1
|
Johnston DS. Pre-clinical and early clinical considerations for the development of non-hormonal contraceptives for men. Andrology 2024; 12:1558-1567. [PMID: 39078256 DOI: 10.1111/andr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION This manuscript presents non-hormonal male contraceptive development in the context of mitigating risk to investigators and investors. OBJECTIVE The manuscript uses examples to illustrate drug development principles to move a project from discovery to development. The content is intended for those with reproductive biology backgrounds without significant exposure to drug development-particularly early-stage targeted drug development-and those with general interest in developing non-hormonal methods of contraception. CONCLUSION The goal of issues addressed in this manuscript is to facilitate the advancement of innovative male contraceptives into late-stage clinical trials, while keeping in mind early recognition of program deficiencies and development of mitigation strategies, or reassignment of limited, valuable resources.
Collapse
Affiliation(s)
- Daniel S Johnston
- Contraception Research Branch, Fertility and Infertility Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Singh V, Schimenti JC. Relevance, strategies, and added value of mouse models in androgenetics. Andrology 2024. [PMID: 39300831 DOI: 10.1111/andr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Male Infertility is a prevalent condition worldwide, and a substantial fraction of cases are thought to have a genetic basis. Investigations into the responsible genes is limited experimentally, so mice have been used extensively to identify genes required for fertility and to understand their functions. OBJECTIVES To review the progress made in reproductive genetics based on experiments in mice, the impact upon clinical fertility genetics, and discuss how evolving technologies will continue to advance our understanding of human infertility genes. RESULTS AND DISCUSSION Gene knockout studies in mice have shown that several hundreds of genes are required for normal fertility and that this number is much higher in males than in females. In addition to gene discovery, the mouse is a powerful platform for functionally dissecting genetic pathways, modeling putative human infertility variants, identifying contraceptive targets, and developing in vitro gametogenesis. CONCLUSION These ongoing studies in mice have made an enormous contribution to our understanding of the genetics of human reproduction in the sense that the "parts list" of genes for mammalian gametogenesis is being elucidated. This would have been impossible to do in humans, and in vitro systems are not yet adequate to associate genes with andrological phenotypes, especially in the germline.
Collapse
Affiliation(s)
- Vertika Singh
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
| | - John C Schimenti
- Department of Biomedical Sciences, Cornell College of Veterinary Medicine, Ithaca, New York, USA
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Wagner AO, Turk A, Kunej T. Towards a Multi-Omics of Male Infertility. World J Mens Health 2023; 41:272-288. [PMID: 36649926 PMCID: PMC10042660 DOI: 10.5534/wjmh.220186] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023] Open
Abstract
Infertility is a common problem affecting one in six couples and in 30% of infertile couples, the male factor is a major cause. A large number of genes are involved in spermatogenesis and a significant proportion of male infertility phenotypes are of genetic origin. Studies on infertility have so far primarily focused on chromosomal abnormalities and sequence variants in protein-coding genes and have identified a large number of disease-associated genes. However, it has been shown that a multitude of factors across various omics levels also contribute to infertility phenotypes. The complexity of male infertility has led to the understanding that an integrated, multi-omics analysis may be optimal for unravelling this disease. While there is a vast array of different factors across omics levels associated with infertility, the present review focuses on known factors from the genomics, epigenomics, transcriptomics, proteomics, metabolomics, glycomics, lipidomics, miRNomics, and integrated omics levels. These include: repeat expansions in AR, POLG, ATXN1, DMPK, and SHBG, multiple SNPs, copy number variants in the AZF region, disregulated miRNAs, altered H3K9 methylation, differential MTHFR, MEG3, PEG1, and LIT1 methylation, altered protamine ratios and protein hypo/hyperphosphorylation. This integrative review presents a step towards a multi-omics approach to understanding the complex etiology of male infertility. Currently only a few genetic factors, namely chromosomal abnormalities and Y chromosome microdeletions, are routinely tested in infertile men undergoing intracytoplasmic sperm injection. A multi-omics approach to understanding infertility phenotypes may yield a more holistic view of the disease and contribute to the development of improved screening methods and treatment options. Therefore, beside discovering as of yet unknown genetic causes of infertility, integrating multiple fields of study could yield valuable contributions to the understanding of disease development. Future multi-omics studies will enable to synthesise fragmented information and facilitate biomarker discovery and treatments in male infertility.
Collapse
Affiliation(s)
- Ana Ogrinc Wagner
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Aleksander Turk
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia.
| |
Collapse
|
4
|
Martin PB, Kigoshi-Tansho Y, Sher RB, Ravenscroft G, Stauffer JE, Kumar R, Yonashiro R, Müller T, Griffith C, Allen W, Pehlivan D, Harel T, Zenker M, Howting D, Schanze D, Faqeih EA, Almontashiri NAM, Maroofian R, Houlden H, Mazaheri N, Galehdari H, Douglas G, Posey JE, Ryan M, Lupski JR, Laing NG, Joazeiro CAP, Cox GA. NEMF mutations that impair ribosome-associated quality control are associated with neuromuscular disease. Nat Commun 2020; 11:4625. [PMID: 32934225 PMCID: PMC7494853 DOI: 10.1038/s41467-020-18327-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway—Ribosome-associated Quality Control (RQC)—by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF’s role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration. Defective protein quality control is a key feature of neurodegeneration. Here, the authors show that mutations in Nemf/NEMF, a component of the Ribosome-associated Quality Control complex, have a neurodegenerative effect in mice and may underlie neuromuscular disease in seven unrelated families.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME, USA.,The University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME, USA
| | - Yu Kigoshi-Tansho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Roger B Sher
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA.,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | | | - Rajesh Kumar
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ryo Yonashiro
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Tina Müller
- Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | | | - William Allen
- Mission Fullerton Genetics Center, Mission Health, Asheville, NC, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Denise Howting
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Denny Schanze
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Eissa A Faqeih
- Department of Genetics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- The Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia.,Faculty of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Reza Maroofian
- Neurogenetics Laboratory, UCL Queen Square Institute of Neurology, London, UK.,The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Neurogenetics Laboratory, UCL Queen Square Institute of Neurology, London, UK.,The National Hospital for Neurology and Neurosurgery, London, UK
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Monique Ryan
- Department of Neurology, The Royal Children's Hospital, Melbourne, VIC, Australia.,Murdoch Children's Research Institute and University of Melbourne, Melbourne, VIC, Australia
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany. .,Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
| | | |
Collapse
|
5
|
Unpackaging the genetics of mammalian fertility: strategies to identify the “reproductive genome”†. Biol Reprod 2018; 99:1119-1128. [DOI: 10.1093/biolre/ioy133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022] Open
|
6
|
Male Infertility Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross. Genetics 2017; 206:557-572. [PMID: 28592496 DOI: 10.1534/genetics.116.199596] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.
Collapse
|
7
|
Sabetian S, Shamsir MS. Deficiency in Sperm-Egg Protein Interaction as a Major Cause of Fertilization Failure. J Membr Biol 2017; 250:133-144. [PMID: 28280854 DOI: 10.1007/s00232-017-9954-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/21/2017] [Indexed: 11/29/2022]
Abstract
Complete elucidation of fertilization process at molecular level is one of the unresolved challenges in sexual reproduction studies, and understanding the molecular mechanism is crucial in overcoming difficulties in infertility and unsuccessful in vitro fertilization. Sperm-oocyte interaction is one of the most remarkable events in fertilization process, and deficiency in protein-protein interactions which mediate this interaction is a major cause of unexplained infertility. Due to detection of how the various defects of sperm-oocyte interaction can affect fertilization failure, different experimental methods have been applied. This review summarizes the current understanding of sperm-egg interaction mechanism during fertilization and also accumulates the different types of sperm-egg interaction abnormalities and their association with infertility. Several detection approaches regarding sperm-egg protein interactions and the associated defects are reviewed in this paper.
