1
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Duan X, Zhang T, Feng L, de Silva N, Greenspun B, Wang X, Moyer J, Martin ML, Chandwani R, Elemento O, Leach SD, Evans T, Chen S, Pan FC. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2024; 31:71-88.e8. [PMID: 38151022 PMCID: PMC11022279 DOI: 10.1016/j.stem.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
KRAS mutations, mainly G12D and G12V, are found in more than 90% of pancreatic ductal adenocarcinoma (PDAC) cases. The success of drugs targeting KRASG12C suggests the potential for drugs specifically targeting these alternative PDAC-associated KRAS mutations. Here, we report a high-throughput drug-screening platform using a series of isogenic murine pancreatic organoids that are wild type (WT) or contain common PDAC driver mutations, representing both classical and basal PDAC phenotypes. We screened over 6,000 compounds and identified perhexiline maleate, which can inhibit the growth and induce cell death of pancreatic organoids carrying the KrasG12D mutation both in vitro and in vivo and primary human PDAC organoids. scRNA-seq analysis suggests that the cholesterol synthesis pathway is upregulated specifically in the KRAS mutant organoids, including the key cholesterol synthesis regulator SREBP2. Perhexiline maleate decreases SREBP2 expression levels and reverses the KRAS mutant-induced upregulation of the cholesterol synthesis pathway.
Collapse
Affiliation(s)
- Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lingling Feng
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, China
| | - Neranjan de Silva
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Benjamin Greenspun
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA
| | - Xing Wang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jenna Moyer
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - M Laura Martin
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Rohit Chandwani
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Steven D Leach
- Dartmouth Cancer Center, Dartmouth College, Hanover, NH 03755, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA; Center for Genomic Health, 1300 York Ave., New York, NY 10065, USA.
| | - Fong Cheng Pan
- Department of Surgery, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| |
Collapse
|
3
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
4
|
Jiang J, Hakimjavadi H, Bray JK, Perkins C, Gosling A, daSilva L, Bulut G, Ali J, Setiawan VW, Campbell-Thompson M, Chamala S, Schmittgen TD. Transcriptional Profile of Human Pancreatic Acinar Ductal Metaplasia. GASTRO HEP ADVANCES 2023; 2:532-543. [PMID: 37425649 PMCID: PMC10328139 DOI: 10.1016/j.gastha.2023.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND AIMS Aberrant acinar to ductal metaplasia (ADM), one of the earliest events involved in exocrine pancreatic cancer development, is typically studied using pancreata from genetically engineered mouse models. METHODS We used primary, human pancreatic acinar cells from organ donors to evaluate the transcriptional and pathway profiles during the course of ADM. RESULTS Following 6 days of three-dimensional culture on Matrigel, acinar cells underwent morphological and molecular changes indicative of ADM. mRNA from 14 donors' paired cells (day 0, acinar phenotype and day 6, ductal phenotype) was subjected to whole transcriptome sequencing. Acinar cell specific genes were significantly downregulated in the samples from the day 6 cultures while ductal cell-specific genes were upregulated. Several regulons of ADM were identified including transcription factors with reduced activity (PTF1A, RBPJL, and BHLHA15) and those ductal and progenitor transcription factors with increased activity (HNF1B, SOX11, and SOX4). Cells with the ductal phenotype contained higher expression of genes increased in pancreatic cancer while cells with an acinar phenotype had lower expression of cancer-associated genes. CONCLUSION Our findings support the relevancy of human in vitro models to study pancreas cancer pathogenesis and exocrine cell plasticity.
Collapse
Affiliation(s)
- Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Julie K. Bray
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey Perkins
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Alyssa Gosling
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Lais daSilva
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
| | - Jamel Ali
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida
| | - V. Wendy Setiawan
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
- Department of Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| | - Thomas D. Schmittgen
- Department of Pharmaceutics, College of Pharmacy University of Florida, Gainesville, Florida
- Florida-California Cancer Research, Education and Engagement (CaRE), Health Equity Center, Gainesville, Florida
| |
Collapse
|
5
|
Dabi YT, Degechisa ST. Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling. Diabetes Metab Syndr Obes 2022; 15:1785-1797. [PMID: 35719247 PMCID: PMC9199525 DOI: 10.2147/dmso.s366967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Diabetes is a metabolic disease characterized by chronic hyperglycemia. Polygenic diabetes, which encompasses type-1 and type-2 diabetes, is the most prevalent kind of diabetes and is caused by a combination of different genetic and environmental factors, whereas rare phenotype monogenic diabetes is caused by a single gene mutation. Monogenic diabetes includes Neonatal diabetes mellitus and Maturity-onset diabetes of the young. The majority of our current knowledge about the pathogenesis of diabetes stems from studies done on animal models. However, the genetic difference between these creatures and humans makes it difficult to mimic human clinical pathophysiology, limiting their value in modeling key aspects of human disease. Human pluripotent stem cell technologies combined with genome editing techniques have been shown to be better alternatives for creating in vitro models that can provide crucial knowledge about disease etiology. This review paper addresses genome editing and human pluripotent stem cell technologies for in vitro monogenic diabetes modeling.
Collapse
Affiliation(s)
- Yosef Tsegaye Dabi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Wollega University, Nekemte, Ethiopia
- Correspondence: Yosef Tsegaye Dabi, Email
| | - Sisay Teka Degechisa
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
6
|
van Roey R, Brabletz T, Stemmler MP, Armstark I. Deregulation of Transcription Factor Networks Driving Cell Plasticity and Metastasis in Pancreatic Cancer. Front Cell Dev Biol 2021; 9:753456. [PMID: 34888306 PMCID: PMC8650502 DOI: 10.3389/fcell.2021.753456] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with 5-year survival rates of less than 10%. The constantly increasing incidence and stagnant patient outcomes despite changes in treatment regimens emphasize the requirement of a better understanding of the disease mechanisms. Challenges in treating pancreatic cancer include diagnosis at already progressed disease states due to the lack of early detection methods, rapid acquisition of therapy resistance, and high metastatic competence. Pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer, frequently shows dominant-active mutations in KRAS and TP53 as well as inactivation of genes involved in differentiation and cell-cycle regulation (e.g. SMAD4 and CDKN2A). Besides somatic mutations, deregulated transcription factor activities strongly contribute to disease progression. Specifically, transcriptional regulatory networks essential for proper lineage specification and differentiation during pancreas development are reactivated or become deregulated in the context of cancer and exacerbate progression towards an aggressive phenotype. This review summarizes the recent literature on transcription factor networks and epigenetic gene regulation that play a crucial role during tumorigenesis.
Collapse
Affiliation(s)
- Ruthger van Roey
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Isabell Armstark
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Verzi MP. GATA4 in Regional Affairs. Cell Mol Gastroenterol Hepatol 2021; 12:1505-1506. [PMID: 34310908 PMCID: PMC8531982 DOI: 10.1016/j.jcmgh.2021.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Michael Paul Verzi
- Human Genetics Institute of New Jersey, Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Department of Genetics, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
8
|
Chia CY, Madrigal P, Denil SLIJ, Martinez I, Garcia-Bernardo J, El-Khairi R, Chhatriwala M, Shepherd MH, Hattersley AT, Dunn NR, Vallier L. GATA6 Cooperates with EOMES/SMAD2/3 to Deploy the Gene Regulatory Network Governing Human Definitive Endoderm and Pancreas Formation. Stem Cell Reports 2020; 12:57-70. [PMID: 30629940 PMCID: PMC6335596 DOI: 10.1016/j.stemcr.2018.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022] Open
Abstract
Heterozygous de novo mutations in GATA6 are the most frequent cause of pancreatic agenesis in humans. In mice, however, a similar phenotype requires the biallelic loss of Gata6 and its paralog Gata4. To elaborate the human-specific requirements for GATA6, we chose to model GATA6 loss in vitro by combining both gene-edited and patient-derived pluripotent stem cells (hPSCs) and directed differentiation toward β-like cells. We find that GATA6 heterozygous hPSCs show a modest reduction in definitive endoderm (DE) formation, while GATA6-null hPSCs fail to enter the DE lineage. Consistent with these results, genome-wide studies show that GATA6 binds and cooperates with EOMES/SMAD2/3 to regulate the expression of cardinal endoderm genes. The early deficit in DE is accompanied by a significant reduction in PDX1+ pancreatic progenitors and C-PEPTIDE+ β-like cells. Taken together, our data position GATA6 as a gatekeeper to early human, but not murine, pancreatic ontogeny.
