1
|
Qin H, Zhang H, Wu K, Wang X, Fan W. A systematic theoretical study of CO 2 hydrogenation towards methanol on Cu-based bimetallic catalysts: role of the CHO&CH 3OH descriptor in thermodynamic analysis. Phys Chem Chem Phys 2024; 26:19088-19104. [PMID: 38842113 DOI: 10.1039/d4cp01009d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The application of density functional theory (DFT) has enriched our understanding of methanol synthesis through CO2 hydrogenation on Cu-based catalysts. However, variations in catalytic performance under different metal doping conditions have hindered the development of universal catalytic principles. To address these challenges, we systematically investigated the scaling relationships of adsorption energy among different reaction intermediates on pure Cu, Au-Cu, Ni-Cu, Pt-Cu, Pd-Cu and Zn-Cu models. Additionally, by summing the respective adsorption energies of two separate species, we have developed a dual intermediate descriptor of CHO&CH3OH, capable of achieving computational accuracy on par with DFT results using the multiple linear regression method, all the while enabling the rapid prediction of thermodynamic properties at various stages of methanol synthesis. This method facilitates a better understanding of the coupling mechanisms between energy and linear expressions on copper-based substrates, and the universal linear criterion can be applied to other catalytic systems, with the aim of pursuing potential catalysts having both high efficiency and low cost.
Collapse
Affiliation(s)
- Huang Qin
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hai Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Kunmin Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xingzi Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Weidong Fan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Zamora B, Nyulászi L, Höltzl T. CO 2 and H 2 Activation on Zinc-Doped Copper Clusters. Chemphyschem 2024; 25:e202300409. [PMID: 38057146 DOI: 10.1002/cphc.202300409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/25/2023] [Indexed: 12/08/2023]
Abstract
Here we systematically investigate the CO2 and H2 activation and dissociation on small Cun Zn0/+ (n=3-6) clusters using Density Functional Theory. We show that Cu6 Zn is a superatom, displaying an increased HOMO-LUMO gap and is inert towards CO2 or H2 activation or dissociation. While other neutral clusters weakly activate CO2 , the cationic clusters preferentially bind the CO2 in monodentate nonactivated way. Notably, Cu4 Zn allows for the dissociation of activated CO2 , whereas larger clusters destabilize all activated CO2 binding modes. Conversely, H2 dissociation is favored on all clusters examined, except for Cu6 Zn. Cu3 Zn+ and Cu4 Zn, favor the formation of formate through the H2 dissociation pathway rather than CO2 dissociation. These findings suggest the potential of these clusters as synthetic targets and underscore their significance in the realm of CO2 hydrogenation.
Collapse
Affiliation(s)
- Bárbara Zamora
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111-, Budapest, Műegytem rkp 3, Hungary
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111-, Budapest, Műegytem rkp 3, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, 1111-, Budapest, Műegytem rkp. 3, Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, 1111-, Budapest, Műegytem rkp 3, Hungary
- HUN-REN-BME Computation Driven Chemistry research group, 1111-, Budapest, Műegytem rkp. 3, Hungary
- Furukawa Electric Institute of Technology, Nanomaterials Science Group, 1158, Budapest, Késmárk utca 28/A, Hungary
| |
Collapse
|
3
|
Mirzakhani S, Yin BH, Masteri-Farahani M, Yip ACK. Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Value-Added Chemicals. Chempluschem 2023; 88:e202300157. [PMID: 37263976 DOI: 10.1002/cplu.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Utilizing renewable energy to hydrogenate carbon dioxide into fuels eliminates massive CO2 emissions from the atmosphere and diminishes our need for using fossil fuels. This review presents the most recent developments for designing heterogeneous catalysts for the hydrogenation of CO2 to formate, methanol, and C2+ hydrocarbons. Thermodynamic challenges and mechanistic insights are discussed, providing a strong foundation to propose a suitable catalyst. The main body of this review focuses on nanostructured catalysts for constructing efficient heterogeneous systems. The most important factors affecting catalytic performance are highlighted, including active metals, supports and promoters that can potentially be used. The summary of the results and the outlook are presented in the final section. During the past few decades, heterogeneous CO2 hydrogenation has gained much attention and made tremendous progress. Thus, many highly efficient catalysts have been studied to discover their active sites and provide mechanistic insights. This paper summarizes recent advances in CO2 hydrogenation and its conversion into various hydrocarbons such as formate, methanol, and C2+ products. As for formate production, Au and Ru nanocatalysts show superior activity. However, considering the catalyst cost, Cu-based catalysts have an excellent prospect for methanol production, among other catalysts. Ultra-small nanoparticles and nanoclusters appear promising to provide highly active cost-effective catalysts. A growing number of researchers are investigating the possibility of directly synthesizing C2+ products through CO2 hydrogenation. The major challenge in producing heavy hydrocarbons is breaking the ASF limitations, which have been achieved over bifunctional catalysts using zeolites. Using suitable support and promoter can lead to a superior activity, ascribed to structural, electronic, and chemical promotional effects.