Collapse
Affiliation(s)
- Soudabeh Sabetian
- Department of Biological and Health Sciences, Faculty of Bioscience & Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia.
| | - Mohd Shahir Shamsir
- Department of Biological and Health Sciences, Faculty of Bioscience & Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia.
| |
Collapse
|
8
|
Li Y, Li C, Lin S, Yang B, Huang W, Wu H, Chen Y, Yang L, Luo M, Guo H, Chen J, Wang T, Ma Q, Gu Y, Mou L, Jiang Z, Xia J, Gui Y. A nonsense mutation in Ccdc62 gene is responsible for spermiogenesis defects and male infertility in repro29/repro29 mice. Biol Reprod 2017; 96:587-597. [PMID: 28339613 DOI: 10.1095/biolreprod.116.141408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 01/24/2017] [Indexed: 02/05/2023] Open
Abstract
Phenotype-driven mutagenesis is an unbiased method to identify novel genes involved in spermatogenesis and other reproductive processes. Male repro29/repro29 mice generated by the Reproductive Genomics Program at the Jackson Laboratory were infertile with deformed sperm and poor motility. Using selected exonic capture and massively parallel sequencing technologies, we identified a nonsense mutation in the exon 6 of coiled-coil domain-containing 62 gene (Ccdc62), which results in a formation of a premature stop codon and a truncated protein. Among the tissues examined, CCDC62 was found to be expressed at the highest level in mouse testis by reverse transcriptase-PCR (RT-PCR) and Western blot analysis. With immunofluorescent staining, we demonstrated that CCDC62 was expressed in the cytoplasm and the developing acrosome in the spematids of mouse testis, and was specifically localized at the acrosome in mature sperm. The complementation analysis by mating repro29/+ mice with Ccdc62 -/- mice (generated by CRISPR-Cas9 strategy) further provided genetic proof that the infertility of repro29/repro29 mice was caused by Ccdc62 mutation. Finally, it was found that intracellular colocalization and interaction of CCDC62 and Golgi-associated PDZ and coiled-coil motif-containing protein may be important for acrosome formation. Taken together, this study identified a nonsense mutation in Ccdc62, which directly results in male infertility in repro29/repro29 mice.
Collapse
Affiliation(s)
- Yuchi Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Cailing Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
- Department of Physiology, Shantou University Medical College, Shantou, P.R. China
| | - Shouren Lin
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Hanwei Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Yuanbin Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Lihua Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Manling Luo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
- Department of Physiology, Shantou University Medical College, Shantou, P.R. China
| | - Huan Guo
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Jianbo Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Tiantian Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Qian Ma
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Yanli Gu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Lisha Mou
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Shenzhen, P.R. China
| | - Zhimao Jiang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| | - Jun Xia
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, P.R. China
| |
Collapse
|
9
|
The Founder Strains of the Collaborative Cross Express a Complex Combination of Advantageous and Deleterious Traits for Male Reproduction. G3-GENES GENOMES GENETICS 2015; 5:2671-83. [PMID: 26483008 PMCID: PMC4683640 DOI: 10.1534/g3.115.020172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surveys of inbred strains of mice are standard approaches to determine the heritability and range of phenotypic variation for biomedical traits. In addition, they may lead to the identification of novel phenotypes and models of human disease. Surprisingly, male reproductive phenotypes are among the least-represented traits in the Mouse Phenome Database. Here we report the results of a broad survey of the eight founder inbred strains of both the Collaborative Cross (CC) and the Diversity Outbred populations, two new mouse resources that are being used as platforms for systems genetics and sources of mouse models of human diseases. Our survey includes representatives of the three main subspecies of the house mice and a mix of classical and wild-derived inbred strains. In addition to standard staples of male reproductive phenotyping such as reproductive organ weights, sperm counts, and sperm morphology, our survey includes sperm motility and the first detailed survey of testis histology. As expected for such a broad survey, heritability varies widely among traits. We conclude that although all eight inbred strains are fertile, most display a mix of advantageous and deleterious male reproductive traits. The CAST/EiJ strain is an outlier, with an unusual combination of deleterious male reproductive traits including low sperm counts, high levels of morphologically abnormal sperm, and poor motility. In contrast, sperm from the PWK/PhJ and WSB/EiJ strains had the greatest percentages of normal morphology and vigorous motility. Finally, we report an abnormal testis phenotype that is highly heritable and restricted to the WSB/EiJ strain. This phenotype is characterized by the presence of a large, but variable, number of vacuoles in at least 10% of the seminiferous tubules. The onset of the phenotype between 2 and 3 wk of age is temporally correlated with the formation of the blood-testis barrier. We speculate that this phenotype may play a role in high rates of extinction in the CC project and in the phenotypes associated with speciation in genetic crosses that use the WSB/EiJ strain as representative of the Mus muculus domesticus subspecies.
Collapse
|
10
|
Hirawatari K, Hanzawa N, Miura I, Wakana S, Gotoh H. A Cascade of epistatic interactions regulating teratozoospermia in mice. Mamm Genome 2015; 26:248-56. [PMID: 25963976 DOI: 10.1007/s00335-015-9566-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Infertility in humans and subfertility in domestic animals are two major reproductive problems. Among human couples, ~15% are diagnosed as infertile, and males are considered responsible in about 50% of the cases. To examine male fertility, various sperm tests including analyses of sperm morphology, sperm count and sperm mobility are usually performed. Teratozoospermia, a condition characterized by the presence of morphologically abnormal sperm, is considered as a symptom of infertility. B10.MOL-TEN1 (TEN1) mice (Mus musculus) show inherited teratozoospermia at high frequencies (~50%). In this study, the polygenic control of teratozoospermia in the TEN1 strain was analysed. A quantitative trait loci analysis indicated three statistically significant loci, Sperm-head morphology 3 (Shm3; logarithm of the odds (LOD) score, 29.25), Shm4 (LOD score, 6.80), and Shm5 (LOD score, 3.58). These three QTL peaks were mapped to 24.3 centimorgans (cM) on chromosome 1, 32.0 cM on chromosome X, and 63.8 cM on chromosome 6, respectively. Another locus that is yet to be determined was also predicted. Shm3 was found to be the major locus responsible for teratozoospermia, and a sequential cascade of interactions of the other three loci was apparent. These results are expected to help understand the mechanisms underlying reproductive problems in humans or domestic animals.
Collapse
Affiliation(s)
- Keitaro Hirawatari
- Animal Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | | | | | | | | |
Collapse
|
11
|
Hirawatari K, Hanzawa N, Kuwahara M, Aoyama H, Miura I, Wakana S, Gotoh H. Polygenic expression of teratozoospermia and normal fertility in B10.MOL-TEN1 mouse strain. Congenit Anom (Kyoto) 2015; 55:92-8. [PMID: 25559406 PMCID: PMC6680107 DOI: 10.1111/cga.12102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022]
Abstract
Subfertility and infertility are two major reproductive health problems in human and domestic animals. The contribution of the genotype to these conditions is poorly understood. To examine the genetic basis of male subfertility, we analyzed its relationship to sperm morphology in B10.MOL-TEN1 mice, which shows high-frequencies (about 50%) of morphologically abnormal sperm. Drastic histological changes were also found in the testis of the B10.MOL-TEN1. Segregation analysis showed that the abnormal sperm phenotype in B10.MOL-TEN1 was inherited and was predictably controlled by at least three loci. We also found that male fertility of this strain was normal. These findings indicate a complicated relationship between sperm morphology and male subfertility.