Collapse
Affiliation(s)
- Crystal Y Chia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK
| | - Simon L I J Denil
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Iker Martinez
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Maggie H Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Level 3 RILD Building, Barrack Road, Exeter EX25DW, UK
| | - N Ray Dunn
- Institute of Medical Biology, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, University of Cambridge, Cambridge, UK, and Department of Surgery, University of Cambridge, Cambridge, UK.
| |
Collapse
|
9
|
Villani V, Thornton ME, Zook HN, Crook CJ, Grubbs BH, Orlando G, De Filippo R, Ku HT, Perin L. SOX9+/PTF1A+ Cells Define the Tip Progenitor Cells of the Human Fetal Pancreas of the Second Trimester. Stem Cells Transl Med 2019; 8:1249-1264. [PMID: 31631582 PMCID: PMC6877773 DOI: 10.1002/sctm.19-0231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Significant progress has been made in recent years in characterizing human multipotent progenitor cells (hMPCs) of the early pancreas; however, the identity and persistence of these cells during the second trimester, after the initiation of branching morphogenesis, remain elusive. Additionally, studies on hMPCs have been hindered by few isolation methods that allow for the recovery of live cells. Here, we investigated the tip progenitor domain in the branched epithelium of human fetal pancreas between 13.5 and 17.5 gestational weeks by immunohistological staining. We also used a novel RNA-based technology to isolate live cells followed by gene expression analyses. We identified cells co-expressing SOX9 and PTF1A, two transcription factors known to be important for pancreatic MPCs, within the tips of the epithelium and observed a decrease in their proportions over time. Pancreatic SOX9+/PTF1A+ cells were enriched for MPC markers, including MYC and GATA6. These cells were proliferative and appeared active in branching morphogenesis and matrix remodeling, as evidenced by gene set enrichment analysis. We identified a hub of genes pertaining to the expanding tip progenitor niche, such as FOXF1, GLI3, TBX3, FGFR1, TGFBR2, ITGAV, ITGA2, and ITGB3. YAP1 of the Hippo pathway emerged as a highly enriched component within the SOX9+/PTF1A+ cells. Single-cell RNA-sequencing further corroborated the findings by identifying a cluster of SOX9+/PTF1A+ cells with multipotent characteristics. Based on these results, we propose that the SOX9+/PTF1A+ cells in the human pancreas are uncommitted MPC-like cells that reside at the tips of the expanding pancreatic epithelium, directing self-renewal and inducing pancreatic organogenesis. Stem Cells Translational Medicine 2019;8:1249&1264.
Collapse
Affiliation(s)
- Valentina Villani
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
| | - Matthew E. Thornton
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Heather N. Zook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Christiana J. Crook
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Brendan H. Grubbs
- Maternal‐Fetal Medicine Division, Department of Obstetrics and Gynecology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Giuseppe Orlando
- Department of SurgeryWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Roger De Filippo
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular TherapeuticsDiabetes and Metabolism Research Institute of City of HopeDuarteCaliforniaUSA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of HopeDuarteCaliforniaUSA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of UrologySaban Research Institute, Children's Hospital Los AngelesLos AngelesCaliforniaUSA
- Department of Urology, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
10
|
Villamayor L, Cano DA, Rojas A. GATA factors in pancreas development and disease. IUBMB Life 2019; 72:80-88. [PMID: 31580534 DOI: 10.1002/iub.2170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/05/2019] [Indexed: 12/29/2022]
Abstract
There is an urgent need for the development of novel therapeutics options for diabetic patients given the high prevalence of diabetes worldwide and that, currently, there is no cure for this disease. The transplantation of pancreatic islets that contain insulin-producing cells is a promising therapeutic alternative, particularly for type 1 diabetes. However, the shortage of organ donors constitutes a major limitation for this approach; thus, developing alternative sources of insulin-producing cells is of critical importance. In the last decade, our knowledge of the molecular mechanisms controlling embryonic pancreas development has significantly advanced. More importantly, this knowledge has provided the basis for the in vitro generation of insulin-producing cells from stem cells. Recent studies have revealed that GATA transcription factors are involved in various stages of pancreas formation and in the adult ß cell function. Here, we review the fundamental role of GATA transcription factors in pancreas morphogenesis and their association with congenital diseases associated with pancreas.
Collapse
Affiliation(s)
- Laura Villamayor
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - David A Cano
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad Pablo de Olavide, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
11
|
Romano O, Miccio A. GATA factor transcriptional activity: Insights from genome-wide binding profiles. IUBMB Life 2019; 72:10-26. [PMID: 31574210 DOI: 10.1002/iub.2169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
The members of the GATA family of transcription factors have homologous zinc fingers and bind to similar sequence motifs. Recent advances in genome-wide technologies and the integration of bioinformatics data have led to a better understanding of how GATA factors regulate gene expression; GATA-factor-induced transcriptional and epigenetic changes have now been analyzed at unprecedented levels of detail. Here, we review the results of genome-wide studies of GATA factor occupancy in human and murine cell lines and primary cells (as determined by chromatin immunoprecipitation sequencing), and then discuss the molecular mechanisms underlying the mediation of transcriptional and epigenetic regulation by GATA factors.
Collapse
Affiliation(s)
- Oriana Romano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, Imagine Institute, INSERM UMR, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
12
|
Škorić-Milosavljević D, Tjong FVY, Barc J, Backx APCM, Clur SAB, van Spaendonck-Zwarts K, Oostra RJ, Lahrouchi N, Beekman L, Bökenkamp R, Barge-Schaapveld DQCM, Mulder BJ, Lodder EM, Bezzina CR, Postma AV. GATA6 mutations: Characterization of two novel patients and a comprehensive overview of the GATA6 genotypic and phenotypic spectrum. Am J Med Genet A 2019; 179:1836-1845. [PMID: 31301121 PMCID: PMC6772993 DOI: 10.1002/ajmg.a.61294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/26/2022]
Abstract
The first human mutations in GATA6 were described in a cohort of patients with persistent truncus arteriosus, and the phenotypic spectrum has expanded since then. This study underscores the broad phenotypic spectrum by presenting two patients with de novo GATA6 mutations, both exhibiting complex cardiac defects, pancreatic, and other abnormalities. Furthermore, we provided a detailed overview of all published human genetic variation in/near GATA6 published to date and the associated phenotypes (n = 78). We conclude that the most common phenotypes associated with a mutation in GATA6 were structural cardiac and pancreatic abnormalities, with a penetrance of 87 and 60%, respectively. Other common malformations were gallbladder agenesis, congenital diaphragmatic hernia, and neurocognitive abnormalities, mostly developmental delay. Fifty-eight percent of the mutations were de novo, and these patients more often had an anomaly of intracardiac connections, an anomaly of the great arteries, and hypothyroidism, compared with those with inherited mutations. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, GATA6 mutations give a wide range of phenotypic defects, most frequently malformations of the heart and pancreas. This highlights the importance of detailed clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.
Collapse
Affiliation(s)
- Doris Škorić-Milosavljević
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Fleur V Y Tjong
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Julien Barc
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Ad P C M Backx
- Department of Pediatric Cardiology, Amsterdam UMC, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Sally-Ann B Clur
- Department of Pediatric Cardiology, Amsterdam UMC, Emma Children's Hospital, Amsterdam, The Netherlands
| | | | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Najim Lahrouchi
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Leander Beekman
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Regina Bökenkamp
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Barbara J Mulder
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Connie R Bezzina
- Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Heart Centre, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Simon CS, Zhang L, Wu T, Cai W, Saiz N, Nowotschin S, Cai CL, Hadjantonakis AK. A Gata4 nuclear GFP transcriptional reporter to study endoderm and cardiac development in the mouse. Biol Open 2018; 7:bio.036517. [PMID: 30530745 PMCID: PMC6310872 DOI: 10.1242/bio.036517] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The GATA zinc-finger transcription factor GATA4 is expressed in a variety of tissues during mouse embryonic development and in adult organs. These include the primitive endoderm of the blastocyst, visceral endoderm of the early post-implantation embryo, as well as lateral plate mesoderm, developing heart, liver, lung and gonads. Here, we generate a novel Gata4 targeted allele used to generate both a Gata4H2B-GFP transcriptional reporter and a Gata4FLAG fusion protein to analyse dynamic expression domains. We demonstrate that the Gata4H2B-GFP transcriptional reporter faithfully recapitulates known sites of Gata4 mRNA expression and correlates with endogenous GATA4 protein levels. This reporter labels nuclei of Gata4 expressing cells and is suitable for time-lapse imaging and single cell analyses. As such, this Gata4H2B-GFP allele will be a useful tool for studying Gata4 expression and transcriptional regulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tao Wu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Weibin Cai
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Mindich Child Health and Development Institute, and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
14
|
Teo AKK, Lim CS, Cheow LF, Kin T, Shapiro JA, Kang NY, Burkholder W, Lau HH. Single-cell analyses of human islet cells reveal de-differentiation signatures. Cell Death Discov 2018; 4:14. [PMID: 29531811 PMCID: PMC5841351 DOI: 10.1038/s41420-017-0014-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023] Open
Abstract
Human pancreatic islets containing insulin-secreting β-cells are notoriously heterogeneous in cell composition. Since β-cell failure is the root cause of diabetes, understanding this heterogeneity is of paramount importance. Recent reports have cataloged human islet transcriptome but not compared single β-cells in detail. Here, we scrutinized ex vivo human islet cells from healthy donors and show that they exhibit de-differentiation signatures. Using single-cell gene expression and immunostaining analyses, we found healthy islet cells to contain polyhormonal transcripts, and INS+ cells to express decreased levels of β-cell genes but high levels of progenitor markers. Rare cells that are doubly positive for progenitor markers/exocrine signatures, and endocrine/exocrine hormones were also present. We conclude that ex vivo human islet cells are plastic and can possibly de-/trans-differentiate across pancreatic cell fates, partly accounting for β-cell functional decline once isolated. Therefore, stabilizing β-cell identity upon isolation may improve its functionality.
