1
|
Wang D, Shen J, Wang Y, Cui H, Li Y, Zhou L, Li G, Wang Q, Feng X, Qin M, Dong B, Yang P, Li Y, Ma X, Ma J. Mechanisms of Ferroptosis in bone disease: A new target for osteoporosis treatment. Cell Signal 2025; 127:111598. [PMID: 39788305 DOI: 10.1016/j.cellsig.2025.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Osteoporosis (OP) is a common disease in the elderly, characterized by decreased bone strength, reduced bone density, and increased fracture risk. There are two clinical types of osteoporosis: primary osteoporosis and secondary osteoporosis. The most common form is postmenopausal osteoporosis, which is caused by decreased estrogen production after menopause. Secondary osteoporosis, on the other hand, occurs when certain medications, diabetes, or nutritional deficiencies lead to a decrease in bone density. Ferroptosis, a new iron-dependent programmed cell death process, is critical in regulating the development of osteoporosis, but the underlying molecular mechanisms are complex. In the pathologic process of osteoporosis, several studies have found that ferroptosis may occur in osteocytes, osteoblasts, and osteoclasts, cell types closely related to bone metabolism. The imbalance of iron homeostasis in osteoblasts and excessive iron accumulation can promote lipid peroxidation through the Fenton reaction, which induces ferroptosis in osteoblasts and affects their role in regulating bone metabolism. Ferroptosis in osteoblasts inhibits bone formation and reduces the amount of new bone production. Osteoclast-associated ferroptosis abnormalities, on the other hand, may alter the homeostasis of bone resorption. In this paper, we start from the molecular mechanism of ferroptosis, and introduce the ways in which ferroptosis affects the physiological and pathological processes of the body. After that, the effects of ferroptosis on osteoblasts and osteoclasts will be discussed separately to elucidate the molecular mechanism between ferroptosis and osteoporosis, which will provide a new breakthrough for the prevention and treatment of osteoporosis and a more effective and better idea for the treatment strategy of osteoporosis.
Collapse
Affiliation(s)
- Dong Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Jiahui Shen
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yanxin Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Liyun Zhou
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Guang Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Qiyu Wang
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaotian Feng
- College of Integrative Medicine of Tianjin University of traditional Chinese Medicine, Tianjin 301617,China; Graduate School of Tianjin University of traditional Chinese Medicine, Tianjin 301617, China
| | - Mengran Qin
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Benchao Dong
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Peichuan Yang
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Yan Li
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University (Tianjin Hospital), Tianjin 300211, China; Tianjin Orthopedic Institute, Tianjin 300050, China; Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin 300050, China.
| |
Collapse
|
2
|
Zheng J, Nozaki K, Hashimoto K, Yamashita K, Wakabayashi N. Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity. Int J Mol Sci 2024; 26:141. [PMID: 39796000 PMCID: PMC11719610 DOI: 10.3390/ijms26010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity. Polarization was performed to achieve a high surface charge density, which was quantified using a thermally stimulated depolarization current. The proliferation and differentiation of MC3T3-E1 osteoblast-like cells were assessed via WST-8 and alkaline phosphatase assays. Tartrate-resistant acid phosphatase (TRAP) activity and a resorption pit assay were used to evaluate the impact of surface charge on RAW264.7 osteoclast-like cell activity. Polarized β-TCP exhibited a surface charge of 1.3 mC cm-2. Electrically polarized surfaces significantly enhanced osteoblast proliferation and differentiation. TRAP activity assays demonstrated effective osteoclast differentiation of RAW264.7 cells, with enhanced activity observed on charged surfaces. Resorption pit assays further revealed improved osteoclast resorption capacity on β-TCP surfaces with a polarized charge. These findings indicate that β-TCP with a highly dense surface charge promotes osteoblast proliferation and differentiation, as well as osteoclast activity and resorption capacity.
Collapse
Affiliation(s)
- Jingpu Zheng
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| | - Kazuaki Hashimoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino 2750016, Japan;
| | - Kimihiro Yamashita
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi, Tokyo 1730003, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| |
Collapse
|
3
|
de Souza W, Gemini-Piperni S, Ruivo C, Bastos N, Almeida S, Lopes D, Cardoso P, Oliveira MJ, Sumner DR, Ross RD, Jacobs JJ, Granjeiro JM, Fernandes MH, Rocha LA, Melo S, Ribeiro AR. Osteoblasts-derived exosomes as potential novel communicators in particle-induced periprosthetic osteolysis. Mater Today Bio 2024; 28:101189. [PMID: 39221219 PMCID: PMC11364904 DOI: 10.1016/j.mtbio.2024.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
The inflammatory response to wear particles derived from hip prothesis is considered a hallmark of periprosthetic osteolysis, which can ultimately lead to the need for revision surgery. Exosomes (Exos) have been associated with various bone pathologies, and there is increasing recognition in the literature that they actively transport molecules throughout the body. The role of wear particles in osteoblast-derived Exos is unknown, and the potential contribution of Exos to osteoimmune communication and periprosthetic osteolysis niche is still in its infancy. Given this, we investigate how titanium dioxide nanoparticles (TiO2 NPs), similar in size and composition to prosthetic wear particles, affect Exos biogenesis. Two osteoblastic cell models commonly used to study the response of osteoblasts to wear particles were selected as a proof of concept. The contribution of Exos to periprosthetic osteolysis was assessed by functional assays in which primary human macrophages were stimulated with bone-derived Exos. We demonstrated that TiO2 NPs enter multivesicular bodies, the nascent of Exos, altering osteoblast-derived Exos secretion and molecular cargo. No significant differences were observed in Exos morphology and size. However, functional assays reveal that Exos cargo enriched in uPA stimulates macrophages to a mixed M1 and M2 phenotype, inducing the release of pro- and anti-inflammatory signals characteristic of periprosthetic osteolysis. In addition, we demonstrated the expression of uPA in exosomes derived from the urine of patients with osteolysis. These results suggest that uPA can be a potential biomarker of osteolysis. In the future, uPa may serve as a possible non-invasive biomarker to identify patients at risk for peri-implant osteolysis.
Collapse
Affiliation(s)
- Wanderson de Souza
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - S. Gemini-Piperni
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil
- Labεn Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolina Ruivo
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Nuno Bastos
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Sofia Almeida
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Daniel Lopes
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Patricia Cardoso
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Maria Jose Oliveira
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - D. Rick Sumner
- Department of Orthopedic Surgery of RUSH University, Chicago, USA
| | - Ryan D. Ross
- Department of Orthopedic Surgery of RUSH University, Chicago, USA
| | - Joshua J. Jacobs
- Department of Anatomy & Cell Biology of RUSH University, Chicago, USA
| | - Jose Mauro Granjeiro
- Directory of Life Sciences Applied Metrology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
- Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil
- Dental School, Fluminense Federal University, Niterói, Brazil
| | - Maria Helena Fernandes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Luis A. Rocha
- proMetheus, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- IBTN/EURO – European Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Izmir Institute of Technology, Izmir, Turkey
| | - Sonia Melo
- I3S-Institute for Research and Innovation in Health, University of Porto, Portugal, Porto, Portugal
| | - Ana R. Ribeiro
- IBTN/EURO – European Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, Izmir Institute of Technology, Izmir, Turkey
- Nanosafety group, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| |
Collapse
|
4
|
Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering Innervated Musculoskeletal Tissues for Regenerative Orthopedics and Disease Modeling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310614. [PMID: 38200684 DOI: 10.1002/smll.202310614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Musculoskeletal (MSK) disorders significantly burden patients and society, resulting in high healthcare costs and productivity loss. These disorders are the leading cause of physical disability, and their prevalence is expected to increase as sedentary lifestyles become common and the global population of the elderly increases. Proper innervation is critical to maintaining MSK function, and nerve damage or dysfunction underlies various MSK disorders, underscoring the potential of restoring nerve function in MSK disorder treatment. However, most MSK tissue engineering strategies have overlooked the significance of innervation. This review first expounds upon innervation in the MSK system and its importance in maintaining MSK homeostasis and functions. This will be followed by strategies for engineering MSK tissues that induce post-implantation in situ innervation or are pre-innervated. Subsequently, research progress in modeling MSK disorders using innervated MSK organoids and organs-on-chips (OoCs) is analyzed. Finally, the future development of engineering innervated MSK tissues to treat MSK disorders and recapitulate disease mechanisms is discussed. This review provides valuable insights into the underlying principles, engineering methods, and applications of innervated MSK tissues, paving the way for the development of targeted, efficacious therapies for various MSK conditions.
Collapse
Affiliation(s)
- Zhilong Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Jun Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Tiandi Xiong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, P. R. China
| | - Rocky S Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, P. R. China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
5
|
Boscaro D, Sikorski P. Spheroids as a 3D in vitro model to study bone and bone mineralization. BIOMATERIALS ADVANCES 2024; 157:213727. [PMID: 38101067 DOI: 10.1016/j.bioadv.2023.213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Traumas, fractures, and diseases can severely influence bone tissue. Insight into bone mineralization is essential for the development of therapies and new strategies to enhance bone regeneration. 3D cell culture systems, in particular cellular spheroids, have gained a lot of interest as they can recapitulate crucial aspects of the in vivo tissue microenvironment, such as the extensive cell-cell and cell-extracellular matrix (ECM) interactions found in tissue. The potential of combining spheroids and various classes of biomaterials opens also new opportunities for research within bone tissue engineering. Characterizing cellular organization, ECM structure, and ECM mineralization is a fundamental step for understanding the biological processes involved in bone tissue formation in a spheroid-based model system. Still, many experimental techniques used in this field of research are optimized for use with monolayer cell cultures. There is thus a need to develop new and improving existing experimental techniques, for applications in 3D cell culture systems. In this review, bone composition and spheroids properties are described. This is followed by an insight into the techniques that are currently used in bone spheroids research and how these can be used to study bone mineralization. We discuss the application of staining techniques used with optical and confocal fluorescence microscopy, molecular biology techniques, second harmonic imaging microscopy, Raman spectroscopy and microscopy, as well as electron microscopy-based techniques, to evaluate osteogenic differentiation, collagen production and mineral deposition. Challenges in the applications of these methods in bone regeneration and bone tissue engineering are described. STATEMENT OF SIGNIFICANCE: 3D cell cultures have gained a lot of interest in the last decades as a possible technique that can be used to recreate in vitro in vivo biological process. The importance of 3D environment during bone mineralization led scientists to use this cell culture to study this biological process, to obtain a better understanding of the events involved. New and improved techniques are also required for a proper analysis of this cell model and the process under investigation. This review summarizes the state of the art of the techniques used to study bone mineralization and how 3D cell cultures, in particular spheroids, are tested and analysed to obtain better resolved results related to this complex biological process.
Collapse
Affiliation(s)
- Diamante Boscaro
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| |
Collapse
|
6
|
Zhao D, Saiding Q, Li Y, Tang Y, Cui W. Bone Organoids: Recent Advances and Future Challenges. Adv Healthc Mater 2024; 13:e2302088. [PMID: 38079529 DOI: 10.1002/adhm.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Bone defects stemming from tumorous growths, traumatic events, and diverse conditions present a profound conundrum in clinical practice and research. While bone has the inherent ability to regenerate, substantial bone anomalies require bone regeneration techniques. Bone organoids represent a new concept in this field, involving the 3D self-assembly of bone-associated stem cells guided in vitro with or without extracellular matrix material, resulting in a tissue that mimics the structural, functional, and genetic properties of native bone tissue. Within the scientific panorama, bone organoids ascend to an esteemed status, securing significant experimental endorsement. Through a synthesis of current literature and pioneering studies, this review offers a comprehensive survey of the bone organoid paradigm, delves into the quintessential architecture and ontogeny of bone, and highlights the latest progress in bone organoid fabrication. Further, existing challenges and prospective directions for future research are identified, advocating for interdisciplinary collaboration to fully harness the potential of this burgeoning domain. Conclusively, as bone organoid technology continues to mature, its implications for both clinical and research landscapes are poised to be profound.