Collapse
Affiliation(s)
- Keitaro Hirawatari
- Animal Genome Research Unit, Agrogenomics Research CenterNational Institute of Agrobiological SciencesTsukubaIbarakiJapan
- Graduate School of Science and EngineeringYamagata UniversityYamagataJapan
| | - Naoto Hanzawa
- Graduate School of Science and EngineeringYamagata UniversityYamagataJapan
| | - Maki Kuwahara
- Toxicology DivisionInstitute of Environmental ToxicologyJosoIbarakiJapan
| | - Hiroaki Aoyama
- Toxicology DivisionInstitute of Environmental ToxicologyJosoIbarakiJapan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype AnalysisRIKEN BioResource CenterTsukubaIbarakiJapan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype AnalysisRIKEN BioResource CenterTsukubaIbarakiJapan
| | - Hideo Gotoh
- Animal Genome Research Unit, Agrogenomics Research CenterNational Institute of Agrobiological SciencesTsukubaIbarakiJapan
| |
Collapse
|
12
|
Nuclear localization of PRDM9 and its role in meiotic chromatin modifications and homologous synapsis. Chromosoma 2015; 124:397-415. [PMID: 25894966 DOI: 10.1007/s00412-015-0511-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/13/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
Abstract
Developmental progress of germ cells through meiotic phases is closely tied to ongoing meiotic recombination. In mammals, recombination preferentially occurs in genomic regions known as hotspots; the protein that activates these hotspots is PRDM9, containing a genetically variable zinc finger (ZNF) domain and a PR-SET domain with histone H3K4 trimethyltransferase activity. PRDM9 is required for fertility in mice, but little is known about its localization and developmental dynamics. Application of spermatogenic stage-specific markers demonstrates that PRDM9 accumulates in male germ cell nuclei at pre-leptonema to early leptonema but is no longer detectable in nuclei by late zygonema. By the pachytene stage, PRDM9-dependent histone H3K4 trimethyl marks on hotspots also disappear. PRDM9 localizes to nuclei concurrently with the deposition of meiotic cohesin complexes, but is not required for incorporation of cohesin complex proteins into chromosomal axial elements, or accumulation of normal numbers of RAD51 foci on meiotic chromatin by late zygonema. Germ cells lacking PRDM9 exhibit inefficient homology recognition and synapsis, with aberrant repair of meiotic DNA double-strand breaks and transcriptional abnormalities characteristic of meiotic silencing of unsynapsed chromatin. Together, these results on the developmental time course for nuclear localization of PRDM9 establish its direct window of function and demonstrate the independence of chromosome axial element formation from the concurrent PRDM9-mediated activation of recombination hotspots.
Collapse
|
13
|
Zhang Z, Elsayed AK, Shi Q, Zhang Y, Zuo Q, Li D, Lian C, Tang B, Xiao T, Xu Q, Chang G, Chen G, Zhang L, Wang K, Wang Y, Jin K, Wang Y, Song J, Cui H, Li B. Crucial genes and pathways in chicken germ stem cell differentiation. J Biol Chem 2015; 290:13605-21. [PMID: 25847247 DOI: 10.1074/jbc.m114.601401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Indexed: 12/16/2022] Open
Abstract
Male germ cell differentiation is a subtle and complex regulatory process. Currently, its regulatory mechanism is still not fully understood. In our experiment, we performed the first comprehensive genome and transcriptome-wide analyses of the crucial genes and signaling pathways in three kinds of crucial cells (embryonic stem cells, primordial germ cell, and spermatogonial stem cells) that are associated with the male germ cell differentiation. We identified thousands of differentially expressed genes in this process, and from these we chose 173 candidate genes, of which 98 genes were involved in cell differentiation, 19 were involved in the metabolic process, and 56 were involved in the differentiation and metabolic processes, like GAL9, AMH, PLK1, and PSMD7 and so on. In addition, we found that 18 key signaling pathways were involved mainly in cell proliferation, differentiation, and signal transduction processes like TGF-β, Notch, and Jak-STAT. Further exploration found that the candidate gene expression patterns were the same between in vitro induction experiments and transcriptome results. Our results yield clues to the mechanistic basis of male germ cell differentiation and provide an important reference for further studies.
Collapse
Affiliation(s)
- Zhentao Zhang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Ahmed Kamel Elsayed
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China, the Anatomy and Embryology Department, College of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Qingqing Shi
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Yani Zhang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China,
| | - Qisheng Zuo
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Dong Li
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Chao Lian
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Beibei Tang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Tianrong Xiao
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Qi Xu
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Guobin Chang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Guohong Chen
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Lei Zhang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Kehua Wang
- the Poultry Institute, Chinese Academy of Agricultural Sciences, 225009 Yangzhou, China
| | - Yingjie Wang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Kai Jin
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Yilin Wang
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Jiuzhou Song
- the Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20740, and
| | - Hengmi Cui
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China
| | - Bichun Li
- From the College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, China,
| |
Collapse
|
14
|
Petit FG, Kervarrec C, Jamin SP, Smagulova F, Hao C, Becker E, Jégou B, Chalmel F, Primig M. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod 2015; 92:71. [PMID: 25609838 DOI: 10.1095/biolreprod.114.126250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genome-wide RNA profiling studies have identified hundreds of transcripts that are highly expressed in mammalian male germ cells, including many that are undetectable in somatic control tissues. Among them, genes important for spermatogenesis are significantly enriched. Information about mRNAs and their cognate proteins facilitates the identification of novel conserved target genes for functional studies in the mouse. By inspecting genome-wide RNA profiling data, we manually selected 81 genes for which RNA is detected almost exclusively in the human male germline and, in most cases, in rodent testicular germ cells. We observed corresponding mRNA/protein patterns in 43 cases using immunohistochemical data from the Human Protein Atlas and large-scale human protein profiling data obtained via mass spectroscopy. Protein network information enabled us to establish an interaction map of 38 proteins that points to potentially important testicular roles for some of them. We further characterized six candidate genes at the protein level in the mouse. We conclude that conserved genes induced in testis tend to show similar mRNA/protein expression patterns across species. Specifically, our results suggest roles during embryogenesis and adult spermatogenesis for Foxr1 and Sox30 and during spermiogenesis and fertility for Fam71b, 1700019N19Rik, Hmgb4, and Zfp597.
Collapse
Affiliation(s)
| | | | - Soazik P Jamin
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Chunxiang Hao
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | | | - Bernard Jégou
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| | | | - Michael Primig
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France EHESP-School of Public Health, Rennes, France
| |
Collapse
|
15
|
Fujiwara Y, Matsumoto H, Akiyama K, Srivastava A, Chikushi M, Ann Handel M, Kunieda T. An ENU-induced mutation in the mouse Rnf212 gene is associated with male meiotic failure and infertility. Reproduction 2014; 149:67-74. [PMID: 25342176 DOI: 10.1530/rep-14-0122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ENU-induced repro57 mutation was identified in an unbiased screen for the discovery of novel genes for fertility. Male repro57 homozygous mice are infertile and exhibit significantly reduced testis weight compared with WT mice. Histological examination of mutant testes revealed that spermatocytes degenerated during late prophase, and no mature spermatozoa were found in the seminiferous epithelium, suggesting that infertility is caused by the arrest of spermatogenesis at late meiotic prophase. Consistent with this hypothesis, the number of foci with MLH1, a protein essential for crossing over, is greatly reduced in repro57 mutant spermatocytes, which also lack chiasmata between homologs and exhibit premature dissociation of XY chromosomes. In repro57 mutant mice, we identified a mutation in the Rnf212 gene, encoding Ring finger protein 212. The overall phenotype of repro57 mice is consistent with the recently reported phenotype of the Rnf212 knockout mice; slight differences may be due to genetic background effects. Thus, the repro57 nonsense mutation provides a new allele of the mouse Rnf212 gene.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hirokazu Matsumoto
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kouyou Akiyama
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Anuj Srivastava
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mizuho Chikushi
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mary Ann Handel
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tetsuo Kunieda
- Graduate School of Natural Science and TechnologyOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, JapanThe Jackson Laboratory600 Main Street, Bar Harbor, Maine 04609, USAGraduate School of Environmental and Life ScienceOkayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
16
|
Abstract
Spermiogenesis in mammals is the process by which the newly formed products of meiosis, haploid spermatids, undergo a dramatic morphological transformation from round cells into flagellated spermatozoa. The underlying genetic control of spermiogenesis is complicated and not well-characterized. We have used forward genetic screens in mice to illuminate the mechanisms of spermatozoon development. Here, we report that the oligoasthenoteratospermia in a male-specific infertility mutant (esgd12d) is attributable to disruption of a gene called Iqcg (IQ motif-containing G). The causality of the mutation was confirmed with a targeted null allele. Loss of Iqcg disrupts spermiogenesis such that tail formation either occurs incompletely or breaks apart from the sperm heads. Orthologs are present in diverse species as distant as hemichordates, mollusks, and green algae. Consistent with a conserved role in flagellar formation and/or function, the orthologous Chlamydomonas protein is present in that organism's flagella. Because IQ motif-containing genes typically regulate calmodulin (CaM), which in turn can impact the actin cytoskeleton, these findings suggest a potential role for localized calcium signaling in sperm flagellum morphogenesis.
