1
|
Raps FC, Rivas-Souchet A, Jones CM, Hyster TK. Emergence of a distinct mechanism of C-N bond formation in photoenzymes. Nature 2025; 637:362-368. [PMID: 39378905 DOI: 10.1038/s41586-024-08138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
C-N bond formation is integral to modern chemical synthesis owing to the ubiquity of nitrogen heterocycles in small-molecule pharmaceuticals and agrochemicals. Alkene hydroamination with unactivated alkenes is an atom-economical strategy for constructing these bonds. However, these reactions are challenging to render asymmetric when preparing fully substituted carbon stereocentres. Here we report a photoenzymatic alkene hydroamination to prepare 2,2-disubstituted pyrrolidines by a Baeyer-Villiger mono-oxygenase. Five rounds of protein engineering afforded a mutant, providing excellent product yield and stereoselectivity. Unlike related photochemical hydroaminations, which rely on the oxidation of the amine or alkene for C-N bond formation, this work exploits a through-space interaction of a reductively generated benzylic radical and the nitrogen lone pair. This antibonding interaction lowers the oxidation potential of the radical, enabling electron transfer to the flavin cofactor. Experiments indicate that the enzyme microenvironment is essential in enabling a innovative C-N bond formation mechanism with no parallel in small-molecule catalysis. Molecular dynamics simulations were performed to investigate the substrate in the enzyme active site, which further support this hypothesis. This work is a rare example of an emerging mechanism in non-natural biocatalysis in which an enzyme has access to a mechanism that its individual components do not. Our study showcases the potential of enhancing emergent mechanisms using protein engineering to provide unique mechanistic solutions to unanswered challenges in chemical synthesis.
Collapse
Affiliation(s)
- Felix C Raps
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Ariadna Rivas-Souchet
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Zhang Q, Wang B. Mechanistic Perspective on Oxygen Activation Chemistry by Flavoenzymes. Chembiochem 2024:e202400750. [PMID: 39424594 DOI: 10.1002/cbic.202400750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Flavin-dependent enzymes catalyze a panoply of chemical transformations essential for living organisms. Through oxygen activation, flavoenzymes could generate diverse flavin-oxygen species that mediate numerous redox and non-redox transformations. In this review, we highlight the extensive oxygen activation chemistry at two sites of the flavin cofactor: C4a and N5 sites. Oxygen activation at the C4a site generates flavin-C4aOO(H) species for various monooxygenation reactions, while activation at the N5 site produces negatively charged flavin-N5OOH species, which act as highly reactive nucleophiles or bases. The selective oxygen activation at either the C4a or N5 site depends on the nature of substrates and is controlled by the active site architecture. These insights have expanded our understanding of oxygen activation chemistry in flavoenzymes and will serve as a foundation for future efforts in enzyme engineering and redesign.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
3
|
Qin P, Lu XY, Xu JH, Yu HL. Directed evolution of Baeyer-Villiger monooxygenase for highly secretory expressed in Pichia pastoris and efficient preparation of chiral pyrazole sulfoxide. Biotechnol Bioeng 2024; 121:971-979. [PMID: 38088450 DOI: 10.1002/bit.28617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 02/20/2024]
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.
Collapse
Affiliation(s)
- Peng Qin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Xin-Yi Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Zhao C, Liu F, Zhou M, Geng Q, Yu HL. Enzymatic synthesis of pharmacologically relevant chiral sulfoxides by improved CbBVMO variants. Chem Commun (Camb) 2023; 59:14571-14574. [PMID: 37987314 DOI: 10.1039/d3cc05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are able to catalyse the asymmetric oxidation of sulfides. This property has made them attractive catalysts for the synthesis of chiral sulfoxide drugs. Here, we have designed and synthesised an exhaustive combinatorial mutant library of the previously identified lansoprazole sulfide monooxygenase CbBVMOV1. From this synthetic combinatorial mutant library, the best mutant, CbBVMOV3, was selected with a specific activity of approximately 1 U mg-1 for lansoprazole sulfoxides. We then optimised the reaction conditions of a two-phase system, achieving the enzymatic asymmetric synthesis of (R)-lansoprazole in a space-time yield of 213 g L-1 d-1 and an enantiomeric excess of >99% (R) with no detectable by-products. In addition, CbBVMOV3 showed higher activity towards other prazole sulfides. These results indicate the potential application of CbBVMO in the chiral sulfoxide drug industry.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Hunt for α-amylase from metagenome and strategies to improve its thermostability: a systematic review. World J Microbiol Biotechnol 2022; 38:203. [PMID: 35999473 DOI: 10.1007/s11274-022-03396-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.