Collapse
Affiliation(s)
- Ding Zhao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Qimanguli Saiding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yihan Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
7
|
Turner J, Nandakumar A, Anilbhai N, Boccaccini AR, Jones JR, Jell G. The effect of Si species released from bioactive glasses on cell behaviour: A quantitative review. Acta Biomater 2023; 170:39-52. [PMID: 37714247 DOI: 10.1016/j.actbio.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Despite over 50 years of silicate bioactive glass (SBG) research, commercial success, and 6000+ published articles, there remains a lack of understanding of how soluble silicate (Si) species released from SBGs influences cellular responses. Using a systematic approach, this article quantitatively compares the in vitro responses of cells to SBG dissolution products reported in the literature and determines if there is a Si concentration ([Si]) dependent effect on cell behaviour. Cell behavioural responses to SBGs [Si] in dissolution products included metabolic activity (reported in 52 % of articles), cell number (24 %), protein production (22 %), gene expression (22 %) and biomineralization (24 %). There was a difference in the [Si] reported to cause increased (desirable) cellular responses (median = 30.2 ppm) compared to the [Si] reported to cause decreased (undesirable) cellular responses (median = 52.0 ppm) (P ≤ 0.001). The frequency of undesirable outcomes increased with increasing [Si], with ∼3 times more negative outcomes reported above 52 ppm. We also investigated the effect of [Si] on specific cellular outcomes (e.g., metabolic activity, angiogenesis, osteogenesis), if cell type/species influenced these responses and the impact of other ions (Ca, P, Na) within the SBG dissolution media on cell behaviour. This review has, for the first time, quantitatively compared the cellular responses to SBGs from the literature, providing a quantitative overview of SBG in vitro practices and presents evidence of a range of [Si] where desirable cellular responses may be more likely (30-52 ppm). This review also demonstrates the need for greater standardisation of in vitro methodological approaches and recommends some minimum reporting standards. STATEMENT OF SIGNIFICANCE: This systematic review investigates the relationship between the concentration of Si released from Si-bioactive glasses (SBG) and in vitro cellular responses. Si releasing materials continue to be of considerable scientific, commercial, and medical interest (with 1500+ articles published in the last 3 years) but there is considerable variation in the reported biologically effective Si concentrations and on the importance of Si on cell behaviour. Despite the variation in methodological approaches, this article demonstrated statistical commonalities in the Si concentrations that cause desirable and undesirable cellular behaviours, suggesting a window where positive cellular outcomes are more likely. This review also provides a quantitative analysis of in vitro practices within the bioactive glass field and highlights the need for greater standardisation.
Collapse
Affiliation(s)
- Joel Turner
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK; Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Arkhash Nandakumar
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK
| | - Nikhit Anilbhai
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Julian R Jones
- Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ UK
| | - Gavin Jell
- Division of Surgery and Interventional Sciences/ UCL, Royal Free Hospital, Pond St, London, UK.
| |
Collapse
|
8
|
Liu J, Li X, Wang H, Ren Y, Li Y, Guo F. Bavachinin selectively modulates PPAR γ and maintains bone homeostasis in Type 2 Diabetes. Phytother Res 2023; 37:4457-4472. [PMID: 37308719 DOI: 10.1002/ptr.7912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
Full peroxisome proliferator-activated receptor (PPAR) γ agonists, Thiazolidinediones (TZDs), effectively prevent the process of Type 2 Diabetes Mellitus (T2DM), but their side effects have curtailed use in the clinic, including weight gain and bone loss. Here, we identified that a selective PPAR γ modulator, Bavachinin (BVC), isolated from the seeds of Psoralea Corylifolia L., could potently regulate bone homeostasis. MC3T3-E1 pre-osteoblast cells and C3H10T1/2 mesenchymal stem cells were assessed for osteogenic differentiation activities, and receptor activator of NF-κB ligand (RANKL)-induced RAW 264.7 cells were assessed osteoclasts formation. Leptin receptor-deficient mice and diet-induced obesity mice were applied to evaluate the effect of BVC on bone homeostasis in vivo. Compared to full PPAR γ agonist rosiglitazone, BVC significantly increased the osteogenesis differentiation activities under normal and high glucose conditions in MC3T3-E1 cells. Moreover, BVC could alleviate osteoclast differentiation in RANKL-induced RAW 264.7 cells. In vivo, synthesized BVC prodrug (BN) has been applied to improve water solubility, increase the extent of oral absorption of BVC and prolong its residence time in blood circulation. BN could prevent weight gain, ameliorate lipid metabolism disorders, improve insulin sensitivity, and maintain bone mass and bone biomechanical properties. BVC, a unique PPAR γ selective modulator, could maintain bone homeostasis, and its prodrug (BN) exhibits insulin sensitizer activity while circumventing the side effects of the TZDs, including bone loss and undesirable weight gain.
Collapse
Affiliation(s)
- Jingwen Liu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiaoye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan Ren
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Martin V, Bettencourt AF, Santos C, Fernandes MH, Gomes PS. Unveiling the Osteogenic Potential of Tetracyclines: A Comparative Study in Human Mesenchymal Stem Cells. Cells 2023; 12:2244. [PMID: 37759467 PMCID: PMC10526833 DOI: 10.3390/cells12182244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibiotics with diverse pharmacotherapeutic properties due to their various functional groups being attached to a common core structure. Beyond their antibacterial activity, TCs trigger pleiotropic effects on eukaryotic cells, including anti-inflammatory and potentially osteogenic capabilities. Consequently, TCs hold promise for repurposing in various clinical applications, including bone-related conditions. This study presents the first comprehensive comparison of the in vitro osteogenic potential of four TCs-tetracycline, doxycycline, minocycline, and sarecycline, within human mesenchymal stem cells. Cultures were characterized for metabolic activity, cell morphology and cytoskeleton organization, osteogenic gene expression, alkaline phosphatase (ALP) activity, and the activation of relevant signaling pathways. TCs stimulated actin remodeling processes, inducing morphological shifts consistent with osteogenic differentiation. Osteogenic gene expression and ALP activity supported the osteoinduction by TCs, demonstrating significant increases in ALP levels and the upregulation of RUNX2, SP7, and SPARC genes. Minocycline and sarecycline exhibited the most potent osteogenic induction, comparable to conventional osteogenic inducers. Signaling pathway analysis revealed that tetracycline and doxycycline activate the Wnt pathway, while minocycline and sarecycline upregulated Hedgehog signaling. Overall, the present findings suggest that TCs promote osteogenic differentiation through distinct pathways, making them promising candidates for targeted therapy in specific bone-related disorders.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
- EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| | - Pedro Sousa Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (V.M.); (M.H.F.)
- LAQV/REQUIMTE, University of Porto, 4050-453 Porto, Portugal
| |
Collapse
|
10
|
Tamura H, Maekawa T, Domon H, Sirisereephap K, Isono T, Hirayama S, Hiyoshi T, Sasagawa K, Takizawa F, Maeda T, Terao Y, Tabeta K. Erythromycin Restores Osteoblast Differentiation and Osteogenesis Suppressed by Porphyromonas gingivalis Lipopolysaccharide. Pharmaceuticals (Basel) 2023; 16:303. [PMID: 37259446 PMCID: PMC9959121 DOI: 10.3390/ph16020303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/11/2024] Open
Abstract
The macrolide erythromycin (ERM) inhibits excessive neutrophil accumulation and bone resorption in inflammatory tissues. We previously reported that the expression of developmental endothelial locus-1 (DEL-1), an endogenous anti-inflammatory factor induced by ERM, is involved in ERM action. Furthermore, DEL-1 is involved in the induction of bone regeneration. Therefore, in this study, we investigated whether ERM exerts an osteoblastogenic effect by upregulating DEL-1 under inflammatory conditions. We performed in vitro cell-based mechanistic analyses and used a model of Porphyromonas gingivalis lipopolysaccharide (LPS)-induced periodontitis to evaluate how ERM restores osteoblast activity. In vitro, P. gingivalis LPS stimulation suppressed osteoblast differentiation and bone formation. However, ERM treatment combined with P. gingivalis LPS stimulation upregulated osteoblast differentiation-related factors and Del1, indicating that osteoblast differentiation was restored. Alveolar bone resorption and gene expression were evaluated in a periodontitis model, and the results confirmed that ERM treatment increased DEL-1 expression and suppressed bone loss by increasing the expression of osteoblast-associated factors. In conclusion, ERM restores bone metabolism homeostasis in inflammatory environments possibly via the induction of DEL-1.
Collapse
Affiliation(s)
- Hikaru Tamura
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Satoru Hirayama
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takumi Hiyoshi
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Karin Sasagawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Fumio Takizawa
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
11
|
Jiménez-Jiménez C, Moreno-Borrallo A, Dumontel B, Manzano M, Vallet-Regí M. Biomimetic camouflaged nanoparticles with selective cellular internalization and migration competences. Acta Biomater 2023; 157:395-407. [PMID: 36476646 DOI: 10.1016/j.actbio.2022.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In the last few years, nanotechnology has revolutionized the potential treatment of different diseases. However, the use of nanoparticles for drug delivery might be limited by their immune clearance, poor biocompatibility and systemic immunotoxicity. Hypotheses for overcoming rejection from the body and increasing their biocompatibility include coating nanoparticles with cell membranes. Additionally, source cell-specific targeting has been reported when coating nanoparticles with tumor cells membranes. Here we show that coating mesoporous silica nanoparticles with membranes derived from preosteoblastic cells could be employed to develop potential treatments of certain bone diseases. These nanoparticles were selected because of their well-established drug delivery features. On the other hand MC3T3-E1 cells were selected because of their systemic migration capabilities towards bone defects. The coating process was here optimized ensuring their drug loading and delivery features. More importantly, our results demonstrated how camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments. STATEMENT OF SIGNIFICANCE: This work presents a new nanoparticle formulation for drug delivery able to selectively target certain cells. This approach is based on Mesoporous Silica Nanoparticles coated with cell membranes to overcome the potential rejection from the body and increase their biocompatibility prolonging their circulation time. We have employed membranes derived from preosteoblastic cells for the potential treatment of certain bone diseases. Those cells have shown systemic migration capabilities towards bone defects. The coating process was optimized and their appropriate drug loading and releasing abilities were confirmed. The important novelty of this work is that the camouflaged nanocarriers presented cellular selectivity and migration capability towards the preosteoblastic source cells, which might constitute the inspiration for future bone disease treatments.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Almudena Moreno-Borrallo
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain
| | - Bianca Dumontel
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain
| | - Miguel Manzano
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - María Vallet-Regí
- Department of Chemistry in Pharmaceutical Sciences, School of Pharmacy, Institute Hospital 12 de Octubre (imas12), Universidad Complutense de Madrid, UCM, Madrid 28040, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| |
Collapse
|
12
|
Abstract
Major advances in pathogen identification, treatment, vaccine development, and avian immunology have enabled the enormous expansion in global poultry production over the last 50 years. Looking forward, climate change, reduced feed, reduced water access, new avian pathogens and restrictions on the use of antimicrobials threaten to hamper further gains in poultry productivity and health. The development of novel in vitro cell culture systems, coupled with new genetic tools to investigate gene function, will aid in developing novel interventions for existing and newly emerging poultry pathogens. Our growing capacity to cryopreserve and generate genome-edited chicken lines will also be useful for developing improved chicken breeds for poultry farmers and conserving chicken genetic resources.