Collapse
Affiliation(s)
- Sara Mirzakhani
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | | | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
4
|
Muthuperiyanayagam A, Nabi AG, Zhao Q, Di Tommaso D. Adsorption, activation, and conversion of carbon dioxide on small copper-tin nanoclusters. Phys Chem Chem Phys 2023; 25:13429-13441. [PMID: 37144396 DOI: 10.1039/d3cp00477e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbon dioxide (CO2) conversion to value-added chemicals is an attractive solution to reduce globally accelerating CO2 emissions. Among the non-precious and abundant metals tested so far, copper (Cu) is one of the best electrocatalysts to convert CO2 into more than thirty different hydrocarbons and alcohols. However, the selectivity for desired products is often too low. We present a computational investigation of the effects of nanostructuring, doping, and support on the activity and selectivity of Cu-Sn catalysts. Density functional theory calculations were conducted to explore the possibility of using small Cu-Sn clusters, Cu4-nSnn (n = 0-4), isolated or supported on graphene and γ-Al2O3, to activate CO2 and convert it to carbon monoxide (CO) and formic acid (HCOOH). First, a detailed analysis of the structure, stability, and electronic properties of Cu4-nSnn clusters and their ability to absorb and activate CO2 was considered. Then, the kinetics of the gas phase CO2 direct dissociation on Cu4-nSnn to generate CO was determined. Finally, the mechanism of electrocatalytic CO2 reduction to CO and HCOOH on Cu4-nSnn, Cu4-nSnn/graphene and Cu4-nSnn/γ-Al2O3 was computed. The selectivity towards the competitive electrochemical hydrogen evolution reaction on these catalysts was also considered. The Cu2Sn2 cluster suppresses the hydrogen evolution reaction and is highly selective towards CO, if unsupported, or HCOOH if supported on graphene. This study demonstrates that the Cu2Sn2 cluster is a potential candidate for the electrocatalytic conversion of the CO2 molecule. Moreover, it identifies insightful structure-property relationships in Cu-based nanocatalysts, highlighting the influence of composition and catalyst support on CO2 activation.
Collapse
Affiliation(s)
- Akshayini Muthuperiyanayagam
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Azeem Ghulam Nabi
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering & Applied Sciences, P.O. Nilore, Islamabad, 45650, Pakistan
- Department of Physics, University of Gujrat, Jalalpur Jattan Road, Gujrat, Pakistan
| | - Qi Zhao
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
5
|
Jašík J, Valtera S, Vaidulych M, Bunian M, Lei Y, Halder A, Tarábková H, Jindra M, Kavan L, Frank O, Bartling S, Vajda Š. Oxidative dehydrogenation of cyclohexene on atomically precise subnanometer Cu 4-nPd n (0 ≤ n ≤ 4) tetramer clusters: the effect of cluster composition and support on performance. Faraday Discuss 2023; 242:70-93. [PMID: 36214279 DOI: 10.1039/d2fd00108j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pronounced effects of the composition of four-atom monometallic Cu and Pd and bimetallic CuPd clusters and the support on the catalytic activity and selectivity in the oxidative dehydrogenation of cyclohexene are reported. The ultra-nanocrystalline diamond supported clusters are highly active and dominantly produce benzene; some of the mixed clusters also produce cyclohexadiene, which are all clusters with a much suppressed combustion channel. The also highly active TiO2-supported tetramers solely produce benzene, without any combustion to CO2. The selectivity of the zirconia-supported mixed CuPd clusters and the monometallic Cu cluster is entirely different; though they are less active in comparison to clusters with other supports, these clusters produce significant fractions of cyclohexadiene, with their selectivity towards cyclohexadiene gradually increasing with the increasing number of copper atoms in the cluster, reaching about 50% for Cu3Pd1. The zirconia-supported copper tetramer stands out from among all the other tetramers in this reaction, with a selectivity towards cyclohexadiene of 70%, which far exceeds those of all the other cluster-support combinations. The findings from this study indicate a positive effect of copper on the stability of the mixed tetramers and potential new ways of fine-tuning catalyst performance by controlling the composition of the active site and via cluster-support interactions in complex oxidative reactions under the suppression of the undesired combustion of the feed.