Collapse
|
17
|
CHP1-mediated NHE1 biosynthetic maturation is required for Purkinje cell axon homeostasis. J Neurosci 2013; 33:12656-69. [PMID: 23904602 DOI: 10.1523/jneurosci.0406-13.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axon degeneration is a critical pathological feature of many neurodegenerative diseases. Misregulation of local axonal ion homeostasis has been recognized as an important yet understudied mechanism for axon degeneration. Here we report a chemically induced, recessive mouse mutation, vacillator (vac), which causes ataxia and concomitant axon degeneration of cerebellar Purkinje cells. By positional cloning, we identified vac as a point mutation in the calcineurin-like EF hand protein 1 (Chp1) gene that resulted in the production of mutant CHP1 isoforms with an amino acid substitution in a functional EF-hand domain or a truncation of this motif by aberrant splicing and significantly reduced protein levels. CHP1 has been previously shown to interact with the sodium hydrogen exchanger 1 (NHE1), a major regulator of intracellular pH. We demonstrated that CHP1 assists in the full glycosylation of NHE1 that is necessary for the membrane localization of this transporter and that truncated isoforms of CHP1 were defective in stimulating NHE1 biosynthetic maturation. Consistent with this, membrane localization of NHE1 at axon terminals was greatly reduced in Chp1-deficient Purkinje cells before axon degeneration. Furthermore, genetic ablation of Nhe1 also resulted in Purkinje cell axon degeneration, pinpointing the functional convergence of the two proteins. Our findings clearly demonstrate that the polarized presynaptic localization of NHE/CHP1 is an important feature of neuronal axons and that selective disruption of NHE1-mediated proton homeostasis in axons can lead to degeneration, suggesting that local regulation of pH is pivotal for axon survival.
Collapse
|
18
|
Gómez R, Jordan PW, Viera A, Alsheimer M, Fukuda T, Jessberger R, Llano E, Pendás AM, Handel MA, Suja JA. Dynamic localization of SMC5/6 complex proteins during mammalian meiosis and mitosis suggests functions in distinct chromosome processes. J Cell Sci 2013; 126:4239-52. [PMID: 23843628 DOI: 10.1242/jcs.130195] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four members of the structural maintenance of chromosome (SMC) protein family have essential functions in chromosome condensation (SMC2/4) and sister-chromatid cohesion (SMC1/3). The SMC5/6 complex has been implicated in chromosome replication, DNA repair and chromosome segregation in somatic cells, but its possible functions during mammalian meiosis are unknown. Here, we show in mouse spermatocytes that SMC5 and SMC6 are located at the central region of the synaptonemal complex from zygotene until diplotene. During late diplotene both proteins load to the chromocenters, where they colocalize with DNA Topoisomerase IIα, and then accumulate at the inner domain of the centromeres during the first and second meiotic divisions. Interestingly, SMC6 and DNA Topoisomerase IIα colocalize at stretched strands that join kinetochores during the metaphase II to anaphase II transition, and both are observed on stretched lagging chromosomes at anaphase II following treatment with Etoposide. During mitosis, SMC6 and DNA Topoisomerase IIα colocalize at the centromeres and chromatid axes. Our results are consistent with the participation of SMC5 and SMC6 in homologous chromosome synapsis during prophase I, chromosome and centromere structure during meiosis I and mitosis and, with DNA Topoisomerase IIα, in regulating centromere cohesion during meiosis II.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Biología, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fujiwara Y, Ogonuki N, Inoue K, Ogura A, Handel MA, Noguchi J, Kunieda T. t-SNARE Syntaxin2 (STX2) is implicated in intracellular transport of sulfoglycolipids during meiotic prophase in mouse spermatogenesis. Biol Reprod 2013; 88:141. [PMID: 23595907 DOI: 10.1095/biolreprod.112.107110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Syntaxin2 (STX2), also known as epimorphin, is a member of the SNARE family of proteins, with expression in various types of cells. We previously identified an ENU-induced mutation, repro34, in the mouse Stx2 gene. The Stx2(repro34) mutation causes male-restricted infertility due to syncytial multinucleation of spermatogenic cells during meiotic prophase. A similar phenotype is also observed in mice with targeted inactivation of Stx2, as well as in mice lacking enzymes involved in sulfoglycolipid synthesis. Herein we analyzed expression and subcellular localization of STX2 and sulfoglycolipids in spermatogenesis. The STX2 protein localizes to the cytoplasm of germ cells at the late pachytene stage. It is found in a distinct subcellular pattern, presumably in the Golgi apparatus of pachytene/diplotene spermatocytes. Sulfoglycolipids are produced in the Golgi apparatus and transported to the plasma membrane. In Stx2(repro34) mutants, sulfoglycolipids are aberrantly localized in both pachytene/diplotene spermatocytes and in multinucleated germ cells. These results suggest that STX2 plays roles in transport and/or subcellular distribution of sulfoglycolipids. STX2 function in the Golgi apparatus and sulfoglycolipids may be essential for maintenance of the constriction between neighboring developing spermatocytes, which ensures ultimate individualization of germ cells in later stages of spermatogenesis.
Collapse
Affiliation(s)
- Yasuhiro Fujiwara
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Lin FJ, Shen L, Jang CW, Falnes PØ, Zhang Y. Ikbkap/Elp1 deficiency causes male infertility by disrupting meiotic progression. PLoS Genet 2013; 9:e1003516. [PMID: 23717213 PMCID: PMC3662645 DOI: 10.1371/journal.pgen.1003516] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/04/2013] [Indexed: 12/28/2022] Open
Abstract
Mouse Ikbkap gene encodes IKAP—one of the core subunits of Elongator—and is thought to be involved in transcription. However, the biological function of IKAP, particularly within the context of an animal model, remains poorly characterized. We used a loss-of-function approach in mice to demonstrate that Ikbkap is essential for meiosis during spermatogenesis. Absence of Ikbkap results in defects in synapsis and meiotic recombination, both of which result in increased apoptosis and complete arrest of gametogenesis. In Ikbkap-mutant testes, a few meiotic genes are down-regulated, suggesting IKAP's role in transcriptional regulation. In addition, Ikbkap-mutant testes exhibit defects in wobble uridine tRNA modification, supporting a conserved tRNA modification function from yeast to mammals. Thus, our study not only reveals a novel function of IKAP in meiosis, but also suggests that IKAP contributes to this process partly by exerting its effect on transcription and tRNA modification. The process of meiosis is responsible for gamete formation and ensures that offspring will inherit a complete set of chromosomes from each parent. Errors arising during this process generally result in spontaneous abortions, birth defects, or infertility. Many genes that are essential in regulating meiosis have also been implicated in DNA repair. Importantly, defects in DNA repair are common causes of cancers. Therefore, identification of genes important for normal meiosis contributes not only to the field of reproduction but also to the field of cancer biology. We studied the effects of deleting mouse Ikbkap, a gene that encodes one of the subunit of the Elongator complex initially described as an RNA polymerase II–associated transcription elongation factor. We demonstrate that Ikbkap mutant mice exhibit infertility and defects in meiotic progression. Specifically, homologous and sex chromosomes fail to synapse (become associated), DNA double-strand breaks are inefficiently repaired, and DNA crossovers are significantly decreased in Ikbkap males. We also demonstrate that the requirement for Elongator in tRNA modification, which has been shown in lower eukaryotes, is conserved in mammals. Our findings suggest novel roles for Ikbkap in meiosis progression and tRNA modification, which have not been reported previously.