Collapse
Affiliation(s)
- Euan Mitchell
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Guillermo Tellez
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mike J McGrew
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
13
|
Impact of Fluid Flow Shear Stress on Osteoblast Differentiation and Cross-Talk with Articular Chondrocytes. Int J Mol Sci 2022; 23:ijms23169505. [PMID: 36012760 PMCID: PMC9408926 DOI: 10.3390/ijms23169505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bone cells, in particular osteoblasts, are capable of communication with each other during bone growth and homeostasis. More recently it has become clear that they also communicate with other cell-types; including chondrocytes in articular cartilage. One way that this process is facilitated is by interstitial fluid movement within the pericellular and extracellular matrices. This stimulus is also an important mechanical signal in skeletal tissues, and is known to generate shear stresses at the micron-scale (known as fluid flow shear stresses (FFSS)). The primary aim of this study was to develop and characterize an in vitro bone–cartilage crosstalk system, to examine the effect of FFSS on these cell types. Specifically, we evaluated the response of osteoblasts and chondrocytes to FFSS and the effect of FFSS-induced soluble factors from the former, on the latter. This system will ultimately be used to help us understand the role of subchondral bone damage in articular cartilage degeneration. We also carried out a comparison of responses between cell lines and primary murine cells in this work. Our findings demonstrate that primary cells produce a more reliable and reproducible response to FFSS. Furthermore we found that at lower magnitudes , direct FFSS produces anabolic responses in both chondrocytes and osteoblasts, whereas higher levels produce more catabolic responses. Finally we show that exposure to osteoblast-derived factors in conditioned media experiments produced similarly catabolic changes in primary chondrocytes.
Collapse
|
14
|
Current Status of the Diagnosis and Management of Osteoporosis. Int J Mol Sci 2022; 23:ijms23169465. [PMID: 36012730 PMCID: PMC9408932 DOI: 10.3390/ijms23169465] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis has been defined as the silent disease of the 21st century, becoming a public health risk due to its severity, chronicity and progression and affecting mainly postmenopausal women and older adults. Osteoporosis is characterized by an imbalance between bone resorption and bone production. It is diagnosed through different methods such as bone densitometry and dual X-rays. The treatment of this pathology focuses on different aspects. On the one hand, pharmacological treatments are characterized by the use of anti-resorptive drugs, as well as emerging regenerative medicine treatments such as cell therapies and the use of bioactive hydrogels. On the other hand, non-pharmacological treatments are associated with lifestyle habits that should be incorporated, such as physical activity, diet and the cessation of harmful habits such as a high consumption of alcohol or smoking. This review seeks to provide an overview of the theoretical basis in relation to bone biology, the existing methods for diagnosis and the treatments of osteoporosis, including the development of new strategies.
Collapse
|
15
|
Wang K, Kong X, Du M, Yu W, Wang Z, Xu B, Yang J, Xu J, Liu Z, Cheng Y, Gan J. Novel Soy Peptide CBP: Stimulation of Osteoblast Differentiation via TβRI-p38-MAPK-Depending RUNX2 Activation. Nutrients 2022; 14:1940. [PMID: 35565907 PMCID: PMC9105634 DOI: 10.3390/nu14091940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 01/06/2023] Open
Abstract
DEDEQIPSHPPR, the calcium-binding peptide (CBP) identified in soy yogurt, was proven to be a potential cofactor in osteoporosis prevention in our previous study, but the mechanism was unknown. In this study, the activity of alkaline phosphatase (ALP) and osteocalcin (OCN), the regulation of RUNX2, and the expression of TβRI were investigated to elucidate the underlying mechanism. The results show that CBP upregulated ALP activity and OCN concentration and increased the expression of RUNX2 and the activation of the MAPK signaling pathway. Similarly, the expression of osteogenesis-related genes in osteoblasts also increased upon CBP treatment. Moreover, the CBP-induced enhancement of ALP activity and phosphorylation levels in the p38 pathway was inhibited by treatment with a p38 inhibitor (SB203538) and TβRI inhibitor (SB431542), respectively, suggesting that p38 and TβRI were involved in the osteogenic action. Based on the signaling pathways, the intracellular calcium concentration was significantly elevated by CBP, which was correlated with the increased behavioral functions and the relative fluorescence intensity of the bone mass. These findings suggest that CBP stimulates osteoblast differentiation and bone mineralization through the activation of RUNX2 via mechanisms related to the TβRI-p38-MAPK signaling pathways, further highlighting CBP's important potential for treating osteoporosis.
Collapse
Affiliation(s)
- Kuaitian Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Xiao Kong
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Mengdi Du
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Wei Yu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenhua Wang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Bo Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jianrong Yang
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Jingru Xu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Zhili Liu
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai 264000, China; (K.W.); (X.K.); (M.D.); (W.Y.); (Z.W.); (B.X.); (J.Y.); (J.X.); (Z.L.)
| |
Collapse
|
16
|
MicroRNA-1270 Inhibits Cell Proliferation, Migration, and Invasion via Targeting IRF8 in Osteoblast-like Cell Lines. Curr Issues Mol Biol 2022; 44:1182-1190. [PMID: 35723300 PMCID: PMC8947117 DOI: 10.3390/cimb44030077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is the most common bone disease affecting elderly individuals. The diagnosis of this pathology is most commonly made on the basis of bone fractures. Several microRNAs (miRNAs/miRs) have been identified as possible biomarkers for the diagnosis and treatment of OP. miRNAs can regulate gene expression, and determining their functions can provide potential pharmacological targets for treating OP. A previous study showed that miR-1270 was upregulated in monocytes derived from postmenopausal women with OP. Therefore, the present study aimed to uncover the role of miR-1270 in regulating bone metabolism. To reveal the mechanism underlying the regulatory effect of miR-1270 on interferon regulatory factor 8 (IRF8) expression, luciferase assay, reverse transcription-quantitative PCR, and Western blot analysis were performed. The results suggest that miR-1270 could regulate the mRNA and protein expression levels of IRF8 by directly binding to its 3′-untranslated region. The effects of miR-1270 overexpression and IRF8 silencing on cell proliferation, migration, and invasion were also evaluated. To the best of our knowledge, the current study was the first to support the crucial role of miR-1270 in bone metabolism via modulation of IRF8 expression. In addition, miR-1270 overexpression could attenuate human osteoblast-like cells’ proliferation and migration ability.
Collapse
|
17
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
18
|
Generation of two multipotent mesenchymal progenitor cell lines capable of osteogenic, mature osteocyte, adipogenic, and chondrogenic differentiation. Sci Rep 2021; 11:22593. [PMID: 34799645 PMCID: PMC8605002 DOI: 10.1038/s41598-021-02060-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal progenitors differentiate into several tissues including bone, cartilage, and adipose. Targeting these cells in vivo is challenging, making mesenchymal progenitor cell lines valuable tools to study tissue development. Mesenchymal stem cells (MSCs) can be isolated from humans and animals; however, obtaining homogenous, responsive cells in a reproducible fashion is challenging. As such, we developed two mesenchymal progenitor cell (MPC) lines, MPC1 and MPC2, generated from bone marrow of male C57BL/6 mice. These cells were immortalized using the temperature sensitive large T-antigen, allowing for thermal control of proliferation and differentiation. Both MPC1 and MPC2 cells are capable of osteogenic, adipogenic, and chondrogenic differentiation. Under osteogenic conditions, both lines formed mineralized nodules, and stained for alizarin red and alkaline phosphatase, while expressing osteogenic genes including Sost, Fgf23, and Dmp1. Sost and Dmp1 mRNA levels were drastically reduced with addition of parathyroid hormone, thus recapitulating in vivo responses. MPC cells secreted intact (iFGF23) and C-terminal (cFGF23) forms of the endocrine hormone FGF23, which was upregulated by 1,25 dihydroxy vitamin D (1,25D). Both lines also rapidly entered the adipogenic lineage, expressing adipose markers after 4 days in adipogenic media. MPC cells were also capable of chondrogenic differentiation, displaying increased expression of cartilaginous genes including aggrecan, Sox9, and Comp. With the ability to differentiate into multiple mesenchymal lineages and mimic in vivo responses of key regulatory genes/proteins, MPC cells are a valuable model to study factors that regulate mesenchymal lineage allocation as well as the mechanisms that dictate transcription, protein modification, and secretion of these factors.
Collapse
|
19
|
Multifunctionality of Nanosized Calcium Apatite Dual-Doped with Li +/Eu 3+ Ions Related to Cell Culture Studies and Cytotoxicity Evaluation In Vitro. Biomolecules 2021; 11:biom11091388. [PMID: 34572601 PMCID: PMC8466056 DOI: 10.3390/biom11091388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Li+/Eu3+ dual-doped calcium apatite analogues were fabricated using a microwave stimulated hydrothermal technique. XRPD, FT-IR, micro-Raman spectroscopy, TEM and SAED measurements indicated that obtained apatites are single-phased, crystallize with a hexagonal structure, have similar morphology and nanometric size as well as show red luminescence. Lithium effectively modifies the local symmetry of optical active sites and, thus, affects the emission efficiency. Moreover, the hydrodynamic size and surface charge of the nanoparticles have been extensively studied. The protein adsorption (lysozyme, LSZ; bovine serum albumin, BSA) on the nanoparticle surface depended on the type of cationic dopant (Li+, Eu3+) and anionic group (OH−, Cl−, F−) of the apatite matrix. Interaction with LSZ resulted in a positive zeta potential, and the nanoparticles had the lowest hydrodynamic size in this protein medium. The cytotoxicity assessment was carried out on the human osteosarcoma cell line (U2OS), murine macrophages (J774.E), as well as human red blood cells (RBCs). The studied apatites were not cytotoxic to RBCs and J774.E cells; however, at higher concentrations of nanoparticles, cytotoxicity was observed against the U2OS cell line. No antimicrobial activity was detected against Gram-negative bacteria with one exception for P. aeruginosa treated with Li+-doped fluorapatite.
Collapse
|
20
|
Ødegaard KS, Ouyang L, Ma Q, Buene G, Wan D, Elverum CW, Torgersen J, Standal T, Westhrin M. Revealing the influence of electron beam melted Ti-6Al-4V scaffolds on osteogenesis of human bone marrow-derived mesenchymal stromal cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:97. [PMID: 34406475 PMCID: PMC8373740 DOI: 10.1007/s10856-021-06572-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Porous Titanium-6Aluminum-4Vanadium scaffolds made by electron beam-based additive manufacturing (AM) have emerged as state-of-the-art implant devices. However, there is still limited knowledge on how they influence the osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs). In this study, BMSCs are cultured on such porous scaffolds to determine how the scaffolds influence the osteogenic differentiation of the cells. The scaffolds are biocompatible, as revealed by the increasing cell viability. Cells are evenly distributed on the scaffolds after 3 days of culturing followed by an increase in bone matrix development after 21 days of culturing. qPCR analysis provides insight into the cells' osteogenic differentiation, where RUNX2 expression indicate the onset of differentiation towards osteoblasts. The COL1A1 expression suggests that the differentiated osteoblasts can produce the osteoid. Alkaline phosphatase staining indicates an onset of mineralization at day 7 in OM. The even deposits of calcium at day 21 further supports a successful bone mineralization. This work shines light on the interplay between AM Ti64 scaffolds and bone growth, which may ultimately lead to a new way of creating long lasting bone implants with fast recovery times.