Collapse
Affiliation(s)
- Juraj Jašík
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Stanislav Valtera
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Mykhailo Vaidulych
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| | - Muntaseer Bunian
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Yu Lei
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Avik Halder
- Materials Science Division, Argonne National Laboratory, 9600 South Cass Avenue, Lemont, Illinois 60439, USA
| | - Hana Tarábková
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Martin Jindra
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.,Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Ladislav Kavan
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Otakar Frank
- Department of Electrochemical Materials, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Stephan Bartling
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Strasse 29a, D-18059 Rostock, Germany
| | - Štefan Vajda
- Department of Nanocatalysis, J. Heyrovský Institute of Physical Chemistry v.v.i., Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.
| |
Collapse
|
6
|
Nabi AG, Aman-ur-Rehman, Hussain A, Chass GA, Di Tommaso D. Optimal Icosahedral Copper-Based Bimetallic Clusters for the Selective Electrocatalytic CO 2 Conversion to One Carbon Products. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:87. [PMID: 36615997 PMCID: PMC9823659 DOI: 10.3390/nano13010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/12/2023]
Abstract
Electrochemical CO2 reduction reactions can lead to high value-added chemical and materials production while helping decrease anthropogenic CO2 emissions. Copper metal clusters can reduce CO2 to more than thirty different hydrocarbons and oxygenates yet they lack the required selectivity. We present a computational characterization of the role of nano-structuring and alloying in Cu-based catalysts on the activity and selectivity of CO2 reduction to generate the following one-carbon products: carbon monoxide (CO), formic acid (HCOOH), formaldehyde (H2C=O), methanol (CH3OH) and methane (CH4). The structures and energetics were determined for the adsorption, activation, and conversion of CO2 on monometallic and bimetallic (decorated and core@shell) 55-atom Cu-based clusters. The dopant metals considered were Ag, Cd, Pd, Pt, and Zn, located at different coordination sites. The relative binding strength of the intermediates were used to identify the optimal catalyst for the selective CO2 conversion to one-carbon products. It was discovered that single atom Cd or Zn doping is optimal for the conversion of CO2 to CO. The core@shell models with Ag, Pd and Pt provided higher selectivity for formic acid and formaldehyde. The Cu-Pt and Cu-Pd showed lowest overpotential for methane formation.
Collapse
Affiliation(s)
- Azeem Ghulam Nabi
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Department of Physics, University of Gujrat, Jalalpur Jattan Road, Gujrat 50700, Pakistan
- Theoretical Physics Division, Pakistan Institute of Nuclear Science& Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Aman-ur-Rehman
- Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Department of Nuclear Engineering, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Center for Mathematical Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Akhtar Hussain
- Theoretical Physics Division, Pakistan Institute of Nuclear Science& Technology (PINSTECH), Nilore, Islamabad 45650, Pakistan
| | - Gregory A. Chass
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Chemistry, McMaster University, Hamilton, ON L8S 4L8, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Devis Di Tommaso
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
7
|
Mravak A, Vajda S, Bonačić-Koutecký V. Mechanism of Catalytic CO 2 Hydrogenation to Methane and Methanol Using a Bimetallic Cu 3Pd Cluster at a Zirconia Support. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:18306-18312. [PMID: 36366756 PMCID: PMC9639167 DOI: 10.1021/acs.jpcc.2c04921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
For very small nanocluster-based catalysts, the exploration of the influence of the particle size, composition, and support offers precisely variable parameters in a wide material search space to control catalysts' performance. We present the mechanism of the CO2 methanation reaction on the oxidized bimetallic Cu3Pd tetramer (Cu3PdO2) supported on a zirconia model support represented by Zr12O24 based on the energy profile obtained from density functional theory calculations on the reaction of CO2 and H2. In order to determine the role of the Pd atom, the performance of Cu3PdO2 with monometallic Cu4O2 at the same support has been compared. Parallel to methane formation, the alternative path of methanol formation at this catalyst has also been investigated. The results show that the exchange of a single atom in Cu4 with a single Pd atom improves catalyst/s performance via lowering the barriers associated with hydrogen dissociation steps that occur on the Pd atom. The above-mentioned results suggest that the doping strategy at the level of single atoms can offer a precise control knob for designing new catalysts with desired performance.