Collapse
Affiliation(s)
- Fu-Jung Lin
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Li Shen
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chuan-Wei Jang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pål Ø. Falnes
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
21
|
Bentson LF, Agbor VA, Agbor LN, Lopez AC, Nfonsam LE, Bornstein SS, Handel MA, Linder CC. New point mutation in Golga3 causes multiple defects in spermatogenesis. Andrology 2013; 1:440-50. [PMID: 23495255 DOI: 10.1111/j.2047-2927.2013.00070.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 12/17/2022]
Abstract
Mice with repro27 exhibit fully penetrant male-specific infertility associated with a nonsense mutation in the golgin subfamily A member 3 gene (Golga3). GOLGA3 is a Golgi complex-associated protein implicated in protein trafficking, apoptosis, positioning of the Golgi and spermatogenesis. In repro27 mutant mice, a point mutation in exon 18 of the Golga3 gene that inserts a pre-mature termination codon leads to an absence of GOLGA3 protein expression. GOLGA3 protein was undetectable in the brain, heart and liver in both mutant and control mice. Although spermatogenesis in Golga3(repro27) mutant mice appears to initiate normally, development is disrupted in late meiosis during the first wave of spermatogenesis, leading to significant germ cell loss between 15 and 18 days post-partum (dpp). Terminal Deoxynucleotidyl Transferase dUTP-mediated Nick End Labeling analysis showed elevated DNA fragmentation in meiotic germ cells by 12 dpp, suggesting apoptosis as a mechanism of germ cell loss. The few surviving post-meiotic round spermatids exhibited abnormal spermiogenesis with defects in acrosome formation, head and tail development and extensive vacuolization in the seminiferous epithelium. Analysis of epididymal spermatozoa showed significantly low sperm concentration and motility and in vitro fertilization with mutant spermatozoa was unsuccessful. Golga3(repro27) mice lack GOLGA3 protein and thus provide an in vivo tool to aid in deciphering the role of GOLGA3 in Golgi complex positioning, cargo trafficking and apoptosis signalling in male germ cells.
Collapse
Affiliation(s)
- L F Bentson
- Department of Biology and Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA, Bult CJ, Hibbs MA, Troyanskaya OG. Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Comput Biol 2012; 8:e1002694. [PMID: 23028291 PMCID: PMC3459891 DOI: 10.1371/journal.pcbi.1002694] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 08/02/2012] [Indexed: 12/16/2022] Open
Abstract
Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as “functionality” and “functional relationships” are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs. Tissue specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. We propose an effective strategy to model tissue-specific functional relationship networks in the laboratory mouse. We integrated large scale genomics datasets as well as low-throughput tissue-specific expression profiles to estimate the probability that two proteins are co-functioning in the tissue under study. These networks can accurately reflect the diversity of protein functions across different organs and tissue compartments. By computationally exploring the tissue-specific networks, we can accurately predict novel phenotype-related gene candidates. We experimentally confirmed a top candidate gene, Mybl1, to affect several male fertility phenotypes, predicted based on male-reproductive system-specific networks and we predicted candidates related to a rare genetic disease ataxia, which are supported by experimental and literature evidence. The above results demonstrate the power of modeling tissue-specific dynamics of co-functionality through computational approaches.
Collapse
Affiliation(s)
- Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dmitriy Gorenshteyn
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Margit Burmeister
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular & Behavioral Neuroscience Institution, Department of Psychiatry, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Aaron K. Wong
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - John C. Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Mary Ann Handel
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Matthew A. Hibbs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Trinity University, Computer Science Department, San Antonio, Texas, United States of America
- * E-mail: (MAH); (OGT)
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (MAH); (OGT)
| |
Collapse
|
23
|
Weiss J, Hurley LA, Harris RM, Finlayson C, Tong M, Fisher LA, Moran JL, Beier DR, Mason C, Jameson JL. ENU mutagenesis in mice identifies candidate genes for hypogonadism. Mamm Genome 2012; 23:346-55. [PMID: 22258617 PMCID: PMC3358541 DOI: 10.1007/s00335-011-9388-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 12/31/2011] [Indexed: 12/17/2022]
Abstract
Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low-density genome-wide SNP arrays. Ten of the 15 lines were pursued further using higher-resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism, candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility.
Collapse
Affiliation(s)
- Jeffrey Weiss
- Division of Endocrinology, Department of Medicine, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Su YQ, Sugiura K, Sun F, Pendola JK, Cox GA, Handel MA, Schimenti JC, Eppig JJ. MARF1 regulates essential oogenic processes in mice. Science 2012; 335:1496-9. [PMID: 22442484 DOI: 10.1126/science.1214680] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Development of fertilization-competent oocytes depends on integrated processes controlling meiosis, cytoplasmic development, and maintenance of genomic integrity. We show that meiosis arrest female 1 (MARF1) is required for these processes in mammalian oocytes. Mutations of Marf1 cause female infertility characterized by up-regulation of a cohort of transcripts, increased retrotransposon expression, defective cytoplasmic maturation, and meiotic arrest. Up-regulation of protein phosphatase 2 catalytic subunit (PPP2CB) is key to the meiotic arrest phenotype. Moreover, Iap and Line1 retrotransposon messenger RNAs are also up-regulated, and, concomitantly, DNA double-strand breaks are elevated in mutant oocytes. Therefore MARF1, by suppressing levels of specific transcripts, is an essential regulator of important oogenic processes leading to female fertility and the development of healthy offspring.
Collapse
Affiliation(s)
- You-Qiang Su
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
This commentary provides a summary of existing meiotic mutants affecting the synaptonemal complex and meiotic recombination in order to contextualize the recent discovery of SPATA22/repro42 through ENU mutagenesis.
Collapse
Affiliation(s)
- Gregory M Buchold
- Gamete Biology Group, Laboratory of Reproduction and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| |
Collapse
|
26
|
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod 2012; 86:45. [PMID: 22011390 DOI: 10.1095/biolreprod.111.095752] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.