Collapse
Affiliation(s)
- Kristin S Ødegaard
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lingzi Ouyang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qianli Ma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Glenn Buene
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Di Wan
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christer W Elverum
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Torgersen
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marita Westhrin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
21
|
The N 6-methyladenosine demethylase ALKBH5 negatively regulates the osteogenic differentiation of mesenchymal stem cells through PRMT6. Cell Death Dis 2021; 12:578. [PMID: 34088896 PMCID: PMC8178363 DOI: 10.1038/s41419-021-03869-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
N6-methyladenosine (m6A) modification is widespread in messenger RNAs and increasing evidence suggests the crucial roles of m6A in cell differentiation and tissue development. However, whether m6A modulates the osteogenic differentiation of mesenchymal stem cells (MSCs) has not been fully elucidated. Here we show that conditional knockout of the demethylase Alkbh5 in bone marrow MSCs strengthened bone mass in mice. Loss- and gain-of-function studies demonstrated that ALKBH5 negatively regulates the osteogenic differentiation of MSCs in vitro. At a mechanistic level, meRIP-seq and RNA-seq in MSCs following knockdown of ALKBH5 revealed changes in transcripts of PRMT6 containing consensus m6A motifs required for demethylation by ALKBH5. Furthermore, we found that ALKBH5 accelerates the degradation rate of PRMT6 mRNA in an m6A-dependent manner, and that the ALKBH5-PRMT6 axis regulates the osteogenesis of MSCs, mainly through activation of the PI3K/AKT pathway. Thus, our work reveals a different facet of the novel ALKBH5-PRMT6 axis that modulates the osteogenic differentiation of MSCs, which can serve as a target to improve the clinical use of MSCs.
Collapse
|
22
|
Marozin S, Simon-Nobbe B, Irausek S, Chung LWK, Lepperdinger G. Kinship of conditionally immortalized cells derived from fetal bone to human bone-derived mesenchymal stroma cells. Sci Rep 2021; 11:10933. [PMID: 34035368 PMCID: PMC8149839 DOI: 10.1038/s41598-021-90161-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
The human fetal osteoblast cell line (hFOB 1.19) has been proposed as an accessible experimental model for study of osteoblast biology relating to drug development and biomaterial engineering. For their multilineage differentiation potential, hFOB has been compared to human mesenchymal progenitor cells and used to investigate bone-metabolism in vitro. Hereby, we studied whether and to what extent the conditionally immortalized cell line hFOB 1.19 can serve as a surrogate model for bone-marrow derived mesenchymal stromal cells (bmMSC). hFOB indeed exhibit specific characteristics reminiscent of bmMSC, as colony formation, migration capacity and the propensity to grow as multicellular aggregates. After prolonged culture, in contrast to the expected effect of immortalization, hFOB acquired a delayed growth rate. In close resemblance to bmMSC at increasing passages, also hFOB showed morphological abnormalities, enlargement and finally reduced proliferation rates together with enhanced expression of the cell cycle inhibitors p21 and p16. hFOB not only have the ability to undergo multilineage differentiation but portray several important aspects of human bone marrow mesenchymal stromal cells. Superior to primary MSC and osteoblasts, hFOB enabled the generation of continuous cell lines. These provide an advanced basis for investigating age-related dysfunctions of MSCs in an in vitro 3D-stem cell microenvironment.
Collapse
Affiliation(s)
- S Marozin
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - B Simon-Nobbe
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - S Irausek
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - L W K Chung
- Cedars-Sinai Medical Center, Dept. of Medicine, 8700 Beverly Blvd b106, Los Angeles, CA, 90048, USA
| | - G Lepperdinger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| |
Collapse
|
23
|
Transcriptomic Changes in Mouse Bone Marrow-Derived Macrophages Exposed to Neuropeptide FF. Genes (Basel) 2021; 12:genes12050705. [PMID: 34065092 PMCID: PMC8151073 DOI: 10.3390/genes12050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that regulates various biological activities. Currently, the regulation of NPFF on the immune system is an emerging field. However, the influence of NPFF on the transcriptome of primary macrophages has not been fully elucidated. In this study, the effect of NPFF on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) was explored by RNA sequencing, bioinformatics, and molecular simulation. BMDMs were treated with 1 nM NPFF for 18 h, followed by RNA sequencing. Differentially expressed genes (DEGs) were obtained, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-validated DEGs were selected as hub genes. Subsequently, the three-dimensional (3-D) structures of the eight hub proteins were constructed by Modeller and Rosetta. Next, the molecular dynamics (MD)-optimized 3-D structure of hub protein was acquired with Gromacs. Finally, the binding modes between NPFF and hub proteins were studied by Rosetta. A total of 2655 DEGs were obtained (up-regulated 1442 vs. down-regulated 1213), and enrichment analysis showed that NPFF extensively regulates multiple functional pathways mediated by BMDMs. Moreover, the 3-D structure of the hub protein was obtained after MD-optimization. Finally, the docking modes of NPFF-hub proteins were predicted. Besides, NPFFR2 was expressed on the cell membrane of BMDMs, and NPFF 1 nM significantly activated NPFFR2 protein expression. In summary, instead of significantly inhibiting the expression of the immune-related gene transcriptome of RAW 264.7 cells, NPFF simultaneously up-regulated and down-regulated the gene expression profile of a large number of BMDMs, hinting that NPFF may profoundly affect a variety of cellular processes dominated by BMDMs. Our work provides transcriptomics clues for exploring the influence of NPFF on the physiological functions of BMDMs.
Collapse
|
24
|
Yuste I, Luciano FC, González-Burgos E, Lalatsa A, Serrano DR. Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 2021; 169:105626. [PMID: 33892092 DOI: 10.1016/j.phrs.2021.105626] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
Understanding the in vitro biology and behavior of human osteoblasts is crucial for developing research models that reproduce closely the bone structure, its functions, and the cell-cell and cell-matrix interactions that occurs in vivo. Mimicking bone microenvironment is challenging, but necessary, to ensure the clinical translation of novel medicines to treat more reliable different bone pathologies. Currently, bone tissue engineering is moving from 2D cell culture models such as traditional culture, sandwich culture, micro-patterning, and altered substrate stiffness, towards more complex 3D models including spheroids, scaffolds, cell sheets, hydrogels, bioreactors, and microfluidics chips. There are many different factors, such cell line type, cell culture media, substrate roughness and stiffness that need consideration when developing in vitro models as they affect significantly the microenvironment and hence, the final outcome of the in vitro assay. Advanced technologies, such as 3D bioprinting and microfluidics, have allowed the development of more complex structures, bridging the gap between in vitro and in vivo models. In this review, past and current 2D and 3D in vitro models for human osteoblasts will be described in detail, highlighting the culture conditions and outcomes achieved, as well as the challenges and limitations of each model, offering a widen perspective on how these models can closely mimic the bone microenvironment and for which applications have shown more successful results.
Collapse
Affiliation(s)
- I Yuste
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - F C Luciano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - E González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - A Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2 DT, UK
| | - D R Serrano
- Pharmaceutics and Food Technology Department, School of Pharmacy, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto Universitario de Farmacia Industrial. Facultad de Farmacia. Universidad Complutense de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Babayevska N, Woźniak-Budych M, Litowczenko J, Peplińska B, Jarek M, Florczak P, Bartkowiak G, Czarnecka B, Jurga S. Novel nanosystems to enhance biological activity of hydroxyapatite against dental caries. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112062. [PMID: 33947556 DOI: 10.1016/j.msec.2021.112062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 01/17/2023]
Abstract
This work aimed to study for the first time to our knowledge the influence of the structure of the dental flosses (DF) coated by hydroxyapatite nanoparticles (HAP NPs) on the biological performance of saliva probiotic bacteria (S. salivarius), and human dermal and osteoblast-like cells. We used three types of HAP@DF composites (based on two unwaxed dental flosses - "fluffy" and "smooth", and one waxed "smooth") with different morphologies. Obtained composites were characterized from the point of view of their structure, morphological characteristics, elemental and chemical composition. We observed that HAP NPs coated "smooth" dental flosses led to an increase of viability and proliferation of oral cavity probiotic bacteria (Streptococcus salivarius) and human cells (dermal fibroblasts and osteoblast-like). In contrast, the highest viability loss of probiotic bacteria (S. salivarius), fibroblasts, and osteoblast-like cells were observed for "fluffy" unwaxed dental flosses due to high cytotoxicity. Our studies showed that HAP NPs significantly improved the biological properties of "fluffy" dental floss. Pristine "smooth" DFs (waxed and unwaxed), as well as all HAP-coated DFs, induced acceptable biocompatibility toward selected human cells.
Collapse
Affiliation(s)
- Nataliya Babayevska
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marta Woźniak-Budych
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Jagoda Litowczenko
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Barbara Peplińska
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Patryk Florczak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Grażyna Bartkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Beata Czarnecka
- Department of Biomaterials and Experimental Dentistry, University of Medical Sciences, ul. Bukowska 70, 60-812 Poznań, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| |
Collapse
|
26
|
Ramírez-Salazar EG, Almeraya EV, López-Perez TV, Patiño N, Salmeron J, Velázquez-Cruz R. MicroRNA-548-3p overexpression inhibits proliferation, migration and invasion in osteoblast-like cells by targeting STAT1 and MAFB. J Biochem 2021; 168:203-211. [PMID: 32196088 DOI: 10.1093/jb/mvaa033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is the most common bone disease and a public health issue with increasing prevalence in Mexico. This disease is caused by an imbalance in the bone remodelling process mediated by osteoclast and osteoblast. MicroRNAs have emerged as key players during the differentiation of both types of cells specialized involved in bone metabolism. We found high expression levels of miR-548x-3p in circulating monocytes derived from postmenopausal osteoporotic women. This study aimed to analyse the functional characterization of miR-548x-3p roles in the bone remodelling process. We validated by RT-qPCR, the elevated levels of miR-548x-3p in circulating monocytes derived from osteoporosis women. Through bioinformatics analysis, we identify MAFB and STAT1 as potential target genes for miR-548x-3p. Both genes showed low levels of expression in circulating monocytes derived from osteoporotic women. In addition, we demonstrated the binding of miR-548x-3p to the 3'-UTR of both mRNAs. MiR-548x-3p was overexpressed in osteoblasts-like cell lines decreasing the levels of MAFB and STAT1 mRNA and protein. We found that miR-548x-3p overexpression inhibits the proliferation, migration and invasion of the cell lines evaluated. Our results identified, by the first time, the potential role of miR-548x-3p as a modulator of the bone remodelling process by regulating the expression of MAFB and STAT1.