Collapse
Affiliation(s)
- Antonija Mravak
- Center
of Excellence for Science and Technology—Integration of Mediterranean
Region (STIM), Faculty of Science, University
of Split, Rud̵era
Boškovića 33, Split 21000, Croatia
| | - Stefan Vajda
- Department
of Nanocatalysis, Czech Academy of Sciences, J. Heyrovský Institute of Physical Chemistry, Dolejškova 3, Prague 8 18223, Czech Republic
| | - Vlasta Bonačić-Koutecký
- Center
of Excellence for Science and Technology—Integration of Mediterranean
Region (STIM), Faculty of Science, University
of Split, Rud̵era
Boškovića 33, Split 21000, Croatia
- Interdisciplinary
Center for Advanced Science and Technology (ICAST) at University of
Split, Meštrovićevo
Šetalište 45, Split 21000, Croatia
- Chemistry
Department, Humboldt University of Berlin, Brook-Taylor-Straße 2, Berlin 12489, Germany
| |
Collapse
|
8
|
The Development of Uncalcined Cu-Based Catalysts by Liquid Reduction Method for CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Geng W, Li T, Zhu X, Jing Y. Mo 3(C 6O 6) 2 monolayer as a promising electrocatalyst for the CO 2 reduction reaction: a first-principles study. Phys Chem Chem Phys 2022; 24:25639-25647. [DOI: 10.1039/d2cp01369j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mo3(C6O6)2 monolayers are potential electrocatalysts for CO2 reduction reaction (CRR). The electrochemical performances can be further improved by coordinating with hydroxyl groups, which show improved performance for the production of methane.
Collapse
Affiliation(s)
- Weixiang Geng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 226019, China
| | - Yu Jing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
10
|
Etim UJ, Zhang C, Zhong Z. Impacts of the Catalyst Structures on CO 2 Activation on Catalyst Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3265. [PMID: 34947613 PMCID: PMC8707475 DOI: 10.3390/nano11123265] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022]
Abstract
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides can catalyze the CO2 transformation reactions. On metal oxide-based catalysts, CO2 transformations are promoted significantly in the presence of surface oxygen vacancies or surface defect sites. Electrons transferable to the neutral CO2 molecule can be enriched on oxygen vacancies, which can also act as CO2 adsorption sites. CO2 activation is also possible without necessarily transferring electrons by tailoring catalytic sites that promote interactions at an appropriate energy level alignment of the catalyst and CO2 molecule. This review discusses CO2 activation on various catalysts, particularly the impacts of various structural factors, such as oxygen vacancies, on CO2 activation.
Collapse
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| | - Chenchen Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou 515063, China; (U.J.E.); (C.Z.)
| |
Collapse
|
11
|
Szalay M, Buzsáki D, Barabás J, Faragó E, Janssens E, Nyulászi L, Höltzl T. Screening of transition metal doped copper clusters for CO 2 activation. Phys Chem Chem Phys 2021; 23:21738-21747. [PMID: 34549207 DOI: 10.1039/d1cp02220b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Activation of CO2 is the first step towards its reduction to more useful chemicals. Here we systematically investigate the CO2 activation mechanism on Cu3X (X is a first-row transition metal atom) using density functional theory computations. The CO2 adsorption energies and the activation mechanisms depend strongly on the selected dopant. The dopant electronegativity, the HOMO-LUMO gap and the overlap of the frontier molecular orbitals control the CO2 dissociation efficiency. Our calculations reveal that early transition metal-doped (Sc, Ti, V) clusters exhibit a high CO2 adsorption energy, a low activation barrier for its dissociation, and a facile regeneration of the clusters. Thus, early transition metal-doped copper clusters, particularly Cu3Sc, may be efficient catalysts for the carbon capture and utilization process.