Collapse
|
27
|
Abstract
A crucial step of fertilization is the sperm-egg interaction that allows the two gametes to fuse and create the zygote. In the mouse, CD9 on the egg and IZUMO1 on the sperm stand out as critical players, as Cd9(-/-) and Izumo1(-/-) mice are healthy but infertile or severely subfertile due to defective sperm-egg interaction. Moreover, work on several nonmammalian organisms has identified some of the most intriguing candidates implicated in sperm-egg interaction. Understanding of gamete membrane interactions is advancing through characterization of in vivo and in vitro fertilization phenotypes, including insights from less robust phenotypes that highlight potential supporting (albeit not absolutely essential) players. An emerging theme is that there are varied roles for gamete molecules that participate in sperm-egg interactions. Such roles include not only functioning as fusogens, or as adhesion molecules for the opposite gamete, but also functioning through interactions in cis with other proteins to regulate membrane order and functionality.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
28
|
Harris RM, Weiss J, Jameson JL. Male hypogonadism and germ cell loss caused by a mutation in Polo-like kinase 4. Endocrinology 2011; 152:3975-85. [PMID: 21791561 PMCID: PMC3176650 DOI: 10.1210/en.2011-1106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The genetic etiologies of male infertility remain largely unknown. To identify genes potentially involved in spermatogenesis and male infertility, we performed genome-wide mutagenesis in mice with N-ethyl-N-nitrosourea and identified a line with dominant hypogonadism and patchy germ cell loss. Genomic mapping and DNA sequence analysis identified a novel heterozygous missense mutation in the kinase domain of Polo-like kinase 4 (Plk4), altering an isoleucine to asparagine at residue 242 (I242N). Genetic complementation studies using a gene trap line with disruption in the Plk4 locus confirmed that the putative Plk4 missense mutation was causative. Plk4 is known to be involved in centriole formation and cell cycle progression. However, a specific role in mammalian spermatogenesis has not been examined. PLK4 was highly expressed in the testes both pre- and postnatally. In the adult, PLK4 expression was first detected in stage VIII pachytene spermatocytes and was present through step 16 elongated spermatids. Because the homozygous Plk4(I242N/I242N) mutation was embryonic lethal, all analyses were performed using the heterozygous Plk4(+/I242N) mice. Testis size was reduced by 17%, and histology revealed discrete regions of germ cell loss, leaving only Sertoli cells in these defective tubules. Testis cord formation (embryonic day 13.5) was normal. Testis histology was also normal at postnatal day (P)1, but germ cell loss was detected at P10 and subsequent ages. We conclude that the I242N heterozygous mutation in PLK4 is causative for patchy germ cell loss beginning at P10, suggesting a role for PLK4 during the initiation of spermatogenesis.
Collapse
Affiliation(s)
- Rebecca M Harris
- Division of Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
29
|
Bolcun-Filas E, Bannister LA, Barash A, Schimenti KJ, Hartford SA, Eppig JJ, Handel MA, Shen L, Schimenti JC. A-MYB (MYBL1) transcription factor is a master regulator of male meiosis. Development 2011; 138:3319-30. [PMID: 21750041 DOI: 10.1242/dev.067645] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional regulation of mammalian meiosis is poorly characterized, owing to few genetic and ex vivo models. From a genetic screen, we identify the transcription factor MYBL1 as a male-specific master regulator of several crucial meiotic processes. Spermatocytes bearing a novel separation-of-function allele (Mybl1(repro9)) had subtle defects in autosome synapsis in pachynema, a high incidence of unsynapsed sex chromosomes, incomplete double-strand break repair on synapsed pachytene chromosomes and a lack of crossing over. MYBL1 protein appears in pachynema, and its mutation caused specific alterations in expression of diverse genes, including some translated postmeiotically. These data, coupled with chromatin immunoprecipitation (ChIP-chip) experiments and bioinformatic analysis of promoters, identified direct targets of MYBL1 regulation. The results reveal that MYBL1 is a master regulator of meiotic genes that are involved in multiple processes in spermatocytes, particularly those required for cell cycle progression through pachynema.
Collapse
Affiliation(s)
- Ewelina Bolcun-Filas
- Cornell University College of Veterinary Medicine, Department of Biomedical Sciences, Center for Vertebrate Genomics, Ithaca, NY 14850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ogorevc J, Dovc P, Kunej T. Comparative Genomics Approach to Identify Candidate Genetic Loci for Male Fertility. Reprod Domest Anim 2011; 46:229-39. [DOI: 10.1111/j.1439-0531.2010.01648.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Sun F, Handel MA. A Mutation in Mtap2 Is Associated with Arrest of Mammalian Spermatocytes before the First Meiotic Division. Genes (Basel) 2011; 2:21-35. [PMID: 24501684 PMCID: PMC3909985 DOI: 10.3390/genes2010021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In spite of evolutionary conservation of meiosis, many of the genes that control mammalian meiosis are still unknown. We report here that the ENU-induced repro4 mutation, identified in a screen to uncover genes that control mouse meiosis, causes failure of spermatocytes to exit meiotic prophase I via the G2/MI transition. Major events of meiotic prophase I occurred normally in affected spermatocytes and known regulators of the meiotic G2/MI transition were present and functional. Deep sequencing of mutant DNA revealed a mutation located in an intron of Mtap2 gene, encoding microtubule-associated protein 2, and levels of Mtap2 transcript were reduced in mutant testes. This evidence implicates MTAP2 as required directly or indirectly for completion of meiosis and normal spermatogenesis in mammals.
Collapse
Affiliation(s)
| | - Mary Ann Handel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-207-288-6778; Fax: +1-207-288-6073
| |
Collapse
|
32
|
Bartnikas TB, Campagna DR, Antiochos B, Mulhern H, Pondarré C, Fleming MD. Characterization of mitochondrial ferritin-deficient mice. Am J Hematol 2010; 85:958-60. [PMID: 20960432 DOI: 10.1002/ajh.21872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Abstract
Limited knowledge of the genetic causes of male infertility has resulted in few treatment and targeted therapeutic options. Although the ideal approach to identify infertility causing mutations is to conduct studies in the human population, this approach has progressed slowly due to the limitations described herein. Given the complexity of male fertility, the entire process cannot be modeled in vitro. As such, animal models, in particular mouse models, provide a valuable alternative for gene identification and experimentation. Since the introduction of molecular biology and recent advances in animal model production, there has been a substantial acceleration in the identification and characterization of genes associated with many diseases, including infertility. Three major types of mouse models are commonly used in biomedical research, including knockout/knockin/gene-trapped, transgenic and chemical-induced point mutant mice. Using these mouse models, over 400 genes essential for male fertility have been revealed. It has, however, been estimated that thousands of genes are involved in the regulation of the complex process of male fertility, as many such genes remain to be characterized. The current review is by no means a comprehensive list of these mouse models, rather it contains examples of how mouse models have advanced our knowledge of post-natal germ cell development and male fertility regulation.
Collapse
|
34
|
Jamsai D, O'Bryan MK. Genome-wide ENU mutagenesis for the discovery of novel male fertility regulators. Syst Biol Reprod Med 2010; 56:246-59. [PMID: 20536324 DOI: 10.3109/19396361003706424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The completion of genome sequencing projects has provided an extensive knowledge of the contents of the genomes of human, mouse, and many other organisms. Despite this, the function of most of the estimated 25,000 human genes remains largely unknown. Attention has now turned to elucidating gene function and identifying biological pathways that contribute to human diseases, including male infertility. Our understanding of the genetic regulation of male fertility has been accelerated through the use of genetically modified mouse models including knockout, knock-in, gene-trapped, and transgenic mice. Such reverse genetic approaches however, require some fore-knowledge of a gene's function and, as such, bias against the discovery of completely novel genes and biological pathways. To facilitate high throughput gene discovery, genome-wide mouse mutagenesis via the use of a potent chemical mutagen, N-ethyl-N-nitrosourea (ENU), has been developed over the past decade. This forward genetic, or phenotype-driven, approach relies upon observing a phenotype first, then subsequently defining the underlining genetic defect. Mutations are randomly introduced into the mouse genome via ENU exposure. Through a controlled breeding scheme, mutations causing a phenotype of interest (e.g., male infertility) are then identified by linkage analysis and candidate gene sequencing. This approach allows for the possibility of revealing comprehensive phenotype-genotype relationships for a range of genes and pathways i.e. in addition to null alleles, mice containing partial loss of function or gain-of-function mutations, can be recovered. Such point mutations are likely to be more reflective of those that occur within the human population. Many research groups have successfully used this approach to generate infertile mouse lines and some novel male fertility genes have been revealed. In this review, we focus on the utility of ENU mutagenesis for the discovery of novel male fertility regulators.
