1
|
Yu J, Musgrave CB, Chen Q, Yang Y, Tian C, Hu X, Su G, Shin H, Ni W, Chen X, Ou P, Liu Y, Schweitzer NM, Meira DM, Dravid VP, Goddard WA, Xie K, Sargent EH. Ruthenium-Substituted Polyoxoanion Serves as Redox Shuttle and Intermediate Stabilizer in Selective Electrooxidation of Ethylene to Ethylene Glycol. J Am Chem Soc 2024; 146:32660-32669. [PMID: 39537145 DOI: 10.1021/jacs.4c11891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The high carbon intensity of present-day ethylene glycol (EG) production motivates interest in electrifying ethylene oxidation. Noting poor kinetics in prior reports of the organic electrooxidation of small hydrocarbons, we explored the design of mediators that activate and simultaneously stabilize light alkenes. A ruthenium-substituted polyoxometalate (Ru-POM, {Si[Ru(H2O)W11O39]}5-) achieves 82% faradaic efficiency in EG production at 100 mA/cm2 under ambient conditions. Via the union of in situ spectroscopic techniques, electrochemical studies, and density functional theory calculations, we find evidence of a two-step oxidation mechanism: Ru-POM first undergoes electrochemical oxidation to the high valent state, activating ethylene via partial oxidation and forming an intermediate complex; this intermediate complex then migrates to the anode where it undergoes further oxidation to produce EG. The Ru-POM-mediated electrocatalytic system reduces the projected energy consumption required in EG production, requiring 9 GJ per ton of EG (and accompanied by 0.04 ton H2 coproduction), compared to 20-30 GJ/ton in typical prior processes.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles Bruce Musgrave
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Qiucheng Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yi Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Cong Tian
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Guangcan Su
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Heejong Shin
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Weiyan Ni
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinqi Chen
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Ou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuan Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil M Schweitzer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Debora Motta Meira
- CLS@APS, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Canadian Light Source, 44 Innovation Blvd., Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Ke Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Zhao H, Chen H, Yang Zhang M, Yang Y, Yang Z, Ma P, Niu J, Wang J. Two binuclear Ni-inserted polyoxotantalates based on {NiTa 10O 32} units with catalytic activity. Dalton Trans 2024; 53:5562-5566. [PMID: 38426855 DOI: 10.1039/d4dt00048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Two Ni-inserted polyoxotantalates, K5.5Na2H0.5[Ni(H2O)2{NiTa10O30(OH)2}]·21H2O (1) and K6Na4[Ni(en){NiTa10O32}]·22H2O (2, en = ethanediamine), were synthesized in this work. Crystallographic data analyses reveal that 1 and 2 have similar configurations. A minor difference between these two structures is that the {Ni(H2O)2} unit in 1 is replaced by {Ni(en)} unit in 2. Notably, the other Ni in 1 and 2 is located as a heteroatom at the center of the {Ta10} unit, which is reported in POTas for the first time. Moreover, 2 exhibits excellent catalytic performance in transesterification reactions in a preliminary exploration of the catalytic ability of the synthesized POTas.
Collapse
Affiliation(s)
- Hui Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Ming Yang Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Yuanyuan Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Zongfei Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Almi M, Zhou M, Saal A, Springborg M. Mechanistic insights into aerobic oxidative cleavage of glycol catalyzed by an Anderson-type polyoxometalate [IMo 6O 24] 5. J Mol Model 2023; 29:57. [PMID: 36710274 DOI: 10.1007/s00894-023-05458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
A computational investigation of the aerobic oxidative C-C bond cleavage reaction of glycol catalyzed by an Anderson-type heteropolyanion HPA [IMo6O24]5- in the presence of acetonitrile as solvent has been performed at the WB97XD/6-31G(d,p)/lanl2dz level. Two reaction pathways have been identified. The catalytic cycle of each pathway consists of three steps: oxidation cleavage of a glycol molecule by the HPA, oxidation of the HPA by one dioxygen molecule, and, finally, oxidation of a second glycol and regeneration of the catalyst. These reaction pathways have been thoroughly investigated in terms of energetic, natural bond orbital (NBO), natural charges, and geometrical parameters. It is found that (i) even though the top oxygen atoms of the Anderson heteropolyanion are not the most negatively charged ones, they are more likely to react with the diol hydroxyl groups, (ii) a direct relationship between the presence of the iodine ion I(VII) and the studied oxidation reaction could not be identified, and (iii) in terms of energy, the transfer of the two hydrogen atoms is the most energetic step.
Collapse
Affiliation(s)
- Meriem Almi
- Laboratoire de Chimie Théorique Computationnelle Et Photonique, Faculté de Chimie, Université Des Sciences Et de La Technologie Houari-Boumédiène (USTHB), El Alia, BP32, 16111, Algiers, Algeria.
| | - Meijuan Zhou
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, People's Republic of China.
| | - Amar Saal
- Laboratoire de Chimie Théorique Computationnelle Et Photonique, Faculté de Chimie, Université Des Sciences Et de La Technologie Houari-Boumédiène (USTHB), El Alia, BP32, 16111, Algiers, Algeria.,LCAGC Laboratory, Université Mouloud Mammeri Tizi Ouzou, UMMTO, 15000, Tizi-Ouzou, Algeria
| | - Michael Springborg
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.,Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
5
|
Lu JJ, Liang JJ, Lin HY, Liu QQ, Cui ZW, Wang XL. Four Anderson-type [TeMo 6O 24] 6−-based metal–organic complexes with a new bis(pyrimidine)-bis(amide): multifunctional electrochemical and adsorption performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00504b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four isostructural Anderson-type POM-based metal–organic complexes derived from a new bis(pyrimidine)-bis(amide) ligand were synthesized, showing multifunctional electrochemical sensing activities and good adsorption performances for organic dyes.
Collapse
Affiliation(s)
- Jun-Jun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Ju-Ju Liang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hong-Yan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Qian-Qian Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Zi-Wei Cui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|