Collapse
|
6
|
Liu F, Geng Q, Zhao C, Ren SM, Yu HL, Xu JH. Colorimetric high-throughput screening method for directed evolution of prazole sulfide monooxygenase. Chembiochem 2022; 23:e202200228. [PMID: 35639013 DOI: 10.1002/cbic.202200228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are important biocatalysts for the enzymatic synthesis of chiral sulfoxides, including chiral sulfoxide-type drugs proton pump inhibitors for the treatment of gastrointestinal diseases. However, native BVMOs are not yet suitable for practical application due to their unsatisfactory activity and thermostability. Although protein engineering approaches can help address these issues, few feasible high-throughput methods are available for the engineering of such enzymes. Herein, a colorimetric detection method to distinguish sulfoxides from sulfides and sulfones was developed for prazole sulfide monooxygenases . Directed evolution enabled by this method has identified a prazole sulfide monooxygenase CbBVMO variant with improved activity and thermostability in catalyzing the asymmetric oxidation of lansoprazole sulfide. A 71.3% increase in conversion and 6°C enhancement in the melting point were achieved compared with the wild-type enzyme. This new method is feasible for high-throughput screening of prazole sulfide monooxygenases variants with improved activity, thermostability, and/or substrate specificity.
Collapse
Affiliation(s)
- Feng Liu
- East China University of Science and Technology, School of Biotechnology, 130 Meilong Road, 200237, Shanghai, CHINA
| | - Qiang Geng
- East China University of Science and Technology, School of Biotechnology, CHINA
| | - Chen Zhao
- East China University of Science and Technology, School of Biotechnology, CHINA
| | - Shi-Miao Ren
- East China University of Science and Technology, School of Biotechnology, CHINA
| | - Hui-Lei Yu
- East China University of Science and Technology, Biotechnology, No 130, Meilong Road, 200237, Shanghai, CHINA
| | - Jian-He Xu
- East China University of Science and Technology, School of Biotechnology, CHINA
| |
Collapse
|
7
|
Li YJ, Zheng YC, Geng Q, Liu F, Zhang ZJ, Xu JH, Yu HL. Secretory expression of cyclohexanone monooxygenase by methylotrophic yeast for efficient omeprazole sulfide bio-oxidation. BIORESOUR BIOPROCESS 2021; 8:81. [PMID: 38650277 PMCID: PMC10992682 DOI: 10.1186/s40643-021-00430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Prochiral pyrmetazole can be asymmetrically oxidized into (S)-omeprazole, a proton pump inhibitor that is used to treat gastroesophageal reflux, by an engineered cyclohexanone monooxygenase (CHMOAcineto-Mut) that has high stereoselectivity. CHMOAcineto-Mut is produced by heterologous expression in Escherichia coli, where it is expressed intracellularly. Thus, isolating this useful biocatalyst requires tedious cell disruption and subsequent purification, which hinders its use for industrial purposes. Here, we report the extracellular production of CHMOAcineto-Mut by a methylotrophic yeast, Pichia pastoris, for the first time. The recombinant CHMOAcineto-Mut expressed by P. pastoris showed a higher flavin occupation rate than that produced by E. coli, and this was accompanied by a 3.2-fold increase in catalytic efficiency. At a cell density of 150 g/L cell dry weight, we achieved a recombinant CHMOAcineto-Mut production rate of 1,700 U/L, representing approximately 85% of the total protein secreted into the fermentation broth. By directly employing the pH adjusted supernatant as a biocatalyst, we were able to almost completely transform 10 g/L of pyrmetazole into the corresponding (S)-sulfoxide, with > 99% enantiomeric excess.
Collapse
Affiliation(s)
- Ya-Jing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|