1
|
Bilanin C, Escamilla P, Ferrando-Soria J, Leyva-Pérez A, Armentano D, Pardo E. Selective cycloaddition of ethylene oxide to CO 2 within the confined space of an amino acid-based metal-organic framework. Dalton Trans 2023; 52:18018-18026. [PMID: 37986612 PMCID: PMC11003397 DOI: 10.1039/d3dt01984e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Host-guest chemistry within the confined space of metal-organic frameworks (MOFs) offers an almost unlimited myriad of possibilities, hardly accessible with other materials. Here we report the synthesis and physical characterization, with atomic resolution by single-crystal X-ray diffraction, of a novel water-stable tridimensional MOF, derived from the amino acid S-methyl-L-cysteine, {SrZn6[(S,S)-Mecysmox]3(OH)2(H2O)}·9H2O (1), and its application as a robust and efficient solid catalyst for the cycloaddition reaction of ethylene/propylene oxide with CO2 to afford ethylene/propylene carbonate with yields of up to 95% and selectivity of up to 100%. These results nicely illustrate the great potential of MOFs to be game changers for the selective synthesis of industrially relevant products, representing a powerful alternative to the current heterogeneous catalysts.
Collapse
Affiliation(s)
- Cristina Bilanin
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Paula Escamilla
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Jesús Ferrando-Soria
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036, Cosenza, Italy
| | - Emilio Pardo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMOL), Universitat de València, 46980 Paterna, València, Spain
| |
Collapse
|
2
|
Pang Y, Wang B, Gu X, Shen H, Yan X, Li Y, Chen L. Hydroxy-Rich Covalent Organic Framework for the Efficient Catalysis of the Cycloaddition of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16721-16730. [PMID: 37967303 DOI: 10.1021/acs.langmuir.3c01719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The cycloaddition of CO2 with epoxides to cyclic carbonates is one of the most promising and green pathways for CO2 utilization, and the development of highly efficient catalysts remains a challenge. In this work, a novel hydroxy-rich covalent organic framework (TFPB-DHBD-COF) was synthesized, and it served as an efficient heterogeneous catalyst for the reaction of CO2 with 1,2-epoxybutane under mild conditions, providing the desired products in 90% conversion. The abundant hydroxy groups in the pore channels of TFPB-DHBD-COF could not only activate epoxides and CO2 via hydrogen bonding but also obviously enhance its stability through intramolecular five-membered ring hydrogen bonding. Thus, this COF also exhibited outstanding stability and tolerance for diverse substrates. Undoubtedly, this work has enriched the application of tailored COFs in the activation and utilization of CO2.
Collapse
Affiliation(s)
- Yiying Pang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Xiaoyi Gu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Huawei Shen
- Shaoxing Xingxin New Materials Co., Ltd., Shaoxing 312300, Zhejiang, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Yan Q, Liang H, Wang S, Hu H, Su X, Xiao S, Xu H, Jing X, Lu F, Gao Y. Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO 2 to Epoxides. Molecules 2022; 27:6204. [PMID: 36234750 PMCID: PMC9570866 DOI: 10.3390/molecules27196204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming CO2 into value-added chemicals has been an important subject in recent years. The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks (COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF, was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing building unit. Ionization of the benzimidazole framework was then achieved through quaternization with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional (1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times without significant loss of its catalytic activity.
Collapse
Affiliation(s)
- Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hao Liang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Xuechao Jing
- Liaocheng Luxi Polycarbonate Co., Ltd., Liaocheng 252000, China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
4
|
Wu J, Ma S, Cui J, Yang Z, Zhang J. Nitrogen-Rich Porous Organic Polymers with Supported Ag Nanoparticles for Efficient CO 2 Conversion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3088. [PMID: 36144877 PMCID: PMC9501012 DOI: 10.3390/nano12183088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
As CO2 emissions increase and the global climate deteriorates, converting CO2 into valuable chemicals has become a topic of wide concern. The development of multifunctional catalysts for efficient CO2 conversion remains a major challenge. Herein, two porous organic polymers (NPOPs) functionalized with covalent triazine and triazole N-heterocycles are synthesized through the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The NPOPs have an abundant microporous content and high specific surface area, which confer them excellent CO2 affinities with a CO2 adsorption capacity of 84.0 mg g-1 and 63.7 mg g-1, respectively, at 273 K and 0.1 MPa. After wet impregnation and in situ reductions, Ag nanoparticles were supported in the NPOPs to obtain Ag@NPOPs with high dispersion and small particle size. The Ag@NPOPs were applied to high-value conversion reactions of CO2 with propargylic amines and terminal alkynes under mild reaction conditions. The carboxylative cyclization transformation of propargylic amine into 2-oxazolidinone and the carboxylation transformation of terminal alkynes into phenylpropiolic acid had the highest TOF values of 1125.1 and 90.9 h-1, respectively. The Ag@NPOP-1 was recycled and used five times without any significant decrease in catalytic activity, showing excellent catalytic stability and durability.
Collapse
Affiliation(s)
- Jinyi Wu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiawei Cui
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zujin Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|