Collapse
Affiliation(s)
- Eric G Ramírez-Salazar
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Erika V Almeraya
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Tania V López-Perez
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Nelly Patiño
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - Jorge Salmeron
- Centro de Investigación en Políticas, Población y Salud de la Facultad de Medicina-UNAM, Mexico City 04510, Mexico
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
27
|
Characterization of Properties, In Vitro and In Vivo Evaluation of Calcium Phosphate/Amino Acid Cements for Treatment of Osteochondral Defects. MATERIALS 2021; 14:ma14020436. [PMID: 33477289 PMCID: PMC7830446 DOI: 10.3390/ma14020436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Novel calcium phosphate cements containing a mixture of four amino acids, glycine, proline, hydroxyproline and either lysine or arginine (CAL, CAK) were characterized and used for treatment of artificial osteochondral defects in knee. It was hypothesized that an enhanced concentration of extracellular collagen amino acids (in complex mixture), in connection with bone cement in defect sites, would support the healing of osteochondral defects with successful formation of hyaline cartilage and subchondral bone. Calcium phosphate cement mixtures were prepared by in situ reaction in a planetary ball mill at aseptic conditions and characterized. It was verified that about 30–60% of amino acids remained adsorbed on hydroxyapatite particles in cements and the addition of amino acids caused around 60% reduction in compressive strength and refinement of hydroxyapatite particles in their microstructure. The significant over-expression of osteogenic genes after the culture of osteoblasts was demonstrated in the cement extracts containing lysine and compared with other cements. The cement pastes were inserted into artificial osteochondral defects in the medial femoral condyle of pigs and, after 3 months post-surgery, tissues were analyzed macroscopically, histologically, immunohistochemically using MRI and X-ray methods. Analysis clearly showed the excellent healing process of artificial osteochondral defects in pigs after treatment with CAL and CAK cements without any inflammation, as well as formation of subchondral bone and hyaline cartilage morphologically and structurally identical to the original tissues. Good integration of the hyaline neocartilage with the surrounding tissue, as well as perfect interconnection between the neocartilage and new subchondral bone tissue, was demonstrated. Tissues were stable after 12 months’ healing.
Collapse
|
28
|
Payr S, Rosado-Balmayor E, Tiefenboeck T, Schuseil T, Unger M, Seeliger C, van Griensven M. Direct comparison of 3D and 2D cultivation reveals higher osteogenic capacity of elderly osteoblasts in 3D. J Orthop Surg Res 2021; 16:13. [PMID: 33407623 PMCID: PMC7788858 DOI: 10.1186/s13018-020-02153-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
Background The aim of this study was the investigation of the osteogenic potential of human osteoblasts of advanced donor age in 2D and 3D culture. Methods Osteoblasts were induced to osteogenic differentiation and cultivated, using the same polystyrene material in 2D and 3D culture for 2 weeks. Samples were taken to evaluate alkaline phosphatase (ALP) activity, mineralization and gene expression. Results Osteoprotegerin (OPG) levels were significantly increased (8.2-fold) on day 7 in 3D compared to day 0 (p < 0.0001) and 11.6-fold higher in 3D than in 2D (p < 0.0001). Both culture systems showed reduced osteocalcin (OC) levels (2D 85% and 3D 50% of basic value). Collagen type 1 (Col1) expression was elevated in 3D on day 7 (1.4-fold; p = 0.009). Osteopontin (OP) expression showed 6.5-fold higher levels on day 7 (p = 0.002) in 3D than in 2D. Mineralization was significantly higher in 3D on day 14 (p = 0.0002). Conclusion Advanced donor age human primary osteoblasts reveal significantly higher gene expression levels of OPG, Col1 and OP in 3D than in monolayer. Therefore, it seems that a relatively high potential of bone formation in a natural 3D arrangement is presumably still present in osteoblasts of elderly people. Trial registration 5217/11 on the 22nd of Dec. 2011.
Collapse
Affiliation(s)
- Stephan Payr
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany. .,Department of Orthopedics and Trauma Surgery, Division of Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Elizabeth Rosado-Balmayor
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany.,Department IBE, MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Thomas Tiefenboeck
- Department of Orthopedics and Trauma Surgery, Division of Trauma Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Tim Schuseil
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Marina Unger
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Claudine Seeliger
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany.,Department cBITE, MERLN Institute, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
29
|
Schaeske J, Fadeeva E, Schlie-Wolter S, Deiwick A, Chichkov BN, Ingendoh-Tsakmakidis A, Stiesch M, Winkel A. Cell Type-Specific Adhesion and Migration on Laser-Structured Opaque Surfaces. Int J Mol Sci 2020; 21:ijms21228442. [PMID: 33182746 PMCID: PMC7696563 DOI: 10.3390/ijms21228442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cytocompatibility is essential for implant approval. However, initial in vitro screenings mainly include the quantity of adherent immortalized cells and cytotoxicity. Other vital parameters, such as cell migration and an in-depth understanding of the interaction between native tissue cells and implant surfaces, are rarely considered. We investigated different laser-fabricated spike structures using primary and immortalized cell lines of fibroblasts and osteoblasts and included quantification of the cell area, aspect ratio, and focal adhesions. Furthermore, we examined the three-dimensional cell interactions with spike topographies and developed a tailored migration assay for long-term monitoring on opaque materials. While fibroblasts and osteoblasts on small spikes retained their normal morphology, cells on medium and large spikes sank into the structures, affecting the composition of the cytoskeleton and thereby changing cell shape. Up to 14 days, migration appeared stronger on small spikes, probably as a consequence of adequate focal adhesion formation and an intact cytoskeleton, whereas human primary cells revealed differences in comparison to immortalized cell lines. The use of primary cells, analysis of the cell-implant structure interaction as well as cell migration might strengthen the evaluation of cytocompatibility and thereby improve the validity regarding the putative in vivo performance of implant material.
Collapse
Affiliation(s)
- Jörn Schaeske
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
| | - Elena Fadeeva
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Sabrina Schlie-Wolter
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Andrea Deiwick
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Boris N. Chichkov
- Institute of Quantum Optics, Leibniz University of Hannover, Welfengarten 1, 30167 Hannover, Germany; (E.F.); (S.S.-W.); (A.D.); (B.N.C.)
| | - Alexandra Ingendoh-Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; (J.S.); (A.I.-T.); (M.S.)
- Correspondence:
| |
Collapse
|
30
|
Medvecky L, Štulajterová R, Giretova M, Luptakova L, Sopčák T. Injectable Enzymatically Hardened Calcium Phosphate Biocement. J Funct Biomater 2020; 11:jfb11040074. [PMID: 33053846 PMCID: PMC7711669 DOI: 10.3390/jfb11040074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The preparation and characterization of novel fully injectable enzymatically hardened tetracalcium phosphate/monetite cements (CXI cements) using phytic acid/phytase (PHYT/F3P) hardening liquid with a small addition of polyacrylic acid/carboxymethyl cellulose anionic polyelectrolyte (PAA/CMC) and enhanced bioactivity. (2) Methods: Composite cements were prepared by mixing of calcium phosphate powder mixture with hardening liquid containing anionic polyelectrolyte. Phase and microstructural analysis, compressive strength, release of ions and in vitro testing were used for the evaluation of cement properties. (3) Results: The simple possibility to control the setting time of self-setting CXI cements was shown (7–28 min) by the change in P/L ratio or PHYT/F3P reaction time. The wet compressive strength of cements (up to 15 MPa) was close to cancellous bone. The increase in PAA content to 1 wt% caused refinement and change in the morphology of hydroxyapatite particles. Cement pastes had a high resistance to wash-out in a short time after cement mixing. The noncytotoxic character of CX cement extracts was verified. Moreover, PHYT supported the formation of Ca deposits, and the additional synergistic effect of PAA and CMC on enhanced ALP activity was found, along with the strong up-regulation of osteogenic gene expressions for osteopontin, osteocalcin and IGF1 growth factor evaluated by the RT-qPCR analysis in osteogenic αMEM 50% CXI extracts. (4) Conclusions: The fully injectable composite calcium phosphate bicements with anionic polyelectrolyte addition showed good mechanical and physico-chemical properties and enhanced osteogenic bioactivity which is a promising assumption for their application in bone defect regeneration.
Collapse
Affiliation(s)
- Lubomir Medvecky
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
- Correspondence:
| | - Radoslava Štulajterová
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| | - Maria Giretova
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| | - Lenka Luptakova
- Institute of Biology, Zoology and Radiology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Tibor Sopčák
- Institute of Materials Research of SAS, Watsonova 47, 04001 Kosice, Slovakia; (R.Š.); (M.G.); (T.S.)
| |
Collapse
|
31
|
Radhakrishnan S, Nagarajan S, Belaid H, Farha C, Iatsunskyi I, Coy E, Soussan L, Huon V, Bares J, Belkacemi K, Teyssier C, Balme S, Miele P, Cornu D, Kalkura N, Cavaillès V, Bechelany M. Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111525. [PMID: 33255078 DOI: 10.1016/j.msec.2020.111525] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/25/2020] [Accepted: 09/12/2020] [Indexed: 01/11/2023]
Abstract
Synthetic polymers are widely employed for bone tissue engineering due to their tunable physical properties and biocompatibility. Inherently, most of these polymers display poor antimicrobial properties. Infection at the site of implantation is a major cause for failure or delay in bone healing process and the development of antimicrobial polymers is highly desired. In this study, silver nanoparticles (AgNps) were synthesized in polycaprolactone (PCL) solution by in-situ reduction and further extruded into PCL/AgNps filaments. Customized 3D structures were fabricated using the PCL/AgNps filaments through 3D printing technique. As demonstrated by scanning electron microscopy, the 3D printed scaffolds exhibited interconnected porous structures. Furthermore, X-ray photoelectron spectroscopy analysis revealed the reduction of silver ions. Transmission electron microscopy along with energy-dispersive X-ray spectroscopy analysis confirmed the formation of silver nanoparticles throughout the PCL matrix. In vitro enzymatic degradation studies showed that the PCL/AgNps scaffolds displayed 80% degradation in 20 days. The scaffolds were cytocompatible, as assessed using hFOB cells and their antibacterial activity was demonstrated on Escherichia coli. Due to their interconnected porous structure, mechanical and antibacterial properties, these cytocompatible multifunctional 3D printed PCL/AgNps scaffolds appear highly suitable for bone tissue engineering.
Collapse
Affiliation(s)
- Socrates Radhakrishnan
- Crystal Growth Centre, Anna University, Chennai 600025, India; Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sakthivel Nagarajan
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Habib Belaid
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France; IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Cynthia Farha
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3 Wszechnicy Piastowskiej str., 61-614 Poznan, Poland
| | - Laurence Soussan
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Vincent Huon
- LMGC, Laboratoire de Mécanique et Génie Civil, Université Montpellier, CNRS, Montpellier, France
| | - Jonathan Bares
- LMGC, Laboratoire de Mécanique et Génie Civil, Université Montpellier, CNRS, Montpellier, France
| | - Kawthar Belkacemi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Catherine Teyssier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Sébastien Balme
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philippe Miele
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), 1 rue Descartes, Paris F-73231, France
| | - David Cornu
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université Montpellier, Montpellier F-34298, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
32
|
Sanjurjo-Rodríguez C, Castro-Viñuelas R, Piñeiro-Ramil M, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco FJ, Díaz-Prado S. Versatility of Induced Pluripotent Stem Cells (iPSCs) for Improving the Knowledge on Musculoskeletal Diseases. Int J Mol Sci 2020; 21:ijms21176124. [PMID: 32854405 PMCID: PMC7504376 DOI: 10.3390/ijms21176124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an unlimited source of pluripotent cells capable of differentiating into any cell type of the body. Several studies have demonstrated the valuable use of iPSCs as a tool for studying the molecular and cellular mechanisms underlying disorders affecting bone, cartilage and muscle, as well as their potential for tissue repair. Musculoskeletal diseases are one of the major causes of disability worldwide and impose an important socio-economic burden. To date there is neither cure nor proven approach for effectively treating most of these conditions and therefore new strategies involving the use of cells have been increasingly investigated in the recent years. Nevertheless, some limitations related to the safety and differentiation protocols among others remain, which humpers the translational application of these strategies. Nonetheless, the potential is indisputable and iPSCs are likely to be a source of different types of cells useful in the musculoskeletal field, for either disease modeling or regenerative medicine. In this review, we aim to illustrate the great potential of iPSCs by summarizing and discussing the in vitro tissue regeneration preclinical studies that have been carried out in the musculoskeletal field by using iPSCs.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodríguez
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| | - Rocío Castro-Viñuelas
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - María Piñeiro-Ramil
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Silvia Rodríguez-Fernández
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Isaac Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
| | - Francisco J. Blanco
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Tissular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology Group, 15006 A Coruña, Galicia, Spain
| | - Silvia Díaz-Prado
- Cell Therapy and Regenerative Medicine Group, Department of Physiotherapy, Medicine and Biomedical Sciences, Faculty of Health Sciences, University of A Coruña (UDC), 15006 A Coruña, Galicia, Spain; (R.C.-V.); (M.P.-R.); (S.R.-F.); (I.F.-B.)
- Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), 15006 A Coruña, Galicia, Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Centro de Investigaciones Científicas Avanzadas (CICA), Agrupación estratégica CICA-INIBIC, University of A Coruña, 15008 A Coruña, Galicia, Spain
- Correspondence: (C.S.-R.); (S.D.-P.)
| |
Collapse
|
33
|
Chen WX, Liu HH, Li RX, Mammadov G, Wang JJ, Liu FF, Samadli S, Wu YF, Zhang DD, Luo HH, Hu P. C-type natriuretic peptide stimulates osteoblastic proliferation and collagen-X expression but suppresses fibroblast growth factor-23 expression in vitro. Pediatr Rheumatol Online J 2020; 18:46. [PMID: 32517762 PMCID: PMC7285564 DOI: 10.1186/s12969-020-00441-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effects of C-type natriuretic peptide (CNP) and fibroblast growth factor (FGF)-23 appear to oppose each other during the process of bone formation, whereas few studies exist on the interaction between CNP and FGF-23. The main objective of the present study is to probe whether CNP is directly responsible for the regulation of osteoblast or via antagonizing FGF-23. METHODS Osteoblasts were cultured in the absence or presence of CNP (0, 10, and 100 pmol/L) for 24 h, 48 h and 72 h, respectively. RESULTS The findings of the present study indicated that: (1) CNP significantly stimulated osteoblastic proliferation and collagen (Col)-X expression; (2) both osteoblastic (osteocalcin, procollagen type I carboxy-terminal propeptide, total alkaline phosphatase and bone-specific alkaline phosphatase) and osteolytic (tartrate-resistant acid phosphatase and cross-linked carboxyterminal telopeptide of type I collagen) bone turnover biomarkers were up-regulated by CNP in osteoblasts; (3) FGF-23 mRNA and protein were significantly down-regulated at 24 h by CNP in osteoblasts, but the expression of FGF receptor-1/Klotho had no significant change. CONCLUSIONS CNP stimulates osteoblastic proliferation and Col-X expression via the down-regulation of FGF-23 possibly in vitro. However, the specific mechanisms of the interaction between CNP and FGF-23 in osteoblasts are still unclear according to our findings. A further study on osteoblasts cultured with CNP and FGF-23 inhibitor will be undertaken in our laboratory.
Collapse
Affiliation(s)
- Wei Xia Chen
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Hui Hui Liu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Rui Xue Li
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Goshgar Mammadov
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Jing Jing Wang
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Fei Fei Liu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Sama Samadli
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Yang Fang Wu
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Dong Dong Zhang
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Huang Huang Luo
- grid.412679.f0000 0004 1771 3402Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province 230032 PR China
| | - Peng Hu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, Hefei, Anhui Province, 230032, PR China.
| |
Collapse
|
34
|
Yuh DY, Maekawa T, Li X, Kajikawa T, Bdeir K, Chavakis T, Hajishengallis G. The secreted protein DEL-1 activates a β3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration. J Biol Chem 2020; 295:7261-7273. [PMID: 32280065 PMCID: PMC7247308 DOI: 10.1074/jbc.ra120.013024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The integrin-binding secreted protein developmental endothelial locus-1 (DEL-1) is involved in the regulation of both the initiation and resolution of inflammation in different diseases, including periodontitis, an oral disorder characterized by inflammatory bone loss. Here, using a mouse model of bone regeneration and in vitro cell-based mechanistic studies, we investigated whether and how DEL-1 can promote alveolar bone regeneration during resolution of experimental periodontitis. Compared with WT mice, mice lacking DEL-1 or expressing a DEL-1 variant with an Asp-to-Glu substitution in the RGD motif ("RGE point mutant"), which does not interact with RGD-dependent integrins, exhibited defective bone regeneration. Local administration of DEL-1 or of its N-terminal segment containing the integrin-binding RGD motif, but not of the RGE point mutant, reversed the defective bone regeneration in the DEL-1-deficient mice. Moreover, DEL-1 (but not the RGE point mutant) promoted osteogenic differentiation of MC3T3-E1 osteoprogenitor cells or of primary calvarial osteoblastic cells in a β3 integrin-dependent manner. The ability of DEL-1 to promote in vitro osteogenesis, indicated by induction of osteogenic genes such as the master transcription factor Runt-related transcription factor-2 (Runx2) and by mineralized nodule formation, depended on its capacity to induce the phosphorylation of focal adhesion kinase (FAK) and of extracellular signal-regulated kinase 1/2 (ERK1/2). We conclude that DEL-1 can activate a β3 integrin-FAK-ERK1/2-RUNX2 pathway in osteoprogenitors and promote new bone formation in mice. These findings suggest that DEL-1 may be therapeutically exploited to restore bone lost due to periodontitis and perhaps other osteolytic conditions.
Collapse
Affiliation(s)
- Da-Yo Yuh
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tomoki Maekawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Research Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tetsuhiro Kajikawa
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, 001069 Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
35
|
Centofanti F, Santoro M, Marini M, Visconti VV, Rinaldi AM, Celi M, D’Arcangelo G, Novelli G, Orlandi A, Tancredi V, Tarantino U, Botta A. Identification of Aberrantly-Expressed Long Non-Coding RNAs in Osteoblastic Cells from Osteoporotic Patients. Biomedicines 2020; 8:E65. [PMID: 32204466 PMCID: PMC7148473 DOI: 10.3390/biomedicines8030065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis (OP) is a multifactorial disease influenced by genetic, epigenetic, and environmental factors. One of the main causes of the bone homeostasis alteration is inflammation resulting in excessive bone resorption. Long non-coding RNAs (lncRNAs), have a crucial role in regulating many important biological processes in bone, including inflammation. We designed our study to identify lncRNAs misregulated in osteoblast primary cultures derived from OP patients (n = 4), and controls (CTRs, n = 4) with the aim of predicting possible RNA and/or protein targets implicated in this multifactorial disease. We focused on 84 lncRNAs regulating the expression of pro-inflammatory and anti-inflammatory genes and miRNAs. In silico analysis was utilized to predict the interaction of lncRNAs with miRNAs, mRNAs, and proteins targets. Six lncRNAs were significantly down-regulated in OP patients compared to controls: CEP83-AS1, RP11-84C13.1, CTC-487M23.5, GAS5, NCBP2-AS2, and SDCBP2-AS1. Bioinformatic analyses identified HDCA2, PTX3, and FGF2 proteins as downstream targets of CTC-487M23.5, GAS5, and RP11-84C13.1 lncRNAs mediated by the interaction with miRNAs implicated in OP pathogenesis, including miR-21-5p. Altogether, these data open a new regulatory mechanism of gene expression in bone homeostasis and could direct the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Federica Centofanti
- Department of Biomedicine and Prevention, Anatomic Pathology Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.O.)
| | | | - Mario Marini
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
| | - Anna Maria Rinaldi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Monica Celi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata”, 00133 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
- IRCCS Neuromed, Unit of Medical Genetics, Via Atinense 18, 86077 Pozzilli, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.C.); (A.O.)
| | - Virginia Tancredi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.M.); (A.M.R.); (G.D.); (V.T.)
- Center of Space Biomedicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata”, 00133 Rome, Italy;
- Department of Orthopedics and Traumatology, PTV Foundation, 00133 Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome “Tor Vergata”, 00133 Rome, Italy; (V.V.V.); (G.N.)
| |
Collapse
|
36
|
Guo D, He H, Zhao M, Zhang G, Hou T. Desalted duck egg white peptides promoted osteogenesis via wnt/β-catenin signal pathway. J Food Sci 2020; 85:834-842. [PMID: 32078745 DOI: 10.1111/1750-3841.15067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/07/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Osteoporosis is a degenerative disease that threatens bone health of the elderly (especially postmenopausal women). Since osteoporosis is important to prevent, the aim of this study was to investigate the regulation of desalted duck egg white peptides (DPs) on osteoporosis. In this study, the effects of DPs on bone formation were evaluated using MC3T3-E1 cells and ovariectomized (OVX) rats. DPs significantly enhanced the preosteoblasts proliferation, differentiation, and matrix mineralization via the upregulation of wnt3a expression, low-density lipoprotein receptor-related protein-5 (LRP-5), β-catenin, runt-related transcription factor 2 (Runx2), and osteoprotegerin (OPG) (P < 0.05). The intracellular calcium concentration was significantly elevated by DPs (P < 0.05), which is attributed to calcium influx and L-type calcium channels. Additionally, OVX rat model experiment indicated that DPs (600 mg/kg bw) had a superior effect against bone loss induced by estrogen deficiency, as it significantly declined bone turnover markers, and significantly increased biomechanical parameters (P < 0.05). Mineralized bone surfaces and bone microstructure were also obviously improved by DPs treatment. Immunohistochemical analysis showed that receptor activator of nuclear factor κ B (RANK) expression of tibia in DPs group was significantly reduced compared with the model group (P < 0.05). Our results demonstrated that DPs could enhance preosteoblasts differentiation and antiosteoporosis via wnt/β-catenin signal pathway and several key osteogenic transcription factors such as Runx2 and OPG. PRACTICAL APPLICATION: High-value utilization of salted duck egg white, a byproduct of food industry, is worthy of in-depth study. Desalted duck egg white peptides (DPs) were proved to promote bone formation, which suggests the potentials of DPs as cofactors in osteoporosis prevention.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Mengge Zhao
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Guoqing Zhang
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural Univ., Wuhan, 430070, China.,Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural Univ.), Ministry of Education, Wuhan, 43000, China
| |
Collapse
|
37
|
Boughammoura S, Ben Mimouna S, Chemek M, Ostertag A, Cohen-Solal M, Messaoudi I. Disruption of Bone Zinc Metabolism during Postnatal Development of Rats after Early Life Exposure to Cadmium. Int J Mol Sci 2020; 21:ijms21041218. [PMID: 32059372 PMCID: PMC7072778 DOI: 10.3390/ijms21041218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 11/16/2022] Open
Abstract
This current study was conducted to investigate whether bone tissue impairment induced by early life exposure to cadmium (Cd) during postnatal development could result from disruption to zinc (Zn) metabolism. For this reason, the offspring from mothers receiving either tap water, Cd, Zn or Cd + Zn during gestation and lactation periods were euthanized at PND21 and PND70. At the end of the lactation period (PND21), our results showed that exposure to Cd increased Cd accumulation and Zn depletion in the femur. Furthermore, calcium (Ca) level was reduced. At the molecular level, Cd induced an increase of MT-1 expression and caused an upregulation of ZIP2 accompanied with a down-regulation of ZnT5. Runx2, ALP, colα-1 and Oc mRNA levels were also decreased. In plasma, IGF-1 and osteocalcin concentrations were decreased. Further, Cd altered femoral growth by generating changes in the growth plate. Consequently, the toxic effect of Cd persisted at adult age (PND70) by decreasing bone volume (%BV/TV), bone mineral density (BMD) and Ca content and by increasing trabecular separation (Tb.Sp) in the distal femur. Interestingly, Zn supply provided total or partial corrections of several toxic effects of Cd. These data suggest that the increases of Zn bioavailability as well as the reduction of Cd accumulation in the femur following the changes in ZIP2 and ZnT5 expression are part of the mechanism involved in Zn protection against Cd toxicity on bone tissue.