Collapse
Affiliation(s)
- Adrian Keong Kee Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chang Siang Lim
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Lih Feng Cheow
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Tatsuya Kin
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, AB, Canada
| | - James A. Shapiro
- Clinical Islet Laboratory, University of Alberta Hospital, Edmonton, AB, Canada
| | - Nam-Young Kang
- Laboratory of Bioimaging Probe Development, Singapore Bioimaging Consortium, Helios, Singapore, Singapore
| | - William Burkholder
- Microfluidics Systems Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| |
Collapse
|
15
|
Fisher JB, Pulakanti K, Rao S, Duncan SA. GATA6 is essential for endoderm formation from human pluripotent stem cells. Biol Open 2017; 6:1084-1095. [PMID: 28606935 PMCID: PMC5550920 DOI: 10.1242/bio.026120] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Protocols have been established that direct differentiation of human pluripotent stem cells into a variety of cell types, including the endoderm and its derivatives. This model of differentiation has been useful for investigating the molecular mechanisms that guide human developmental processes. Using a directed differentiation protocol combined with shRNA depletion we sought to understand the role of GATA6 in regulating the earliest switch from pluripotency to definitive endoderm. We reveal that GATA6 depletion during endoderm formation results in apoptosis of nascent endoderm cells, concomitant with a loss of endoderm gene expression. We show by chromatin immunoprecipitation followed by DNA sequencing that GATA6 directly binds to several genes encoding transcription factors that are necessary for endoderm differentiation. Our data support the view that GATA6 is a central regulator of the formation of human definitive endoderm from pluripotent stem cells by directly controlling endoderm gene expression. Summary: Using the differentiation of huESCs as a model for endoderm formation, we reveal that the transcription factor GATA6 regulates the onset of endoderm gene expression and is required for its viability.
Collapse
Affiliation(s)
- J B Fisher
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - K Pulakanti
- Blood Center of Wisconsin, Milwaukee, WI 53226, USA
| | - S Rao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Center of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplant, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - S A Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA .,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
16
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
17
|
Wong CH, Li YJ, Chen YC. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer. World J Gastroenterol 2016; 22:7046-57. [PMID: 27610015 PMCID: PMC4988312 DOI: 10.3748/wjg.v22.i31.7046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.
Collapse
|
18
|
Xuan S, Sussel L. GATA4 and GATA6 regulate pancreatic endoderm identity through inhibition of hedgehog signaling. Development 2016; 143:780-6. [PMID: 26932670 DOI: 10.1242/dev.127217] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GATA4 and GATA6 are zinc finger transcription factors that have important functions in several mesodermal and endodermal organs, including heart, liver and pancreas. In humans, heterozygous mutations of either factor are associated with pancreatic agenesis; however, homozygous deletion of both Gata4 and Gata6 is necessary to disrupt pancreas development in mice. In this study, we demonstrate that arrested pancreatic development in Gata4(fl/fl); Gata6(fl/fl); Pdx1:Cre (pDKO) embryos is accompanied by the transition of ventral and dorsal pancreatic fates into intestinal or stomach lineages, respectively. These results indicate that GATA4 and GATA6 play essential roles in maintaining pancreas identity by regulating foregut endodermal fates. Remarkably, pancreatic anlagen derived from pDKO embryos also display a dramatic upregulation of hedgehog pathway components, which are normally absent from the presumptive pancreatic endoderm. Consistent with the erroneous activation of hedgehog signaling, we demonstrate that GATA4 and GATA6 are able to repress transcription through the sonic hedgehog (Shh) endoderm-specific enhancer MACS1 and that GATA-binding sites within this enhancer are necessary for this repressive activity. These studies establish the importance of GATA4/6-mediated inhibition of hedgehog signaling as a major mechanism regulating pancreatic endoderm specification during patterning of the gut tube.
Collapse
Affiliation(s)
- Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Lori Sussel
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| |
Collapse
|
19
|
Pihlajoki M, Färkkilä A, Soini T, Heikinheimo M, Wilson DB. GATA factors in endocrine neoplasia. Mol Cell Endocrinol 2016; 421:2-17. [PMID: 26027919 PMCID: PMC4662929 DOI: 10.1016/j.mce.2015.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/26/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tea Soini
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Abstract
A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes.
Collapse
Affiliation(s)
- Rachel E Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester M13 9WU, UK
| | - Andrew A Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - James P Strutt
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - David T Gerrard
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Bioinformatics Unit, Faculty of Life Science, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Neil A Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester M13 9WU, UK
| |
Collapse
|
21
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
22
|
A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice. BMC DEVELOPMENTAL BIOLOGY 2015; 15:38. [PMID: 26498761 PMCID: PMC4619391 DOI: 10.1186/s12861-015-0086-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/09/2015] [Indexed: 12/03/2022]
Abstract
Background The GATA-binding factor 6 (Gata6) gene encodes a zinc finger transcription factor that often functions as a key regulator of lineage specification during development. It is the earliest known marker of the primitive endoderm lineage in the mammalian blastocyst. During gastrulation, GATA6 is expressed in early cardiac mesoderm and definitive endoderm progenitors, and is necessary for development of specific mesoderm and endoderm-derived organs including the heart, liver, and pancreas. Furthermore, reactivation or silencing of the Gata6 locus has been associated with certain types of cancer affecting endodermal organs. Results We have generated a Gata6H2B-Venus knock-in reporter mouse allele for the purpose of labeling GATA6-expressing cells with a bright nuclear-localized fluorescent marker that is suitable for live imaging at single-cell resolution. Conclusions Expression of the Venus reporter was characterized starting from embryonic stem (ES) cells, through mouse embryos and adult animals. The Venus reporter was not expressed in ES cells, but was activated upon endoderm differentiation. Gata6H2B-Venus/H2B-Venus homozygous embryos did not express GATA6 protein and failed to specify the primitive endoderm in the blastocyst. However, null blastocysts continued to express high levels of Venus in the absence of GATA6 protein, suggesting that early Gata6 transcription is independent of GATA6 protein expression. At early post-implantation stages of embryonic development, there was a strong correlation of Venus with endogenous GATA6 protein in endoderm and mesoderm progenitors, then later in the heart, midgut, and hindgut. However, there were discrepancies in reporter versus endogenous protein expression in certain cells, such as the body wall and endocardium. During organogenesis, detection of Venus in specific organs recapitulated known sites of endogenous GATA6 expression, such as in the lung bud epithelium, liver, pancreas, gall bladder, stomach epithelium, and vascular endothelium. In adults, Venus was observed in the lungs, pancreas, liver, gall bladder, ovaries, uterus, bladder, skin, adrenal glands, small intestine and corpus region of the stomach. Overall, Venus fluorescent protein under regulatory control of the Gata6 locus was expressed at levels that were easily visualized directly and could endure live and time-lapse imaging techniques. Venus is co-expressed with endogenous GATA6 throughout development to adulthood, and should provide an invaluable tool for examining the status of the Gata6 locus during development, as well as its silencing or reactivation in cancer or other disease states. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0086-5) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Stanescu DE, Hughes N, Patel P, De León DD. A novel mutation in GATA6 causes pancreatic agenesis. Pediatr Diabetes 2015; 16:67-70. [PMID: 24433315 PMCID: PMC4102676 DOI: 10.1111/pedi.12111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/15/2013] [Accepted: 12/05/2013] [Indexed: 01/29/2023] Open
Abstract
Heterozygous mutations in GATA6 have been linked to pancreatic agenesis and cardiac malformations. The aim of this study was to describe a new mutation in GATA6 in an infant with pancreatic agenesis, associated with truncus arteriosus and absent gallbladder. Clinical data were obtained from chart review. Gene sequencing was performed on genomic DNA. The patient was a female infant diagnosed shortly after birth with a severe cardiac malformation, absent gallbladder, anomalous hepatic blood flow, unilateral hydronephrosis and hydroureter, neonatal diabetes, and pancreatic exocrine insufficiency. Despite prolonged intensive management care, she died at 3 months of age because of cardiac complications. Analysis of her genomic DNA revealed a novel missense mutation of GATA6. The novel mutation described in this case extends the list of GATA6 mutations causing pancreatic agenesis and cardiac malformations.