Collapse
Affiliation(s)
- Duangporn Jamsai
- The Department of Anatomy and Developmental Biology and The Australian Research Council (ARC) Centre of Excellence in Biotechnology and Development, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
35
|
Sosnik J, Buffone MG, Visconti PE. Analysis of CAPZA3 localization reveals temporally discrete events during the acrosome reaction. J Cell Physiol 2010; 224:575-80. [PMID: 20458735 DOI: 10.1002/jcp.22211] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, the starting point of development is the fusion between sperm and egg. It is well established that sperm fuse with the egg through the equatorial/post-acrosomal region. Apart from this observation and the requirement of two proteins (CD9 in the egg and IZUMO1 in the sperm) very little is known about this fundamental process. Actin polymerization correlates with sperm capacitation in different mammalian species and it has been proposed that F-actin breakdown is needed during the acrosome reaction. Recently, we have presented evidence that actin polymerization inhibitors block the movement of IZUMO1 that accompany the acrosome reaction. These results suggest that actin dynamics play a role in the observed changes in IZUMO1 localization. This finding is significant because IZUMO1 localization in acrosome-intact sperm is not compatible with the known location of the initiation of the fusion between the sperm and the egg. To further understand the actin-mediated changes in protein localization during the acrosome reaction, the distribution of the sperm-specific plus-end actin capping protein CAPZA3 was analyzed. Like IZUMO1, CAPZA3 shows a dynamic pattern of localization; however, these movements follow a different temporal pattern than the changes observed with IZUMO1. In addition, the actin polymerization inhibitor latrunculin A was unable to alter CAPZA3 movement.
Collapse
Affiliation(s)
- Julian Sosnik
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
36
|
Tarnasky H, Cheng M, Ou Y, Thundathil JC, Oko R, van der Hoorn FA. Gene trap mutation of murine outer dense fiber protein-2 gene can result in sperm tail abnormalities in mice with high percentage chimaerism. BMC DEVELOPMENTAL BIOLOGY 2010; 10:67. [PMID: 20550699 PMCID: PMC2894780 DOI: 10.1186/1471-213x-10-67] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 06/15/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Outer dense fiber protein 2, Odf2, is a major component of the outer dense fibers, ODF, in the flagellum of spermatozoa. ODF are associated with microtubule doublets that form the axoneme. We recently demonstrated that tyrosine phosphorylation of Odf2 is important for sperm motility. In the course of a study of Odf2 using Odf2 mouse knockout lines we observed that males of a high percentage chimaerism, made using XL169 embryonic stem cells, were infertile, whereas mice of low-medium percentage chimaerism were fertile. RESULTS XL169 ES cells have a beta-geo gene trap cassette inserted in the Odf2 gene. To determine possible underlying mechanisms resulting in infertility we analyzed epididymal sperm and observed that >50% displayed bent tails. We next performed ultrastructural analyses on testis of high percentage XL169 chimaeric mice. This analysis showed that high percentage XL169 chimaeric mice produce elongating spermatids that miss one or more entire outer dense fibers in their midpiece and principal piece. In addition, we observed elongating spermatids that show thinning of outer dense fibers. No other obvious abnormalities or defects are present in elongating spermatids. Spermatozoa from the caput and cauda epididymis of XL169 mice of high percentage chimaerism show additional tail defects, including absence of one or more axonemal microtubule doublets and bent tails. Sperm with bent tails display abnormal motility. CONCLUSIONS Our results document the possible impact of loss of one Odf2 allele on sperm tail structure and function, resulting in a novel sperm tail phenotype.
Collapse
Affiliation(s)
- Heide Tarnasky
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
38
|
Sun F, Palmer K, Handel MA. Mutation of Eif4g3, encoding a eukaryotic translation initiation factor, causes male infertility and meiotic arrest of mouse spermatocytes. Development 2010; 137:1699-707. [PMID: 20430745 PMCID: PMC2860251 DOI: 10.1242/dev.043125] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2010] [Indexed: 11/20/2022]
Abstract
The ENU-induced repro8 mutation was identified in a screen to uncover genes that control mouse gametogenesis. repro8 causes male-limited infertility, with failure of spermatocytes to exit meiotic prophase via the G2/MI transition. The repro8 mutation is in the Eif4g3 gene, encoding eukaryotic translation initiation factor 4, gamma 3. Mutant germ cells appear to execute events of meiotic prophase normally, and many proteins characteristic of the prophase-to-metaphase transition are not obviously depleted. However, activity of CDC2A (CDK1) kinase is dramatically reduced in mutant spermatocytes. Strikingly, HSPA2, a chaperone protein for CDC2A kinase, is absent in mutant spermatocytes in spite of the presence of Hspa2 transcript, consistent with the observation that the repro8 phenotype is markedly similar to the phenotype of the Hspa2 knockout. Thus, EIF4G3 is required for HSPA2 translation in spermatocytes, a finding that provides the first genetic evidence for selective translational control of meiotic exit in mammalian spermatocytes.
Collapse
Affiliation(s)
- Fengyun Sun
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Kristina Palmer
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mary Ann Handel
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
39
|
Asano Y, Akiyama K, Tsuji T, Takahashi S, Noguchi J, Kunieda T. Characterization and linkage mapping of an ENU-induced mutant mouse with defective spermatogenesis. Exp Anim 2010; 58:525-32. [PMID: 19897936 DOI: 10.1538/expanim.58.525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
repro23 is an autosomal recessive mutation of the mouse generated by the N-ethyl-N-nitrosourea (ENU)-induced mutagenesis program at The Jackson Laboratory. The repro23/repro23 homozygous mouse shows male-specific infertility caused by defective spermatogenesis. In the present study, we investigated the testicular pathology of the affected mouse and performed linkage analysis to determine the chromosomal localization of the repro23 locus. Histological examination of the affected testis showed that the seminiferous epithelium of the repro23/repro23 mice contained spermatogonia and early stage spermatocytes, but no spermatids or spermatozoa. Immunohistochemical staining for Hsc70t, a spermatid specific protein, confirmed the absence of elongating spermatids. These findings indicated interruption of the spermatogenesis during meiosis in the repro23/repro23 mouse. By linkage analysis using 137 affected mice of F(2) progeny obtained from crosses between repro23/repro23 female and JF1/Ms (+/+) male mice, the repro23 locus was mapped to 2.2-Mb region of mouse chromosome 7. Although this region contains several potential candidate genes for the repro23 mutation, no gene already identified as a cause of defective spermatogenesis was in this region. Therefore, the gene responsible for the repro23 mutation is suggested to be a novel gene which plays an essential role in mammalian spermatogenesis.
Collapse
Affiliation(s)
- Yuka Asano
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Meiosis is an essential stage in gamete formation in all sexually reproducing organisms. Studies of mutations in model organisms and of human haplotype patterns are leading to a clearer understanding of how meiosis has adapted from yeast to humans, the genes that control the dynamics of chromosomes during meiosis, and how meiosis is tied to gametic success. Genetic disruptions and meiotic errors have important roles in infertility and the aetiology of developmental defects, especially aneuploidy. An understanding of the regulation of meiosis, coupled with advances in genomics, may ultimately allow us to diagnose the causes of meiosis-based infertilities, more wisely apply assisted reproductive technologies, and derive functional germ cells.
Collapse
|
41
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev Biol 2009; 330:142-52. [PMID: 19341723 DOI: 10.1016/j.ydbio.2009.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/20/2009] [Accepted: 03/21/2009] [Indexed: 11/22/2022]
Abstract
Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific "capping protein (actin filament) muscle Z-line, alpha 3" gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse.
Collapse
|
43
|
Sipilä P, Jalkanen J, Huhtaniemi IT, Poutanen M. Novel epididymal proteins as targets for the development of post-testicular male contraception. Reproduction 2009; 137:379-89. [DOI: 10.1530/rep-08-0132] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apart from condoms and vasectomy, modern contraceptive methods for men are still not available. Besides hormonal approaches to stop testicular sperm production, the post-meiotic blockage of epididymal sperm maturation carries lots of promise. Microarray and proteomics techniques and libraries of expressed sequence tags, in combination with digital differential display tools and publicly available gene expression databases, are being currently used to identify and characterize novel epididymal proteins as putative targets for male contraception. The data reported indicate that these technologies provide complementary information for the identification of novel highly expressed genes in the epididymis. Deleting the gene of interest by targeted ablation technology in mice or using immunization against the cognate protein are the two preferred methods to functionally validate the function of novel genesin vivo. In this review, we summarize the current knowledge of several epididymal proteins shown eitherin vivoorin vitroto be involved in the epididymal sperm maturation. These proteins include CRISP1, SPAG11e, DEFB126, carbonyl reductase P34H, CD52, and GPR64. In addition, we introduce novel proteinases and protease inhibitor gene families with potentially important roles in regulating the sperm maturation process. Furthermore, potential contraceptive strategies as well as delivery methods will be discussed. Despite the progress made in recent years, further studies are needed to reveal further details in the epididymal sperm maturation process and the factors involved, in order to facilitate the development of new epididymal contraceptives.