Collapse
Affiliation(s)
- Sana Boughammoura
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
- Correspondence: ; Tel.: +21673465405; Fax: +21673465404
| | - Safa Ben Mimouna
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
| | - Marouen Chemek
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
| | - Agnes Ostertag
- Bioscar Inserm U1132 and université de Paris, hôpital Lariboisière, 75010 Paris, France; (A.O.); (M.C.-S.)
| | - Martine Cohen-Solal
- Bioscar Inserm U1132 and université de Paris, hôpital Lariboisière, 75010 Paris, France; (A.O.); (M.C.-S.)
| | - Imed Messaoudi
- LR11ES41: Laboratoire de Recherche Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (S.B.M.); (M.C.); (I.M.)
| |
Collapse
|
38
|
Liu Y, Yang S, Cao L, Zhang X, Wang J, Liu C. Facilitated vascularization and enhanced bone regeneration by manipulation hierarchical pore structure of scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110622. [PMID: 32204064 DOI: 10.1016/j.msec.2019.110622] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/31/2022]
Abstract
Sufficient vascularization is quite important for preventing cell death and promoting host integration during the repair of the critical sized bone defects. Porous structure providing enough space for the ingrowth of vessels is an essential consideration during the scaffold's development. In this study, we designed and fabricated three kinds of porous structured scaffolds based on poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), such as mono-structured PHBHHx scaffolds with macro pores (PH-1), di-structured PHBHHx scaffolds with macro-meso pores (PHS-2), and tri-structured PHBHHx scaffolds with macro-micro-meso pores (PHS-3), respectively. In vitro effects of the hierarchical porous scaffolds on human umbilical vein endothelial cells (HUVECs), such as cell attachment, glucose and lactate detection, relative gene expressions of endothelial markers were investigated. The PHS-3 scaffolds exhibited preferential potency of inducing better angiogenesis in vitro. Consequently, the hierarchical porous scaffolds were applied to load rhBMP-2 and repair the critical sized bone defect (15 mm) in rabbits. Microangiography analysis by three dimensional micro-computed tomographic (micro-CT) demonstrated that the volume of blood vessels within the defect area was higher in the rhBMP-2 loaded PHS-3 (PHS-3/rhBMP-2) than that in other rhBMP-2 loaded porous scaffolds with simplex or double scaled pores (PH-1/rhBMP-2 or PHS-2/rhBMP-2) at 4 weeks and 8 weeks, which implied that multi-level porous structure was conducive to nutrition transmission and revascularization. Further investigations of orthotopic bone formation by micro-CT, histological and immunohistochemistry analysis confirmed the most accelerated new bone formation rate in the PHS-3/rhBMP-2 group. The maximum load value of the regenerated bone induced by PHS-3/rhBMP-2 at 12 weeks was 258.47 ± 14.77 N which did not show significant difference from the normal bone of 268.81 ± 12.05 N. These results highlighted that introducing multi-level pores into the biocompatible scaffolds may be an effective approach to promote angiogenesis and bone regeneration.
Collapse
Affiliation(s)
- Yang Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China
| | - Lingyan Cao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, People's Republic of China
| | - Xiaohui Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Changsheng Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
39
|
Yan DY, Tang J, Chen L, Wang B, Weng S, Xie Z, Wu ZY, Shen Z, Bai B, Yang L. Imperatorin promotes osteogenesis and suppresses osteoclast by activating AKT/GSK3 β/β-catenin pathways. J Cell Mol Med 2019; 24:2330-2341. [PMID: 31883297 PMCID: PMC7011130 DOI: 10.1111/jcmm.14915] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/26/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is caused by disturbance in the dynamic balance of bone remodelling, a physiological process, vital for maintenance of healthy bone tissue in adult humans. In this process, a new bone is formed by osteoblasts and the pre‐existing bone matrix is resorbed by osteoclasts. Imperatorin, a widely available and inexpensive plant extract with antioxidative and apoptotic effects, is reported to treat osteoporosis. However, the underlying mechanism and specific effects on bone metabolism have not been elucidated. In this study, we used rat bone marrow‐derived mesenchymal stem cells and found that imperatorin can activate RUNX2, COL1A1 and osteocalcin by promoting the Ser9 phosphorylation of GSK3β and entry of β‐catenin into the nucleus. Imperatorin also enhanced the production of phospho‐AKT (Ser473), an upstream factor that promotes the Ser9 phosphorylation of GSK3β. We used ipatasertib, a pan‐AKT inhibitor, to inhibit the osteogenic effect of imperatorin, and found that imperatorin promotes osteogenesis via AKT/GSK3β/β‐catenin pathway. Next, we used rat bone marrow‐derived monocytes, to check whether imperatorin inhibits osteoclast differentiation via AKT/GSK3β/β‐catenin pathway. Further, we removed the bilateral ovaries of rats to establish an osteoporotic model. Intragastric administration of imperatorin promoted osteogenesis and inhibited osteoclast in vivo. Our experiments showed that imperatorin is a potential drug for osteoporosis treatment.
Collapse
Affiliation(s)
- De-Yi Yan
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahao Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingzhang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sheji Weng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongjie Xie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zong-Yi Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijian Shen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingli Bai
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Yang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
41
|
Montalbano G, Borciani G, Pontremoli C, Ciapetti G, Mattioli-Belmonte M, Fiorilli S, Vitale-Brovarone C. Development and Biocompatibility of Collagen-Based Composites Enriched with Nanoparticles of Strontium Containing Mesoporous Glass. MATERIALS 2019; 12:ma12223719. [PMID: 31717980 PMCID: PMC6888293 DOI: 10.3390/ma12223719] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 01/23/2023]
Abstract
In the last years bone tissue engineering has been increasingly indicated as a valid solution to meet the challenging requirements for a healthy bone regeneration in case of bone loss or fracture. In such a context, bioactive glasses have already proved their great potential in promoting the regeneration of new bone tissue due to their high bioactivity. In addition, their composition and structure enable us to incorporate and subsequently release therapeutic ions such as strontium, enhancing the osteogenic properties of the material. The incorporation of these inorganic systems in polymeric matrices enables the formulation of composite systems suitable for the design of bone scaffolds or delivery platforms. Among the natural polymers, type I collagen represents the main organic phase of bone and thus is a good candidate to develop biomimetic bioactive systems for bone tissue regeneration. However, alongside the specific composition and structure, the key factor in the design of new biosystems is creating a suitable interaction with cells and the host tissue. In this scenario, the presented study aimed at combining nano-sized mesoporous bioactive glasses produced by means of a sol–gel route with type I collagen in order to develop a bioactive hybrid formulation suitable for bone tissue engineering applications. The designed system has been fully characterized in terms of physico-chemical and morphological analyses and the ability to release Sr2+ ions has been studied observing a more sustained profile in presence of the collagenous matrix. With the aim to improve the mechanical and thermal stability of the resulting hybrid system, a chemical crosslinking approach using 4-star poly (ethylene glycol) ether tetrasuccinimidyl glutarate (4-StarPEG) has been explored. The biocompatibility of both non-crosslinked and 4-StarPEG crosslinked systems was evaluated by in vitro tests with human osteoblast-like MG-63 cells. Collected results confirmed the high biocompatibility of composites, showing a good viability and adhesion of cells when cultured onto the biomaterial samples.
Collapse
Affiliation(s)
- Giorgia Montalbano
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
| | - Giorgia Borciani
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Carlotta Pontremoli
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
| | - Gabriela Ciapetti
- Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Mattioli-Belmonte
- Dipartimento di Scienze Cliniche e Molecolari, DISCLIMO, Università Politecnica delle Marche, 60100 Ancona, Italy;
| | - Sonia Fiorilli
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
| | - Chiara Vitale-Brovarone
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.M.); (G.B.); (C.P.); (S.F.)
- Correspondence: ; Tel.: +39-0110-904-716
| |
Collapse
|
42
|
Huang B, Vyas C, Byun JJ, El-Newehy M, Huang Z, Bártolo P. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110374. [PMID: 31924043 DOI: 10.1016/j.msec.2019.110374] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/11/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
The development of highly biomimetic scaffolds in terms of composition and structures, to repair or replace damaged bone tissues, is particularly relevant for tissue engineering. This paper investigates a 3D printed porous scaffold containing aligned multi-walled carbon nanotubes (MWCNTs) and nano-hydroxyapatite (nHA), mimicking the natural bone tissue from the nanoscale to macroscale level. MWCNTs with similar dimensions as collagen fibres are coupled with nHA and mixed within a polycaprolactone (PCL) matrix to produce scaffolds using a screw-assisted extrusion-based additive manufacturing system. Scaffolds with different material compositions were extensively characterised from morphological, mechanical and biological points of views. Transmission electron microscopy and polarised Raman spectroscopy confirm the presence of aligned MWCNTs within the printed filaments. The PCL/HA/MWCNTs scaffold are similar to the nanostructure of native bone and shows overall increased mechanical properties, cell proliferation, osteogenic differentiation and scaffold mineralisation, indicating a promising approach for bone tissue regeneration.
Collapse
Affiliation(s)
- Boyang Huang
- School of Mechanical, Aerospace and Civil Engineering, M13 9PL, University of Manchester, Manchester, UK
| | - Cian Vyas
- School of Mechanical, Aerospace and Civil Engineering, M13 9PL, University of Manchester, Manchester, UK
| | - Jae Jong Byun
- School of Materials, The University of Manchester, Manchester, M13 9PL, UK
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, Riyad, 11451, Saudi Arabia
| | - Zhucheng Huang
- Department of Mineral Engineering, Central South University, Changsha, 410083, PR China.
| | - Paulo Bártolo
- School of Mechanical, Aerospace and Civil Engineering, M13 9PL, University of Manchester, Manchester, UK.
| |
Collapse
|
43
|
Kihara T, Umezu C, Sawada K, Furutani Y. Osteogenic cells form mineralized particles, a few μm in size, in a 3D collagen gel culture. PeerJ 2019; 7:e7889. [PMID: 31660270 PMCID: PMC6815190 DOI: 10.7717/peerj.7889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/13/2019] [Indexed: 02/03/2023] Open
Abstract
Osteogenic cells form mineralized matrices in vitro, as well as in vivo. The formation and shape of the mineralized matrices are highly regulated by the cells. In vitro formation of mineralized matrices by osteogenic cells can be a model for in vivo osteogenesis. In this study, using a three-dimensional (3D) collagen gel culture system, we developed a new in vitro model for the formation of mineralized particles, a few µm in size, by the osteogenic cells. Human osteosarcoma (HOS) cells formed spherical mineralized matrices (about 12 µm) at approximately 7 days when cultured with β-glycerophosphate (β-GP)-containing culture media on 2D tissue culture plates. Alternately, when they were cultured in a 3D collagen gel containing β-GP, they formed mineralized particles with about 1.7 µm in the gel at approximately 3 days. Calcium precipitation in the gel was evaluated by measuring the gel turbidity. This type of mineralization of HOS cells, which formed mineralized particles inside the gel, was also observed in a peptide-based hydrogel culture. The mineralized particles were completely diminished by inhibiting the activity of Pit-1, phosphate cotransporter, of the HOS cells. When mouse osteoblast-like MC3T3-E1 cells, which form large and flat mineralized matrices in 2D osteogenic conditions at approximately 3 weeks of culture, were cultured in a 3D collagen gel, they also formed mineralized particles in the gel, similar to those in HOS cells, at approximately 18 days. Thus, osteogenic cells cultured in the 3D collagen gel form mineralized particles over a shorter period, and the mineralization could be easily determined by gel turbidity. This 3D gel culture system of osteogenic cells acts as a useful model for cells forming particle-type mineralized matrices, and we assume that the mineralized particles in the 3D hydrogel are calcospherulites, which are derived from matrix vesicles secreted by osteogenic cells.