Collapse
Affiliation(s)
- Diana E. Stanescu
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Nkecha Hughes
- Clinical and Translational Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Puja Patel
- Clinical and Translational Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diva D. De León
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, PA,Department of Pediatrics University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
24
|
Tsugata T, Nikoh N, Kin T, Saitoh I, Noguchi Y, Ueki H, Watanabe M, James Shapiro AM, Noguchi H. Potential Factors for the Differentiation of ESCs/iPSCs Into Insulin-Producing Cells. CELL MEDICINE 2014; 7:83-93. [PMID: 26858897 DOI: 10.3727/215517914x685178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The low efficiency of in vitro differentiation of human embryonic stem cells (ESCs) or human induced pluripotent stem cells (iPSCs) into insulin-producing cells thus creates a crucial hurdle for the clinical implementation of human pluripotent stem cells (PSCs). In this study, we investigated the key factors for the differentiation of PSCs into insulin-producing cells. We obtained microarray data of HUES8 and HUES6 from two GeneChips (GPL3921: Affymetrix HT Human Genome U133A Array, GPL570: Affymetrix Human Genome U133 Plus 2.0 Array) in a database of GEO (NCBI), since HUES8 can differentiate into pancreatic cells, while HUES6 hardly demonstrates any differentiation at all. The genes with more than fourfold higher expressions in HUES8 compared to HUES6 included RPS4Y1, DDX3Y, EIF1AY, GREM1, GATA6, and NLGN4Y. Since there were four genes, RPS4Y1, DDX3Y, EIF1AY, and NLGN4Y, on the Y chromosome and HUES8 was a male cell line and HUES6 was a female cell line, we excluded these genes in this study. On the other hand, genes with more than fourfold higher expressions in HUES6 compared to HUES8 included NLRP2, EGR1, and SMC3. We next compared iPSCs derived from pancreatic cells (PiPSCs) and iPSCs derived from fibroblasts (FiPSCs). PiPSCs differentiated into insulin-producing cells more easily than FiPSCs because of their epigenetic memory. The gene expressions of GREM1, GATA6, NLRP2, EGR1, and SMC3 in PiPSCs and FiPSCs were also investigated. The expression level of GREM1 and GATA6 in PiPSCs were higher than in FiPSCs. On the other hand, EGR1, which was lower in HUES8 than in HUES6, was predictably lower in PiPSCs than FiPSCs, while NLRP2 and SMC3 were higher in PiPSCs than FiPSCs. These data suggest that the expression of GATA6 and GREM1 and the inhibition of EGR1 may be important factors for the differentiation of PSCs into insulin-producing cells.
Collapse
Affiliation(s)
- Takako Tsugata
- Natural and Environmental Sciences Program, The Open University of Japan , Chiba , Japan
| | - Naruo Nikoh
- Natural and Environmental Sciences Program, The Open University of Japan , Chiba , Japan
| | - Tatsuya Kin
- † Clinical Islet Transplant Program, University of Alberta , Edmonton, Alberta , Canada
| | - Issei Saitoh
- ‡ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Niigata , Japan
| | - Yasufumi Noguchi
- § Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Hideo Ueki
- ¶ Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Masami Watanabe
- ¶ Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | | | - Hirofumi Noguchi
- Natural and Environmental Sciences Program, The Open University of Japan, Chiba, Japan; #Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
25
|
Jonatan D, Spence JR, Method AM, Kofron M, Sinagoga K, Haataja L, Arvan P, Deutsch GH, Wells JM. Sox17 regulates insulin secretion in the normal and pathologic mouse β cell. PLoS One 2014; 9:e104675. [PMID: 25144761 PMCID: PMC4140688 DOI: 10.1371/journal.pone.0104675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023] Open
Abstract
SOX17 is a key transcriptional regulator that can act by regulating other transcription factors including HNF1β and FOXA2, which are known to regulate postnatal β cell function. Given this, we investigated the role of SOX17 in the developing and postnatal pancreas and found a novel role for SOX17 in regulating insulin secretion. Deletion of the Sox17 gene in the pancreas (Sox17-paLOF) had no observable impact on pancreas development. However, Sox17-paLOF mice had higher islet proinsulin protein content, abnormal trafficking of proinsulin, and dilated secretory organelles suggesting that Sox17-paLOF adult mice are prediabetic. Consistant with this, Sox17-paLOF mice were more susceptible to aged-related and high fat diet-induced hyperglycemia and diabetes. Overexpression of Sox17 in mature β cells using Ins2-rtTA driver mice resulted in precocious secretion of proinsulin. Transcriptionally, SOX17 appears to broadly regulate secretory networks since a 24-hour pulse of SOX17 expression resulted in global transcriptional changes in factors that regulate hormone transport and secretion. Lastly, transient SOX17 overexpression was able to reverse the insulin secretory defects observed in MODY4 animals and restored euglycemia. Together, these data demonstrate a critical new role for SOX17 in regulating insulin trafficking and secretion and that modulation of Sox17-regulated pathways might be used therapeutically to improve cell function in the context of diabetes.
Collapse
Affiliation(s)
- Diva Jonatan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jason R. Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Anna M. Method
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Katie Sinagoga
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Leena Haataja
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Peter Arvan
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Gail H. Deutsch
- Seattle Children’s Hospital, Seattle, WA, United States of America
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
26
|
Cano DA, Soria B, Martín F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2014; 71:2383-402. [PMID: 24221136 PMCID: PMC11113897 DOI: 10.1007/s00018-013-1510-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Abstract
The field of pancreas development has markedly expanded over the last decade, significantly advancing our understanding of the molecular mechanisms that control pancreas organogenesis. This growth has been fueled, in part, by the need to generate new therapeutic approaches for the treatment of diabetes. The creation of sophisticated genetic tools in mice has been instrumental in this progress. Genetic manipulation involving activation or inactivation of genes within specific cell types has allowed the identification of many transcription factors (TFs) that play critical roles in the organogenesis of the pancreas. Interestingly, many of these TFs act at multiple stages of pancreatic development, and adult organ function or repair. Interaction with other TFs, extrinsic signals, and epigenetic regulation are among the mechanisms by which TFs may play context-dependent roles during pancreas organogenesis. Many of the pancreatic TFs directly regulate each other and their own expression. These combinatorial interactions generate very specific gene regulatory networks that can define the different cell lineages and types in the developing pancreas. Here, we review recent progress made in understanding the role of pancreatic TFs in mouse pancreas formation. We also summarize our current knowledge of human pancreas development and discuss developmental pancreatic TFs that have been associated with human pancreatic diseases.
Collapse
Affiliation(s)
- David A. Cano
- Endocrinology Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Bernat Soria
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Francisco Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
27
|
Latreille M, Hausser J, Stützer I, Zhang Q, Hastoy B, Gargani S, Kerr-Conte J, Pattou F, Zavolan M, Esguerra JLS, Eliasson L, Rülicke T, Rorsman P, Stoffel M. MicroRNA-7a regulates pancreatic β cell function. J Clin Invest 2014; 124:2722-35. [PMID: 24789908 DOI: 10.1172/jci73066] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes.
Collapse
|
28
|
Abstract
Monogenic diabetes represents a heterogeneous group of disorders resulting from defects in single genes. Defects are categorized primarily into two groups: disruption of β-cell function or a reduction in the number of β-cells. A complex network of transcription factors control pancreas formation, and a dysfunction of regulators high in the hierarchy leads to pancreatic agenesis. Dysfunction among factors further downstream might cause organ hypoplasia, absence of islets of Langerhans or a reduction in the number of β-cells. Many transcription factors have pleiotropic effects, explaining the association of diabetes with other congenital malformations, including cerebellar agenesis and pituitary agenesis. Monogenic diabetes variants are classified conventionally according to age of onset, with neonatal diabetes occurring before the age of 6 months and maturity onset diabetes of the young (MODY) manifesting before the age of 25 years. Recently, certain familial genetic defects were shown to manifest as neonatal diabetes, MODY or even adult onset diabetes. Patients with neonatal diabetes require a thorough genetic work-up in any case, and because extensive phenotypic overlap exists between monogenic, type 2, and type 1 diabetes, genetic analysis will also help improve diagnosis in these cases. Next generation sequencing will facilitate rapid screening, leading to the discovery of digenic and oligogenic diabetes variants, and helping to improve our understanding of the genetics underlying other types of diabetes. An accurate diagnosis remains important, because it might lead to a change in the treatment of affected subjects and influence long-term complications.