Collapse
Affiliation(s)
- Máté Szalay
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Dániel Buzsáki
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Júlia Barabás
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Endre Faragó
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.
| | - Ewald Janssens
- Quantum Solid-State Physics, KU Leuven, Celestijnenlaan 200D, BE-3001 Leuven, Belgium
| | - László Nyulászi
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary. .,MTA-BME Computation Driven Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Tibor Höltzl
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary. .,MTA-BME Computation Driven Research Group, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary.,Furukawa Electric Institute of Technology, Nanomaterials Science Group, Késmárk utca 28/A, H-1158 Budapest, Hungary
| |
Collapse
|
12
|
Megha, Banerjee A, Ghanty TK. Adsorption and activation of CO2 molecule on subnanometer-sized anionic vanadium carbide clusters V C4− (n = 1–6): A theoretical study. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Wang X, Pan J, Wei H, Li W, Zhao J, Hu Z. CO 2 activation and dissociation on In 2O 3(110) supported Pd nPt (4-n) ( n = 0-4) catalysts: a density functional theory study. Phys Chem Chem Phys 2021; 23:11557-11567. [PMID: 33978017 DOI: 10.1039/d1cp01015h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Converting CO2 into valuable chemicals via catalytic reactions can mitigate both the greenhouse effect and energy shortage problems, thus designing efficient catalysts have attracted considerable attention over the past decades. In this work, a density functional theory (DFT) calculation was carried out to investigate the CO2 activation and dissociation processes on various PdnPt(4-n)/In2O3 (n = 0-4) catalysts. The PdnPt(4-n)/In2O3 models were initially built, and the interface sites of PdnPt(4-n)/In2O3 for CO2 adsorption were confirmed among cluster sites and substrate sites. The CO2 adsorption geometries, charger transfer, and projected density of states (PDOS) were analyzed to study the CO2-PdnPt(4-n)/In2O3 interactions. From the adsorbed *CO2, the transition states (TSs) for CO2 dissociation to form *CO and *O were gained to reveal the characteristics of the activated CO2δ-. Overall, according to the adsorption energy Eads results, the bimetallic PdPt3/In2O3 and Pd3Pt/In2O3 catalysts showed the strongest and weakest CO2 adsorption stabilities, respectively, while the Pd element addition decreases the barriers for CO2 dissociation with the priority order of Pd4 > Pd3Pt > Pd2Pt2 > PdPt3 > Pt4. The Brønsted-Evans-Polanyi (BEP) relation between activation barriers (Eb) and reaction energies E was obtained for the CO2 dissociation mechanism on PdnPt(4-n)/In2O3 catalysts with the equation of E = 0.20Eb + 0.40. Finally, the optimal Pd2Pt2/In2O3 catalyst for CO2 activation and dissociation was proposed. This study provides useful information for CO2 activation and conversation procedures on bimetal-oxide catalysts, and helps to take the optimal design of PdPt/In2O3 catalysts for the CO2 reaction.
Collapse
Affiliation(s)
- Xiaowen Wang
- State Key Laboratory of Engines, Tianjin University, China.
| | - Jiaying Pan
- State Key Laboratory of Engines, Tianjin University, China.
| | - Haiqiao Wei
- State Key Laboratory of Engines, Tianjin University, China.
| | - Wenjia Li
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, China
| | - Jun Zhao
- Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Tianjin University, China
| | - Zhen Hu
- State Key Laboratory of Engines, Tianjin University, China.
| |
Collapse
|
14
|
Megha, Mondal K, Ghanty TK, Banerjee A. Adsorption and Activation of CO 2 on Small-Sized Cu-Zr Bimetallic Clusters. J Phys Chem A 2021; 125:2558-2572. [PMID: 33728907 DOI: 10.1021/acs.jpca.1c00751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adsorption and activation of CO2 is a key step in any chemical reaction, which aims to convert it to other useful chemicals. Therefore, it is important to understand the factors that drive the activation process and also search for materials that promote the process. We employ the density functional theory to explore the possibility of using small-sized bimetallic Cu-Zr clusters, Cu4-nZrn, with n = 1-3 for the above-mentioned key step. Our results suggest that after adsorption, a CO2 molecule preferably resides on Zr atoms or at the bridge and triangular faces formed by Zr atoms in bimetallic Cu-Zr clusters accompanied with its high degree of activation. Importantly, maximum activation occurs when CO2 is adsorbed on the CuZr3 cluster. Interestingly, we find that the adsorption energy of CO2 can be tuned by varying the extent of the Zr atom in Cu-Zr clusters. We rationalize the high adsorption of CO2 with the increase in the number of Zr atoms using the d-band center model and the concept of chemical hardness. The strong chemisorption and high activation of CO2 are ascribed to charge migration between Cu-Zr clusters and the CO2 molecule. We find an additional band in the infrared vibrational spectra of CO2 chemisorbed on all of the clusters, which is absent in the case of free CO2. We also observe that the energy barriers for the direct dissociation of the CO2 molecule to CO and O decrease significantly on bimetallic Cu-Zr clusters as compared to that on pure Cu4. In particular, the barrier heights are considerably small for Cu3Zr and CuZr3 clusters. This study demonstrates that Cu3Zr and CuZr3 clusters may serve as good candidates for activation and dissociation of the CO2 molecule.
