gas‐driven fabrication of shape-controlled silica: insights into the active sites and catalytic mechanism of silica-catalyzed Baeyer-Villiger reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Zhang N, Müller B, Ørtoft Kirkeby T, Kara S, Loderer C. Development of a thioredoxin based cofactor regeneration system for NADPH‐dependent oxidoreductases. ChemCatChem 2022. [DOI: 10.1002/cctc.202101625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ningning Zhang
- Aarhus University: Aarhus Universitet Department of Biological and Chemical Enginnering Gustav Wieds Vej 10 8000 Aarhus DENMARK
| | - Beatrice Müller
- TU Dresden: Technische Universitat Dresden Chair of Molecular Biotechnology 01217 Dresden GERMANY
| | - Tanja Ørtoft Kirkeby
- Aarhus University: Aarhus Universitet Department of Biological and Chemical Engineering Gustav Wieds Vej 10 8000 Aarhus DENMARK
| | - Selin Kara
- Aarhus University: Aarhus Universitet Department of Biological and Chemical Engineering Gustav Wieds Vej 10 8000 Aarhus DENMARK
| | - Christoph Loderer
- TU Dresden Chair for Molecular Biotechnology Zellescher Weg 20b 01217 Dresden GERMANY
| |
Collapse
|
9
|
Engel J, Bornscheuer UT, Kara S. Kinetics Modeling of a Convergent Cascade Catalyzed by Monooxygenase–Alcohol Dehydrogenase Coupled Enzymes. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer Engel
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, 17489 Greifswald, Germany
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Tseliou V, Schilder D, Masman MF, Knaus T, Mutti FG. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry 2021; 27:3315-3325. [PMID: 33073866 PMCID: PMC7898336 DOI: 10.1002/chem.202003140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Indexed: 11/12/2022]
Abstract
The l-lysine-ϵ-dehydrogenase (LysEDH) from Geobacillus stearothermophilus naturally catalyzes the oxidative deamination of the ϵ-amino group of l-lysine. We previously engineered this enzyme to create amine dehydrogenase (AmDH) variants that possess a new hydrophobic cavity in their active site such that aromatic ketones can bind and be converted into α-chiral amines with excellent enantioselectivity. We also recently observed that LysEDH was capable of reducing aromatic aldehydes into primary alcohols. Herein, we harnessed the promiscuous alcohol dehydrogenase (ADH) activity of LysEDH to create new variants that exhibited enhanced catalytic activity for the reduction of substituted benzaldehydes and arylaliphatic aldehydes to primary alcohols. Notably, these novel engineered dehydrogenases also catalyzed the reductive amination of a variety of aldehydes and ketones with excellent enantioselectivity, thus exhibiting a dual AmDH/ADH activity. We envisioned that the catalytic bi-functionality of these enzymes could be applied for the direct conversion of alcohols into amines. As a proof-of-principle, we performed an unprecedented one-pot "hydrogen-borrowing" cascade to convert benzyl alcohol to benzylamine using a single enzyme. Conducting the same biocatalytic cascade in the presence of cofactor recycling enzymes (i.e., NADH-oxidase and formate dehydrogenase) increased the reaction yields. In summary, this work provides the first examples of enzymes showing "alcohol aminase" activity.
Collapse
Affiliation(s)
- Vasilis Tseliou
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Don Schilder
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Marcelo F. Masman
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular Sciences, HIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
11
|
Ceccoli RD, Bianchi DA, Carabajal MA, Rial DV. Genome mining reveals new bacterial type I Baeyer-Villiger monooxygenases with (bio)synthetic potential. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140322. [DOI: 10.1016/j.bbapap.2019.140322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
13
|
Srinivasamurthy VS, Böttcher D, Engel J, Kara S, Bornscheuer UT. A whole-cell process for the production of ε-caprolactone in aqueous media. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
De Santis P, Meyer LE, Kara S. The rise of continuous flow biocatalysis – fundamentals, very recent developments and future perspectives. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00335b] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Very recent developments in the field of biocatalysis in continuously operated systems. Special attention on the future perspectives in this key emerging technological area ranging from process analytical technologies to digitalization.
Collapse
Affiliation(s)
- Piera De Santis
- Aarhus University
- Department of Engineering, Biological and Chemical Engineering Section
- Biocatalysis and Bioprocessing Group
- DK 8000 Aarhus
- Denmark
| | - Lars-Erik Meyer
- Aarhus University
- Department of Engineering, Biological and Chemical Engineering Section
- Biocatalysis and Bioprocessing Group
- DK 8000 Aarhus
- Denmark
| | - Selin Kara
- Aarhus University
- Department of Engineering, Biological and Chemical Engineering Section
- Biocatalysis and Bioprocessing Group
- DK 8000 Aarhus
- Denmark
| |
Collapse
|
15
|
Abstract
A number of self-sufficient hydride transfer processes have been reported in biocatalysis, with a common feature being the dependence on nicotinamide as a cofactor. This cofactor is provided in catalytic amounts and serves as a hydride shuttle to connect two or more enzymatic redox events, usually ensuring overall redox neutrality. Creative systems were designed to produce synthetic sequences characterized by high hydride economy, typically going in hand with excellent atom economy. Several redox enzymes have been successfully combined in one-pot one-step to allow functionalization of a large variety of molecules while preventing by-product formation. This review analyzes and classifies the various strategies, with a strong focus on efficiency, which is evaluated here in terms of the hydride economy and measured by the turnover number of the nicotinamide cofactor(s). The review ends with a critical evaluation of the reported systems and highlights areas where further improvements might be desirable.
Collapse
Affiliation(s)
- Erika Tassano
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| | - Mélanie Hall
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria.
| |
Collapse
|
16
|
Fürst MJLJ, Gran-Scheuch A, Aalbers FS, Fraaije MW. Baeyer–Villiger Monooxygenases: Tunable Oxidative Biocatalysts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03396] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian J. L. J. Fürst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Alejandro Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Friso S. Aalbers
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
| |
Collapse
|
17
|
Fürst MJLJ, Boonstra M, Bandstra S, Fraaije MW. Stabilization of cyclohexanone monooxygenase by computational and experimental library design. Biotechnol Bioeng 2019; 116:2167-2177. [PMID: 31124128 PMCID: PMC6836875 DOI: 10.1002/bit.27022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 12/23/2022]
Abstract
Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature‐sensitive enzymes catalyzing the Baeyer–Villiger reaction, which display excellent stereo‐ and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI‐31, a substrate‐promiscuous enzyme that efficiently catalyzes the production of the nylon‐6 precursor ε‐caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein‐stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half‐life at 30°C. In contrast to the wild‐type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications.
Collapse
Affiliation(s)
| | - Marjon Boonstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Selle Bandstra
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| |
Collapse
|