Collapse
Affiliation(s)
- Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes UnitDepartment of Child and Adolescent HealthChildren's University HospitalGenevaSwitzerland
| |
Collapse
|
29
|
Ye J, Vives-Pi M, Gillespie KM. Maternal microchimerism: increased in the insulin positive compartment of type 1 diabetes pancreas but not in infiltrating immune cells or replicating islet cells. PLoS One 2014; 9:e86985. [PMID: 24498006 PMCID: PMC3909047 DOI: 10.1371/journal.pone.0086985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/19/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Maternal microchimeric cells (MMc) transfer across the placenta during pregnancy. Increased levels of MMc have been observed in several autoimmune diseases including type 1 diabetes but their role is unknown. It has been suggested that MMc are 1) effector cells of the immune response, 2) targets of the autoimmune response or 3) play a role in tissue repair. The aim of this study was to define the cellular phenotype of MMc in control (n = 14) and type 1 diabetes pancreas (n = 8). METHODS Using sex chromosome-based fluorescence in-situ hybridization, MMc were identified in male pancreas and their phenotype determined by concomitant immunofluorescence. RESULTS In normal pancreas, MMc positive for endocrine, exocrine, duct and acinar markers were identified suggesting that these cells are derived from maternal progenitors. Increased frequencies of MMc were observed in type 1 diabetes pancreas (p = 0.03) with particular enrichment in the insulin positive fraction (p = 0.01). MMc did not contribute to infiltrating immune cells or Ki67+ islet cell populations in type 1 diabetes. CONCLUSION These studies provide support for the hypothesis that MMc in human pancreas are derived from pancreatic precursors. Increased frequencies of MMc beta cells may contribute to the initiation of autoimmunity or to tissue repair but do not infiltrate islets in type 1 diabetes.
Collapse
MESH Headings
- Adolescent
- Adult
- Autoimmunity/genetics
- Autoimmunity/immunology
- Child
- Child, Preschool
- Chimerism
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/immunology
- Chromosomes, Human, Y/genetics
- Chromosomes, Human, Y/immunology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Female
- GATA4 Transcription Factor/immunology
- GATA4 Transcription Factor/metabolism
- Humans
- In Situ Hybridization, Fluorescence/methods
- Infant
- Insulin/immunology
- Insulin/metabolism
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Ki-67 Antigen/immunology
- Ki-67 Antigen/metabolism
- Male
- Maternal-Fetal Exchange/genetics
- Maternal-Fetal Exchange/immunology
- Microscopy, Confocal
- Microscopy, Fluorescence
- Pancreas/embryology
- Pancreas/immunology
- Pancreas/metabolism
- Pregnancy
- Young Adult
Collapse
Affiliation(s)
- Jody Ye
- Diabetes and Metabolism Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Marta Vives-Pi
- Immunology Department, Institut de Recerca Germans Trias i Pujol, Carretera Canyet s/n, Badalona, Spain
| | - Kathleen M. Gillespie
- Diabetes and Metabolism Unit, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
30
|
Gong M, Simaite D, Kühnen P, Heldmann M, Spagnoli F, Blankenstein O, Hübner N, Hussain K, Raile K. Two novel GATA6 mutations cause childhood-onset diabetes mellitus, pancreas malformation and congenital heart disease. Horm Res Paediatr 2013; 79:250-6. [PMID: 23635550 DOI: 10.1159/000348844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND GATA6 mutations are the most frequent cause of pancreatic agenesis and diabetes in human sporadic cases. In families, dominantly inherited mutations show a variable phenotype also in terms of endocrine and exocrine pancreatic disease. We report two novel GATA6 mutations in an independent cohort of 8 children with pancreas aplasia or hypoplasia and diabetes. METHODS We sequenced GATA6 in 8 children with diabetes and inborn pancreas abnormalities, i.e. hypoplasia or aplasia in which other known candidate genes causing monogenic diabetes and pancreatic defects had been excluded. RESULTS We found two novel heterozygous GATA6 mutations (c.951_954dup and c.754_904del) in 2 patients with sporadic pancreas hypoplasia, diabetes and severe cardiac defects (common truncus arteriosus and tetralogy of Fallot), but not in the remaining 6 patients. GATA6 mutations in carriers exhibited hypoplastic pancreas with absent head in 1 patient and with increased echogenicity and decreasing exocrine function in the other patient. Additionally, hepatobiliary malformations and brain atrophy were found in 1 patient. CONCLUSION Our 2 cases with novel GATA6 mutations add more phenotype characteristics of GATA6 haploinsufficiency. In agreement with an increasing number of published cases, the wide phenotypic spectrum of GATA6 diabetes syndrome should draw the attention of both pediatric endocrinologists and geneticists.
Collapse
Affiliation(s)
- Maolian Gong
- Max Delbrück Center for Molecular Medicine, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Martinelli P, Cañamero M, del Pozo N, Madriles F, Zapata A, Real FX. Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice. Gut 2013; 62:1481-8. [PMID: 23002247 DOI: 10.1136/gutjnl-2012-303328] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Previous studies have suggested an important role of the transcription factor Gata6 in endocrine pancreas, while GATA6 haploinsufficient inactivating mutations cause pancreatic agenesis in humans. We aimed to analyse the effects of Gata6 inactivation on pancreas development and function. DESIGN We deleted Gata6 in all epithelial cells in the murine pancreas at the onset of its development. Acinar proliferation, apoptosis, differentiation and exocrine functions were assessed using reverse transcriptase quantitative PCR (RT-qPCR), chromatin immunoprecipitation, immunohistochemistry and enzyme assays. Adipocyte transdifferentiation was assessed using electron microscopy and genetic lineage tracing. RESULTS Gata6 is expressed in all epithelial cells in the adult mouse pancreas but it is only essential for exocrine pancreas homeostasis: while dispensable for pancreatic development after e10.5, it is required for complete acinar differentiation, for establishment of polarity and for the maintenance of acinar cells in the adult. Gata6 regulates directly the promoter of genes coding for digestive enzymes and the transcription factors Rbpjl and Mist1. Upon pancreas-selective Gata6 inactivation, massive loss of acinar cells and fat replacement take place. This is accompanied by increased acinar apoptosis and proliferation, acinar-to-ductal metaplasia and adipocyte transdifferentiation. By contrast, the endocrine pancreas is spared. CONCLUSIONS Our data show that Gata6 is required for the complete differentiation of acinar cells through multiple transcriptional regulatory mechanisms. In addition, it is required for the maintenance of the adult acinar cell compartment. Our studies suggest that GATA6 alterations may contribute to diseases of the human adult exocrine pancreas.
Collapse
Affiliation(s)
- Paola Martinelli
- Epithelial Carcinogenesis Group, Molecular Pathology Programme, CNIO-Spanish National Cancer Research Centre, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Piper Hanley K, Hanley NA. Development of the human pancreas from foregut to endocrine commitment. Diabetes 2013; 62:3514-22. [PMID: 23630303 PMCID: PMC3781486 DOI: 10.2337/db12-1479] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knowledge of human pancreas development underpins our interpretation and exploitation of human pluripotent stem cell (PSC) differentiation toward a β-cell fate. However, almost no information exists on the early events of human pancreatic specification in the distal foregut, bud formation, and early development. Here, we have studied the expression profiles of key lineage-specific markers to understand differentiation and morphogenetic events during human pancreas development. The notochord was adjacent to the dorsal foregut endoderm during the fourth week of development before pancreatic duodenal homeobox-1 detection. In contrast to the published data from mouse embryos, during human pancreas development, we detected only a single-phase of Neurogenin 3 (NEUROG3) expression and endocrine differentiation from approximately 8 weeks, before which Nirenberg and Kim homeobox 2.2 (NKX2.2) was not observed in the pancreatic progenitor cell population. In addition to revealing a number of disparities in timing between human and mouse development, these data, directly assembled from human tissue, allow combinations of transcription factors to define sequential stages and differentiating pancreatic cell types. The data are anticipated to provide a useful reference point for stem cell researchers looking to differentiate human PSCs in vitro toward the pancreatic β-cell so as to model human development or enable drug discovery and potential cell therapy.