Collapse
Affiliation(s)
- Megha
- Human Resources Development Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar 400094, Mumbai, India
| | - Krishnakanta Mondal
- Department of Physics, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Tapan K Ghanty
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar 400094, Mumbai, India.,Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India.,Bio-Science Group, Bhabha Atomic Research Centre, Anushaktinagar 400085, Mumbai, India
| | - Arup Banerjee
- Human Resources Development Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar 400094, Mumbai, India
| |
Collapse
|
15
|
Mendes PCD, Verga LG, Da Silva JLF. Ab initio screening of Pt-based transition-metal nanoalloys using descriptors derived from the adsorption and activation of CO 2. Phys Chem Chem Phys 2021; 23:6029-6041. [PMID: 33683269 DOI: 10.1039/d1cp00570g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we report an ab initio screening, based on density functional theory calculations, of Pt-based transition-metal nanoalloys using physicochemical descriptors derived from the adsorption and activation of CO2 on 55-atom nanoclusters, namely, PtnTM55-n, with n = 0, 13, 42, 55, TM = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Au. From the adsorption on the unary and binary nanoclusters, at the chemisorption regime (bent CO2), we identified a linear correlation between the interaction energy and charge transfer from the nanoclusters towards CO2 and the bent CO2 angle; moreover, the interaction energy is enhanced for larger values of the molecular charge and angle. The alloying of Cu55, Ag55, and Au55 with Pt provides a path to change the CO2 adsorption from physisorption (linear, non-activated) to chemisorption (enhanced interaction energies, bent, activated), while the strong interaction energy of CO2 with Os55, Ru55, and Fe55 can be decreased by alloying with Pt using different structural configurations, i.e., the trends are similar for core-shell and segregated structures. Thus, based on our results and analyses, we can select different combinations of PtnTM55-n nanoalloys to yield the desired interaction strength and magnitude of the charge transfer towards the activated anionic CO2, which can help in the design of nanocatalysts for CO2 activation or different chemical reactions in which charge transfer plays a crucial role.
Collapse
Affiliation(s)
- Paulo C D Mendes
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | - Lucas G Verga
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| | - Juarez L F Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, PO Box 780, 13560-970, São Carlos, São Paulo, Brazil.
| |
Collapse
|
16
|
Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Gao P, Zhang L, Li S, Zhou Z, Sun Y. Novel Heterogeneous Catalysts for CO 2 Hydrogenation to Liquid Fuels. ACS CENTRAL SCIENCE 2020; 6:1657-1670. [PMID: 33145406 PMCID: PMC7596863 DOI: 10.1021/acscentsci.0c00976] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 05/27/2023]
Abstract
Carbon dioxide (CO2) hydrogenation to liquid fuels including gasoline, jet fuel, diesel, methanol, ethanol, and other higher alcohols via heterogeneous catalysis, using renewable energy, not only effectively alleviates environmental problems caused by massive CO2 emissions, but also reduces our excessive dependence on fossil fuels. In this Outlook, we review the latest development in the design of novel and very promising heterogeneous catalysts for direct CO2 hydrogenation to methanol, liquid hydrocarbons, and higher alcohols. Compared with methanol production, the synthesis of products with two or more carbons (C2+) faces greater challenges. Highly efficient synthesis of C2+ products from CO2 hydrogenation can be achieved by a reaction coupling strategy that first converts CO2 to carbon monoxide or methanol and then conducts a C-C coupling reaction over a bifunctional/multifunctional catalyst. Apart from the catalytic performance, unique catalyst design ideas, and structure-performance relationship, we also discuss current challenges in catalyst development and perspectives for industrial applications.
Collapse
Affiliation(s)
- Peng Gao
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Lina Zhang
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
| | - Shenggang Li
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Dalian
National Laboratory for Clean Energy, Dalian 116023, PR China
| | - Zixuan Zhou
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuhan Sun
- CAS
Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, PR China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, P.R. China
- Shanghai
Institute of Clean Technology, Shanghai 201620, P.R.
China
| |
Collapse
|