Collapse
Affiliation(s)
- Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Chiya Umezu
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Karin Sawada
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| | - Yukari Furutani
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
44
|
Impact of Serum Source on Human Mesenchymal Stem Cell Osteogenic Differentiation in Culture. Int J Mol Sci 2019; 20:ijms20205051. [PMID: 31614651 PMCID: PMC6834181 DOI: 10.3390/ijms20205051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/05/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) show promise for musculoskeletal repair applications. Animal-derived serum is extensively used for MSC culture as a source of nutrients, extracellular matrix proteins and growth factors. However, the routine use of fetal calf serum (FCS) is not innocuous due to its animal antigens and ill-defined composition, driving the development of alternatives protocols. The present study sought to reduce exposure to FCS via the transient use of human serum. Transient exposure to animal serum had previously proved successful for the osteogenic differentiation of MSCs but had not yet been tested with alternative serum sources. Here, human serum was used to support the proliferation of MSCs, which retained surface marker expression and presented higher alkaline phosphatase activity than those in FCS-based medium. Addition of osteogenic supplements supported strong mineralisation over a 3-week treatment. When limiting serum exposure to the first five days of treatment, MSCs achieved higher differentiation with human serum than with FCS. Finally, human serum analysis revealed significantly higher levels of osteogenic components such as alkaline phosphatase and 25-Hydroxyvitamin D, consistent with the enhanced osteogenic effect. These results indicate that human serum used at the start of the culture offers an efficient replacement for continuous FCS treatment and could enable short-term exposure to patient-derived serum in the future.
Collapse
|
45
|
Zawisza K, Sobierajska P, Nowak N, Kedziora A, Korzekwa K, Pozniak B, Tikhomirov M, Miller J, Mrowczynska L, Wiglusz RJ. Preparation and preliminary evaluation of bio-nanocomposites based on hydroxyapatites with antibacterial properties against anaerobic bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110295. [PMID: 31753350 DOI: 10.1016/j.msec.2019.110295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Hexagonal nanocrystalline powders of the non-doped Ca10(PO4)6(OH)2 as well as activated with Ag+ and Eu3+ ions were synthesized by using different wet chemistry methods. Moreover, the obtained hydroxyapatite was loaded with Ag0, as well as nitroimidazole antimicrobials: metronidazole and tinidazole. The structural properties of the products were analyzed by X-ray diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy as well as infrared (IR) and Raman spectroscopy. The photoluminescence properties of the Eu3+ and Ag+ co-doped Ca10(PO4)6(OH)2 were characterized via the PL emission, excitation spectra and the luminescence decay curve. The antimicrobial activity of the obtained materials against Prevotella bivia and Parabacteroides distasonis was studied. The cytotoxicity assessment was carried out on the human osteosarcoma cell line (U2OS) as well as human red blood cells (RBC). The choice of the in vitro model was based on the fact that U2OS is a cancer cell line derived from bone tissue which is rich in apatites that play a pivotal role in the extracellular matrix formation. RBCs are the most abundant blood cells and they are used as a cell model in the study of biocompatibility of new prepared biocompounds with potential medical applications. The obtained multifunctional materials do not exhibit the haemolytic activity, therefore, they could be used as a promising antimicrobial agent and for anaerobic bacteria.
Collapse
Affiliation(s)
- Katarzyna Zawisza
- Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, PL-50-422, Wroclaw, Poland
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, PL-50-422, Wroclaw, Poland
| | - Nicole Nowak
- Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, PL-50-422, Wroclaw, Poland
| | - Anna Kedziora
- Institute of Genetics and Microbiology, Wroclaw University, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| | - Kamila Korzekwa
- Institute of Genetics and Microbiology, Wroclaw University, Przybyszewskiego 63, 51-148, Wroclaw, Poland
| | - Blazej Pozniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375, Wroclaw, Poland
| | - Marta Tikhomirov
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375, Wroclaw, Poland
| | - Julia Miller
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C. K. Norwida 31, 50-375, Wroclaw, Poland
| | - Lucyna Mrowczynska
- Adam Mickiewicz University, Faculty of Biology, Department of Cell Biology, Umultowska 89, 61-614, Poznan, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, PAS, ul. Okolna 2, PL-50-422, Wroclaw, Poland.
| |
Collapse
|
46
|
Tang KC, Pan W, Doschak MR, Alexander RT. Increased FoxO3a expression prevents osteoblast differentiation and matrix calcification. Bone Rep 2019; 10:100206. [PMID: 31193232 PMCID: PMC6522754 DOI: 10.1016/j.bonr.2019.100206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 10/28/2022] Open
Abstract
Forkhead Box O transcription factors play important roles in bone metabolism by defending against oxidative stress and apoptosis. FoxO3a is of special interest as it is the predominant isoform expressed in bone. In osteoblasts, the administration of 1,25 dihydroxyvitamin D3 (1,25D3) increases FoxO3a expression, and alters calcium handling. We therefore queried whether FoxO3a participates in vitamin D-mediated regulation of calcium transport pathways or matrix calcification, independent of reactive oxygen species (ROS) formation. To examine this possibility, we differentiated MC3T3-E1 cells into mature osteoblast-like cells over 7 days. This coincided with an increased ability to mineralize extracellular matrix. FoxO3a expression increased throughout differentiation. 1,25D3 enhanced both FoxO3a mRNA and protein expression. Immunofluorescence microscopy found increased FoxO3a nuclear localization with differentiation and after treatment with 1,25D3. Live cell ratiometric imaging with Fura-2AM identified significant L-type calcium channel mediated calcium uptake that was enhanced by 1,25D3. We observed expression of both Cav1.2 and Cav1.3, although expression decreased throughout differentiation and was not altered by 1,25D3 treatment. FoxO3a overexpression reduced calcium uptake and calcium deposition. FoxO3a overexpression also prevented alterations in calcium channel expression and the cell differentiation associated decrease in expression of Runx2 and increased expression of osteocalcin, findings consistent with a failure for the cells to differentiate. Based on both our expression and functional data, we suggest that high levels of FoxO3a prevent osteoblast differentiation and matrix calcification.
Collapse
Affiliation(s)
- Kathy C Tang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Wanling Pan
- Department of Physiology, The University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Michael R Doschak
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - R Todd Alexander
- Department of Physiology, The University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,Department of Pediatrics, The University of Alberta, Edmonton, Alberta T6G 2R7, Canada.,The Women's & Children's Health Research Institute, 11405-87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
47
|
Development of a 3D Collagen Model for the In Vitro Evaluation of Magnetic-assisted Osteogenesis. Sci Rep 2018; 8:16270. [PMID: 30389949 PMCID: PMC6214996 DOI: 10.1038/s41598-018-33455-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
Magnetic stimulation has been applied to bone regeneration, however, the cellular and molecular mechanisms of repair still require a better understanding. A three-dimensional (3D) collagen model was developed using plastic compression, which produces dense, cellular, mechanically strong native collagen structures. Osteoblast cells (MG-63) and magnetic iron oxide nanoparticles (IONPs) were incorporated into collagen gels to produce a range of cell-laden models. A magnetic bio-reactor to support cell growth under static magnetic fields (SMFs) was designed and fabricated by 3D printing. The influences of SMFs on cell proliferation, differentiation, extracellular matrix production, mineralisation and gene expression were evaluated. Polymerase chain reaction (PCR) further determined the effects of SMFs on the expression of runt-related transcription factor 2 (Runx2), osteonectin (ON), and bone morphogenic proteins 2 and 4 (BMP-2 and BMP-4). Results demonstrate that SMFs, IONPs and the collagen matrix can stimulate the proliferation, alkaline phosphatase production and mineralisation of MG-63 cells, by influencing matrix/cell interactions and encouraging the expression of Runx2, ON, BMP-2 and BMP-4. Therefore, the collagen model developed here not only offers a novel 3D bone model to better understand the effect of magnetic stimulation on osteogenesis, but also paves the way for further applications in tissue engineering and regenerative medicine.
Collapse
|
48
|
Wei G, Liang T, Wei C, Nong X, Lu Q, Zhao J. Daidzin inhibits RANKL‐induced osteoclastogenesis in vitro and prevents LPS‐induced bone loss in vivo. J Cell Biochem 2018; 120:5304-5314. [DOI: 10.1002/jcb.27806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Gejin Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
- Department of Orthopedics, No.303 hospital of PLA Guangxi China
| | - Tihong Liang
- Department of Orthopedics Affiliated Hospital of Guizhou Medical University Guiyang China
| | - Chengming Wei
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Xiaolian Nong
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Qiteng Lu
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| | - Jinmin Zhao
- Guangxi Medical University Postdoctoral Research Station, Guangxi Medical University Guangxi China
| |
Collapse
|
49
|
A novel anti-osteoporotic agent that protects against postmenopausal bone loss by regulating bone formation and bone resorption. Life Sci 2018; 209:409-419. [PMID: 30096387 DOI: 10.1016/j.lfs.2018.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/01/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023]
Abstract
AIMS Postmenopausal osteoporosis is a bone metabolism disease that is caused by an imbalance between bone-resorbing osteoclast and bone-forming osteoblast actions. Herein, we describe the role of troxerutin (TRX), a trihydroxyethylated derivative of rutin, in ovariectomy (OVX)-induced osteoporosis and its effects on the regulation of osteoclasts and osteoblasts. MAIN METHODS In vivo, OVX female mice were intraperitoneally injected with either saline, 50 mg/kg TRX, or 150 mg/kg TRX for 6 weeks and then sacrificed for micro-computed tomography analyses, histological analyses, and biomechanical testing. In vitro, RAW264.7 cell-derived osteoclasts and MC3T3-E1 cell-derived osteoblasts were treated with different concentrations of TRX to examine the effect of TRX on osteoclastogenesis and bone resorption, as well as on osteogenesis and mineralization. KEY FINDINGS In this study, we demonstrated that TRX prevented cortical and trabecular bone loss in ovariectomized mice by reducing osteoclastogenesis and promoting osteogenesis in vivo. In vitro, TRX inhibited the formation and activity of RAW264.7-derived osteoclasts and the expression of nuclear factor of activated T-cells 1 and cathepsin K. Meanwhile, TRX improved the osteogenesis and mineralization of MC3T3-E1 by enhancing the expression of Runt-related transcription factor 2, Osterix, and collagen type 1 alpha 1. SIGNIFICANCE Our data demonstrated that TRX could prevent OVX-induced osteoporosis and be used in a novel treatment for postmenopausal osteoporosis.
Collapse
|
50
|
Lin Z, Wu J, Qiao W, Zhao Y, Wong KH, Chu PK, Bian L, Wu S, Zheng Y, Cheung KM, Leung F, Yeung KW. Precisely controlled delivery of magnesium ions thru sponge-like monodisperse PLGA/nano-MgO-alginate core-shell microsphere device to enable in-situ bone regeneration. Biomaterials 2018; 174:1-16. [DOI: 10.1016/j.biomaterials.2018.05.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022]
|