Collapse
Affiliation(s)
- Rachel E. Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Endocrinology Department, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
| | - Andrew A. Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Rebecca Kirkwood-Wilson
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Neil A. Roberts
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Thomas Hearn
- Centre for Human Development, Stem Cells and Regeneration, Human Genetics, University of Southampton, Southampton General Hospital, Southampton, U.K
| | - Rachel J. Salisbury
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Jennifer Blaylock
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Karen Piper Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Neil A. Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Endocrinology Department, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
- Corresponding author: Neil A. Hanley,
| |
Collapse
|
33
|
Chen WB, Huang FT, Zhuang YY, Tang J, Zhuang XH, Cheng WJ, Gu ZQ, Zhang SN. Silencing of GATA6 suppresses SW1990 pancreatic cancer cell growth in vitro and up-regulates reactive oxygen species. Dig Dis Sci 2013; 58:2518-27. [PMID: 23832791 DOI: 10.1007/s10620-013-2752-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 06/06/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND/AIMS Pancreatic cancer has the worst prognosis of any gastrointestinal cancer with a mortality rate approaching its incidence. Previous studies have indicated that GATA6 plays a key role in organ development and function, and that abnormal expression of GATA6 may induce tumorigenesis. Meanwhile, it has been reported that generation of reactive oxygen species contributes to carcinogenesis. In this study, we set out to study the role of GATA6 expression on proliferation and apoptosis of pancreatic cancer cells and the role of reactive oxygen species. METHODS Four target miRNA sequences against GATA6 mRNA were synthesized and used to transfect SW1990 cells. Then, GATA6 expression in SW1990 cells was examined by western blot and quantative real-time polymerase chain reaction. Cell proliferation was examined by WST-8 and colony formation assay. Cell cycle progression and apoptosis were measured by flow cytometry. We also measured the generation of reactive oxygen species by immunofluorescence and flow cytometry. RESULTS RNA interference against GATA6 successfully inhibited mRNA and protein expression of GATA6 in the SW1990 pancreatic cancer cell line. Silencing of GATA6 by RNA interference inhibited cell proliferation and increased apoptosis of SW1990, and enhanced the expression of reactive oxygen species. CONCLUSIONS These results suggest that the RNA interference approach against GATA6 may be an effective therapeutic approach for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wen-Bo Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
De Franco E, Shaw-Smith C, Flanagan SE, Shepherd MH, Hattersley AT, Ellard S. GATA6 mutations cause a broad phenotypic spectrum of diabetes from pancreatic agenesis to adult-onset diabetes without exocrine insufficiency. Diabetes 2013; 62:993-7. [PMID: 23223019 PMCID: PMC3581234 DOI: 10.2337/db12-0885] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/30/2012] [Indexed: 12/18/2022]
Abstract
We recently reported de novo GATA6 mutations as the most common cause of pancreatic agenesis, accounting for 15 of 27 (56%) patients with insulin-treated neonatal diabetes and exocrine pancreatic insufficiency requiring enzyme replacement therapy. We investigated the role of GATA6 mutations in 171 subjects with neonatal diabetes of unknown genetic etiology from a cohort of 795 patients with neonatal diabetes. Mutations in known genes had been confirmed in 624 patients (including 15 GATA6 mutations). Sequencing of the remaining 171 patients identified nine new case subjects (24 of 795, 3%). Pancreatic agenesis was present in 21 case subjects (six new); two patients had permanent neonatal diabetes with no enzyme supplementation and one had transient neonatal diabetes. Four parents with heterozygous GATA6 mutations were diagnosed with diabetes outside the neonatal period (12-46 years). Subclinical exocrine insufficiency was demonstrated by low fecal elastase in three of four diabetic patients who did not receive enzyme supplementation. One parent with a mosaic mutation was not diabetic but had a heart malformation. Extrapancreatic features were observed in all 24 probands and three parents, with congenital heart defects most frequent (83%). Heterozygous GATA6 mutations cause a wide spectrum of diabetes manifestations, ranging from pancreatic agenesis to adult-onset diabetes with subclinical or no exocrine insufficiency.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Charles Shaw-Smith
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Maggie H. Shepherd
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | | | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, U.K
| |
Collapse
|
35
|
Hunter CS, Dixit S, Cohen T, Ediger B, Wilcox C, Ferreira M, Westphal H, Stein R, May CL. Islet α-, β-, and δ-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor. Diabetes 2013; 62. [PMID: 23193182 PMCID: PMC3581213 DOI: 10.2337/db12-0952] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ldb1 and Ldb2 are coregulators that mediate Lin11-Isl1-Mec3 (LIM)-homeodomain (HD) and LIM-only transcription factor-driven gene regulation. Although both Ldb1 and Ldb2 mRNA were produced in the developing and adult pancreas, immunohistochemical analysis illustrated a broad Ldb1 protein expression pattern during early pancreatogenesis, which subsequently became enriched in islet and ductal cells perinatally. The islet-enriched pattern of Ldb1 was similar to pan-endocrine cell-expressed Islet-1 (Isl1), which was demonstrated in this study to be the primary LIM-HD transcription factor in developing and adult islet cells. Endocrine cell-specific removal of Ldb1 during mouse development resulted in a severe reduction of hormone⁺ cell numbers (i.e., α, β, and δ) and overt postnatal hyperglycemia, reminiscent of the phenotype described for the Isl1 conditional mutant. In contrast, neither endocrine cell development nor function was affected in the pancreas of Ldb2(-/-) mice. Gene expression and chromatin immunoprecipitation (ChIP) analyses demonstrated that many important Isl1-activated genes were coregulated by Ldb1, including MafA, Arx, insulin, and Glp1r. However, some genes (i.e., Hb9 and Glut2) only appeared to be impacted by Ldb1 during development. These findings establish Ldb1 as a critical transcriptional coregulator during islet α-, β-, and δ-cell development through Isl1-dependent and potentially Isl1-independent control.
Collapse
Affiliation(s)
- Chad S. Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Shilpy Dixit
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
| | - Tsadok Cohen
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Ediger
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Crystal Wilcox
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Mark Ferreira
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Heiner Westphal
- Section on Mammalian Molecular Genetics, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville Tennessee
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
- Corresponding authors: Roland Stein, , and Catherine Lee May,
| |
Collapse
|
36
|
Sartori DJ, Wilbur CJ, Long SY, Rankin MM, Li C, Bradfield JP, Hakonarson H, Grant SFA, Pu WT, Kushner JA. GATA factors promote ER integrity and β-cell survival and contribute to type 1 diabetes risk. Mol Endocrinol 2013; 28:28-39. [PMID: 24284823 DOI: 10.1210/me.2013-1265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pancreatic β-cell survival remains poorly understood despite decades of research. GATA transcription factors broadly regulate embryogenesis and influence survival of several cell types, but their role in adult β-cells remains undefined. To investigate the role of GATA factors in adult β-cells, we derived β-cell-inducible Gata4- and Gata6-knockout mice, along with whole-body inducible Gata4 knockouts. β-Cell Gata4 deletion modestly increased the proportion of dying β-cells in situ with ultrastructural abnormalities suggesting endoplasmic reticulum (ER) stress. Notably, glucose homeostasis was not grossly altered in Gata4- and Gata6-knockout mice, suggesting that GATA factors do not have essential roles in β-cells. Several ER stress signals were up-regulated in Gata4 and Gata6 knockouts, most notably CHOP, a known regulator of ER stress-induced apoptosis. However, ER stress signals were not elevated to levels observed after acute thapsigargin administration, suggesting that GATA deficiency only caused mild ER stress. Simultaneous deletion of Gata4 and CHOP partially restored β-cell survival. In contrast, whole-body inducible Gata4 knockouts displayed no evidence of ER stress in other GATA4-enriched tissues, such as heart. Indeed, distinct GATA transcriptional targets were differentially expressed in islets compared with heart. Such β-cell-specific findings prompted study of a large meta-analysis dataset to investigate single nucleotide polymorphisms harbored within the human GATA4 locus, revealing several variants significantly associated with type 1 diabetes mellitus. We conclude that GATA factors have important but nonessential roles to promote ER integrity and β-cell survival in a tissue-specific manner and that GATA factors likely contribute to type 1 diabetes mellitus pathogenesis.
Collapse
Affiliation(s)
- Daniel J Sartori
- Division of Endocrinology and Diabetes (D.J.S., C.J.W., S.Y.L., M.M.R., C.L.), Children's Hospital of Philadelphia, Department of Pediatrics (H.H., S.F.A.G.), Perelman School of Medicine, and Center for Applied Genomics (J.P.B., H.H., S.F.A.G.), Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; Department of Cardiology (W.T.P.), Children's Hospital, Boston, Harvard Medical School, Boston, Massachusetts 02115; Section of Pediatric Diabetes and Endocrinology (J.A.K.), Baylor College of Medicine, Houston, Texas 77030; and Diabetes and Endocrinology Service (J.A.K.), Texas Children's Hospital, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bonnefond A, Sand O, Guerin B, Durand E, De Graeve F, Huyvaert M, Rachdi L, Kerr-Conte J, Pattou F, Vaxillaire M, Polak M, Scharfmann R, Czernichow P, Froguel P. GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia 2012; 55:2845-2847. [PMID: 22806356 DOI: 10.1007/s00125-012-2645-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/15/2012] [Indexed: 11/27/2022]
Affiliation(s)
- A Bonnefond
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France
- Lille Nord de France University, Lille, France
| | - O Sand
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France
- Lille Nord de France University, Lille, France
| | - B Guerin
- Department of Paediatrics, Hospital of Pau, Pau, France
| | - E Durand
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France
- Lille Nord de France University, Lille, France
| | - F De Graeve
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France
- Lille Nord de France University, Lille, France
| | - M Huyvaert
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France
- Lille Nord de France University, Lille, France
| | - L Rachdi
- Inserm-U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
| | - J Kerr-Conte
- Lille Nord de France University, Lille, France
- Inserm-U859, Lille, France
| | - F Pattou
- Lille Nord de France University, Lille, France
- Inserm-U859, Lille, France
- Department of Endocrine Surgery, Hospital of Lille, Lille, France
| | - M Vaxillaire
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France
- Lille Nord de France University, Lille, France
| | - M Polak
- Inserm-U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
- Department of Paediatric Endocrinology, Necker Enfants Malades Hospital, Paris, France
| | - R Scharfmann
- Inserm-U845, Research Center Growth and Signalling, Paris Descartes University, Sorbonne Paris Cité, Necker Hospital, Paris, France
| | - P Czernichow
- Department of Paediatric Endocrinology, Necker Enfants Malades Hospital, Paris, France
| | - P Froguel
- Genomics and Metabolic Diseases, CNRS UMR8199 - Lille Institute of Biology, 1, Rue du Prof Calmette, B.P. 245, 59019, Lille Cedex, France.
- Lille Nord de France University, Lille, France.
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK.
| |
Collapse
|
38
|
Xuan S, Borok MJ, Decker KJ, Battle MA, Duncan SA, Hale MA, Macdonald RJ, Sussel L. Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis. J Clin Invest 2012; 122:3516-28. [PMID: 23006325 DOI: 10.1172/jci63352] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022] Open
Abstract
Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.
Collapse
Affiliation(s)
- Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Carrasco M, Delgado I, Soria B, Martín F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest 2012; 122:3504-15. [PMID: 23006330 DOI: 10.1172/jci63240] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/12/2012] [Indexed: 01/21/2023] Open
Abstract
Recently, heterozygous mutations in GATA6 have been found in neonatal diabetic patients with failed pancreatic organogenesis. To investigate the roles of GATA4 and GATA6 in mouse pancreas organogenesis, we conditionally inactivated these genes within the pancreas. Single inactivation of either gene did not have a major impact on pancreas formation, indicating functional redundancy. However, double Gata4/Gata6 mutant mice failed to develop pancreata, died shortly after birth, and displayed hyperglycemia. Morphological defects in Gata4/Gata6 mutant pancreata were apparent during embryonic development, and the epithelium failed to expand as a result of defects in cell proliferation and differentiation. The number of multipotent pancreatic progenitors, including PDX1+ cells, was reduced in the Gata4/Gata6 mutant pancreatic epithelium. Remarkably, deletion of only 1 Gata6 allele on a Gata4 conditional knockout background severely reduced pancreatic mass. In contrast, a single WT allele of Gata4 in Gata6 conditional knockout mice was sufficient for normal pancreatic development, indicating differential contributions of GATA factors to pancreas formation. Our results place GATA factors at the top of the transcriptional network hierarchy controlling pancreas organogenesis.
Collapse
Affiliation(s)
- Manuel Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | | | | | | | | |
Collapse
|
40
|
Birnbaum DJ, Adélaïde J, Mamessier E, Finetti P, Lagarde A, Monges G, Viret F, Gonçalvès A, Turrini O, Delpero JR, Iovanna J, Giovannini M, Birnbaum D, Chaffanet M. Genome profiling of pancreatic adenocarcinoma. Genes Chromosomes Cancer 2011; 50:456-65. [PMID: 21412932 DOI: 10.1002/gcc.20870] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/15/2011] [Indexed: 02/06/2023] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive human cancers. It displays many different chromosomal abnormalities and mutations. By using 244 K high-resolution array-comparative genomic hybridization (aCGH) we studied the genome alterations of 39 fine-needle aspirations from pancreatic adenocarcinoma and eight human adenocarcinoma pancreatic cell lines. Using both visual inspection and GISTIC analysis, recurrent losses were observed on 1p, 3p, 4p, 6, 8p, 9, 10, 11q, 15q, 17, 18, 19p, 20p, 21, and 22 and comprised several known or suspected tumor suppressor genes such as ARHGEF10, ARID1A, CDKN2A/B, FHIT, PTEN, RB1, RUNX1-3, SMAD4, STK11/LKB1, TP53, and TUSC3. Heterozygous deletion of the 1p35-p36 chromosomal region was identified in one-third of the tumors and three of the cell lines. This region, commonly deleted in human cancers, contains several tumor suppressor genes including ARID1A and RUNX3. We identified frequent genetic gains on chromosome arms 1q, 3q, 5p, 6p, 7q, 8q, 12q, 15q, 18q, 19q, and 20q. Amplifications were observed in 16 tumors. AKT2, CCND3, CDK4, FOXA2, GATA6, MDM2, MYC, and SMURF1 genes were gained or amplified. The most obvious amplification was located at 18q11.2 and targeted the GATA6 gene, which plays a predominant role in the initial specification of the pancreas and in pancreatic cell type differentiation. In conclusion, we have identified novel biomarkers and potential therapeutic targets in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- David J Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Laboratoire d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tian Y, Zhang Y, Hurd L, Hannenhalli S, Liu F, Lu MM, Morrisey EE. Regulation of lung endoderm progenitor cell behavior by miR302/367. Development 2011; 138:1235-45. [PMID: 21350014 DOI: 10.1242/dev.061762] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The temporal and spatial control of organ-specific endoderm progenitor development is poorly understood. miRNAs affect cell function by regulating programmatic changes in protein expression levels. We show that the miR302/367 cluster is a target of the transcription factor Gata6 in mouse lung endoderm and regulates multiple aspects of early lung endoderm progenitor development. miR302/367 is expressed at early stages of lung development, but its levels decline rapidly as development proceeds. Gain- and loss-of-function studies show that altering miR302/367 expression disrupts the balance of lung endoderm progenitor proliferation and differentiation, as well as apical-basal polarity. Increased miR302/367 expression results in the formation of an undifferentiated multi-layered lung endoderm, whereas loss of miR302/367 activity results in decreased proliferation and enhanced lung endoderm differentiation. miR302/367 coordinates the balance between proliferation and differentiation, in part, through direct regulation of Rbl2 and Cdkn1a, whereas apical-basal polarity is controlled by regulation of Tiam1 and Lis1. Thus, miR302/367 directs lung endoderm development by coordinating multiple aspects of progenitor cell behavior, including proliferation, differentiation and apical-basal polarity.
Collapse
Affiliation(s)
- Ying Tian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Abstract
OBJECTIVES To identify gene expression alterations associated with insulinoma formation and progression in 2 mouse models of multiple endocrine neoplasia type 1. METHODS Mice were killed at 12 or 16 months, and pancreatic islets were isolated by enzymatic and physical disruption. Islets were separated by size representing control, normal, hyperplastic, and adenomous islets. RNA was isolated from these islets and profiled on Sentrix Mouse-6 Expression version 1 BeadChips. Array data were analyzed in GeneSpring. RESULTS One hundred and one genes that were significantly (P ≤ 0.05) altered in hyperplastic islets and insulinomas compared with normal islets were identified. Of these, 64 gene elements showed reduced messenger RNA levels and 37 gene elements had increased gene expression compared with control islets. Altered expression of 3 genes, namely, Gata6, Tspan8, and s100a8, was confirmed by quantitative reverse transcription-polymerase chain reaction, and aberrant levels of Tspan8 and Lmo2 protein measured by Western blot correlated with the changes in messenger RNA levels. CONCLUSIONS These results suggest that alterations in gene expression of Gata6, Tspan8, S100a8, and Lmo2 may act via novel pathways that play functionally important roles in Men1-associated tumor progression.
Collapse
|
44
|
D'Amato E, Giacopelli F, Giannattasio A, D'Annunzio G, Bocciardi R, Musso M, Lorini R, Ravazzolo R. Genetic investigation in an Italian child with an unusual association of atrial septal defect, attributable to a new familial GATA4 gene mutation, and neonatal diabetes due to pancreatic agenesis. Diabet Med 2010; 27:1195-200. [PMID: 20854389 DOI: 10.1111/j.1464-5491.2010.03046.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIMS Permanent neonatal diabetes is a rare condition affecting 1 in 300,000-400,000 live births; only in 60% of cases it is possible to identify the genetic defect. The condition of pancreatic agenesis is rarer still. Only two genes are known to determine this phenotype: PDX-1 and PTF1A. Congenital heart defects are among the most common developmental anomalies, affecting 1% of newborns, and the GATA4 gene is less frequently involved in these disorders. An Italian child with pancreatic agenesis and an atrial septal defect was genetically investigated to elucidate whether the association of the two pathologies was casual, or represented a new pancreatic/cardiac syndrome. METHODS A panel of pancreas development genes, including GCK, Kir6.2, PTF1A, PDX-1, HNF-1A, NgN3, SOX17, SOX7, SOX9, INS, HNF1-B and SUR1 plus the GATA4 gene, were screened for characterization of pancreatic agenesis and cardiac defect. RESULTS Screening for genes causing permanent neonatal diabetes was negative. A novel mutation in GATA4 (c1512C>T) was detected and functional characterization confirmed a reduced activity of the protein. In the family members, the GATA4 mutation co-segregates with a cardiac phenotype, but not with pancreatic agenesis. CONCLUSIONS We describe the first report of pancretic agenesis with an associated cardiac defect and a mutation in the GATA4 gene. We could not establish that the GATA4 mutation was causative for pancreatic agenesis and further genetic investigation to detect the genetic cause of the pancreas agenesis was unsuccessful. We conclude that, the two pathologies are attributable to two independent events.
Collapse
Affiliation(s)
- E D'Amato
- Department of Pediatrics, University of Genoa, IRCCS G. Gaslini, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Musson MC, Jepeal LI, Sharifnia T, Wolfe MM. Evolutionary conservation of glucose-dependent insulinotropic polypeptide (GIP) gene regulation and the enteroinsular axis. ACTA ACUST UNITED AC 2010; 164:97-104. [PMID: 20621665 DOI: 10.1016/j.regpep.2010.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 05/01/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP), an important component of the enteroinsular axis, is a potent stimulator of insulin secretion, functioning to maintain nutrient efficiency. Although well-characterized in mammals, little is known regarding GIP transcriptional regulation in Danio rerio (Dr). We previously demonstrated that DrGIP is expressed in the intestine and the pancreas, and we therefore cloned the Dr promoter to compare GIP transcriptional regulation in Dr and mammals. Although no significant homology was indentified between the highly conserved mammalian promoter and the DrGIP promoter, 1072-bp of the DrGIP promoter conferred tissue-specific expression in mammalian cell lines. Deletional analysis of the DrGIP promoter identified two regions that, when deleted, reduced transcription by 75% and 95%, respectively. Mutational analysis of the upstream region suggested involvement of an Nkx binding site, although we were unable to identify the factor binding to this site. The cis element in the downstream region was found to be a GATA binding site. Lastly, overexpression and shRNA experiments identified PAX4 as a potential repressor of DrGIP expression. These findings provide evidence that despite the identification of species-specific transcriptional regulators and differences in GIP expression patterns between D. rerio and mammals, a moderate degree of regulatory conservation appears to exist.
Collapse
Affiliation(s)
- Michelle C Musson
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
46
|
Rojas A, Schachterle W, Xu SM, Black BL. An endoderm-specific transcriptional enhancer from the mouse Gata4 gene requires GATA and homeodomain protein-binding sites for function in vivo. Dev Dyn 2010; 238:2588-98. [PMID: 19777593 DOI: 10.1002/dvdy.22091] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several transcription factors function in the specification and differentiation of the endoderm, including the zinc finger transcription factor GATA4. Despite its essential role in endoderm development, the transcriptional control of the Gata4 gene in the developing endoderm and its derivatives remains incompletely understood. Here, we identify a distal enhancer from the Gata4 gene, which directs expression exclusively to the visceral and definitive endoderm of transgenic mouse embryos. The activity of this enhancer is initially broad within the definitive endoderm but later restricts to developing endoderm-derived tissues, including pancreas, glandular stomach, and duodenum. The activity of this enhancer in vivo is dependent on evolutionarily-conserved HOX- and GATA-binding sites, which are bound by PDX-1 and GATA4, respectively. These studies establish Gata4 as a direct transcriptional target of homeodomain and GATA transcription factors in the endoderm and support a model in which GATA4 functions in the transcriptional network for pancreas formation.
Collapse
Affiliation(s)
- Anabel Rojas
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
47
|
Transcriptional Control of Acinar Development and Homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:1-40. [DOI: 10.1016/b978-0-12-385233-5.00001-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Mazaud Guittot S, Bouchard MF, Robert-Grenon JP, Robert C, Goodyer CG, Silversides DW, Viger RS. Conserved usage of alternative 5' untranslated exons of the GATA4 gene. PLoS One 2009; 4:e8454. [PMID: 20041118 PMCID: PMC2795200 DOI: 10.1371/journal.pone.0008454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/07/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND GATA4 is an essential transcription factor required for the development and function of multiple organs. Despite this important role, our knowledge of how the GATA4 gene is regulated remains limited. To better understand this regulation, we characterized the 5' region of the mouse, rat, and human GATA4 genes. METHODOLOGY/PRINCIPAL FINDINGS Using 5' RACE, we identified novel transcription start sites in all three species. GATA4 is expressed as multiple transcripts with varying 5' ends encoded by alternative untranslated first exons. Two of these non-coding first exons are conserved between species: exon 1a located 3.5 kb upstream of the GATA4 ATG site in exon 2, and a second first exon (exon 1b) located 28 kb further upstream. Expression of both mRNA variants was found in all GATA4-expressing organs but with a preference for the exon 1a-containing transcript. The exception was the testis where exon 1a- and 1b-containing transcripts were similarly expressed. In some tissues such as the intestine, alternative transcript expression appears to be regionally regulated. Polysome analysis suggests that both mRNA variants contribute to GATA4 protein synthesis. CONCLUSIONS/SIGNIFICANCE Taken together, our results indicate that the GATA4 gene closely resembles the other GATA family members in terms of gene structure where alternative first exon usage appears to be an important mechanism for regulating its tissue- and cell-specific expression.
Collapse
Affiliation(s)
- Séverine Mazaud Guittot
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Marie France Bouchard
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Jean-Philippe Robert-Grenon
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Claude Robert
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Cynthia G. Goodyer
- McGill University Health Centre-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | - Robert S. Viger
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Obstetrics and Gynecology, Laval University, Quebec City, Canada
- * E-mail:
| |
Collapse
|
49
|
Kappen C, Salbaum JM. Identification of regulatory elements in the Isl1 gene locus. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:935-46. [PMID: 19598113 DOI: 10.1387/ijdb.082819ck] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isl1 is a LIM/homeodomain transcription factor with critical roles for the development of the heart, the nervous system and the pancreas. Both deficiency and mis-expression of Isl1 cause profound developmental defects, demonstrating the importance of proper regulation of Isl1 gene expression during development. In order to understand the mechanisms that control Isl1 expression during embryogenesis and in tissue differentiation, we initiated a screen for gene regulatory elements in the Isl1 locus using a novel dual reporter gene vector that allows screens of large genomic regions through reporter gene assays in vitro and in vivo. We identified regions from the Isl1 gene locus that confer transcriptional activity in pancreatic cell lines in vitro. Using transgenic mice, we furthermore discovered an enhancer with in vivo specificity for the developing heart, as well as visceral and posterior mesoderm. Our findings further suggest that Foxo1 as well as Gata4 contribute to the activity of this enhancer in the developing embryo. We conclude that Isl1 gene expression is controlled in modular fashion by several elements with distinct functionality. Embryonic Isl1 expression in several tissues of mesodermal origin is driven by a specific enhancer that is located 3-6kb downstream of the gene.
Collapse
Affiliation(s)
- Claudia Kappen
- Pennington Biomedical Research Center, Baton Rouge, LA 71010, USA.
| | | |
Collapse
|
50
|
Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2008; 326:4-35. [PMID: 19013144 DOI: 10.1016/j.ydbio.2008.10.024] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 10/09/2008] [Accepted: 10/13/2008] [Indexed: 02/06/2023]
Abstract
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Collapse
Affiliation(s)
- George K Gittes
- Children's Hospital of Pittsburgh and the University of Pittsburgh School of Medicine, Department of Pediatric Surgery, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| |
Collapse
|