Collapse
|
44
|
Kopp C, Ijäs R, Flyckt A, Taponen J, Parvinen M, Andersson M. Morphometric evaluations of testicular tissues from azoospermic boars in Finnish Yorkshire and Landrace breeds. Theriogenology 2008; 70:1129-35. [PMID: 18640712 DOI: 10.1016/j.theriogenology.2008.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/04/2008] [Accepted: 06/08/2008] [Indexed: 12/16/2022]
Abstract
In 1996-2005, ejaculates of 2048 boars were collected. All boars were intended for use in artificial insemination or natural breeding and had two descended testes. Azoospermia was present in 16 of the 1097 Yorkshire boars (1.5%) and in 2 of the 951 Landrace boars (0.2%). The two most frequent diagnoses of azoospermia were arrested spermatogenesis at the pachytene spermatocyte stage (n=8) and segmental aplasia of the Wolffian ducts (n=7). Morphometric evaluations of testicular tissues of azoospermic boars were performed using an image analyzer. The morphometric evaluations revealed decreased portions and diameter of seminiferous tubule in tissue slides from the studied azoospermic boars compared with normal boars. The use of an image analyzer for morphometric evaluations of testicular tissues proved to be a good tool to characterize findings in testicular slides of azoospermic boars.
Collapse
Affiliation(s)
- C Kopp
- Department of Production Animal Medicine, University of Helsinki, Pohjoinen pikatie 800, 04920 Saarentaus, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Jamsai D, Reilly A, Smith S, Gibbs G, Baker H, McLachlan R, de Kretser D, O'Bryan M. Polymorphisms in the human cysteine-rich secretory protein 2 (CRISP2) gene in Australian men. Hum Reprod 2008; 23:2151-9. [DOI: 10.1093/humrep/den191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
46
|
Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schimenti K, Handel M, Eppig JJ, Schimenti JC. The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol 2008; 317:72-82. [PMID: 18353305 DOI: 10.1016/j.ydbio.2008.02.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 11/24/2022]
Abstract
A novel mutation, repro5, was isolated in a forward genetic screen for infertility mutations induced by ENU mutagenesis. Homozygous mutant mice were phenotypically normal but were infertile. Oocytes from mutant females appeared normal, but were severely maturation-defective in that they had reduced ability to progress to metaphase II (MII), and those reaching MII were unable to progress beyond the two pronuclei stage following in vitro fertilization (IVF). Mutant males exhibited defective spermiogenesis, resulting in oligoasthenoteratospermia. Genetic mapping, positional cloning, and complementation studies with a disruption allele led to the identification of a mutation in Brwd1 (Bromodomain and WD repeat domain containing 1) as the causative lesion. Bromodomain-containing proteins typically interact with regions of chromatin containing histones hyperacetylated at lysine residues, a characteristic of chromatin in early spermiogenesis before eventual replacement of histones by the protamines. Previous data indicated that Brwd1 is broadly expressed, encoding a putative transcriptional regulator that is believed to act on chromatin through interactions with the Brg1-dependent SWI/SNF chromatin-remodeling pathway. Brwd1 represents one of a small number of genes whose elimination disrupts gametogenesis in both sexes after the major events of meiotic prophase I have been completed.
Collapse
Affiliation(s)
- Dana L Philipps
- Cornell University, College of Veterinary Medicine, Ithaca, NY 14850, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
KHALAJ M, ABBASI AR, NISHIMURA R, AKIYAMA K, TSUJI T, NOGUCHI J, OKUDA K, KUNIEDA T. Leydig Cell Hyperplasia in an ENU-induced Mutant Mouse with Germ Cell Depletion. J Reprod Dev 2008; 54:225-8. [DOI: 10.1262/jrd.19191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Maryam KHALAJ
- Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo NISHIMURA
- Graduate School of Natural Science and Technology, Okayama University
| | - Kouyou AKIYAMA
- Graduate School of Natural Science and Technology, Okayama University
| | - Takehito TSUJI
- Graduate School of Natural Science and Technology, Okayama University
| | - Junko NOGUCHI
- Reproductive Biology Research Unit, National Institute of Agrobiological Sciences
| | - Kiyoshi OKUDA
- Graduate School of Natural Science and Technology, Okayama University
| | - Tetsuo KUNIEDA
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
48
|
AKIYAMA K, AKIMARU S, ASANO Y, KHALAJ M, KIYOSU C, MASOUDI AA, TAKAHASHI S, KATAYAMA K, TSUJI T, NOGUCHI J, KUNIEDA T. A New ENU-Induced Mutant Mouse with Defective Spermatogenesis Caused by a Nonsense Mutation of the Syntaxin 2/Epimorphin (Stx2/Epim) Gene. J Reprod Dev 2008; 54:122-8. [DOI: 10.1262/jrd.19186] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kouyou AKIYAMA
- Graduate School of Natural Science and Technology, Okayama University
| | - Shiho AKIMARU
- Graduate School of Natural Science and Technology, Okayama University
| | - Yuka ASANO
- Graduate School of Natural Science and Technology, Okayama University
| | - Maryam KHALAJ
- Graduate School of Natural Science and Technology, Okayama University
| | - Chiyo KIYOSU
- Graduate School of Natural Science and Technology, Okayama University
| | - Ali Akbar MASOUDI
- Graduate School of Natural Science and Technology, Okayama University
| | | | - Kentaro KATAYAMA
- Graduate School of Natural Science and Technology, Okayama University
- Nippon Veterinary and Life Science University
| | - Takehito TSUJI
- Graduate School of Natural Science and Technology, Okayama University
| | - Junko NOGUCHI
- Reproductive Biology Research Unit, National Institute of Agrobiological Sciences
| | - Tetsuo KUNIEDA
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
49
|
Good JM, Handel MA, Nachman MW. Asymmetry and polymorphism of hybrid male sterility during the early stages of speciation in house mice. Evolution 2008; 62:50-65. [PMID: 18005156 PMCID: PMC2907743 DOI: 10.1111/j.1558-5646.2007.00257.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
House mice offer a powerful system for dissecting the genetic basis of phenotypes that isolate species in the early stages of speciation. We used a series of reciprocal crosses between wild-derived strains of Mus musculus and M. domesticus to examine F(1) hybrid male sterility, one of the primary phenotypes thought to isolate these species. We report four main results. First, we found significantly smaller testes and fewer sperm in hybrid male progeny of most crosses. Second, in some crosses hybrid male sterility was asymmetric and depended on the species origin of the X chromosome. These observations confirm and extend previous findings, underscoring the central role that the M. musculus X chromosome plays in reproductive isolation. Third, comparisons among reciprocal crosses revealed polymorphism at one or more hybrid incompatibilities within M. musculus. Fourth, the spermatogenic phenotype of this polymorphic interaction appears distinct from previously described hybrid incompatibilities between these species. These data build on previous studies of speciation in house mice and show that the genetic basis of hybrid male sterility is fairly complex, even at this early stage of divergence.
Collapse
Affiliation(s)
- Jeffrey M Good
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
50
|
Harris T, Marquez B, Suarez S, Schimenti J. Sperm Motility Defects and Infertility in Male Mice with a Mutation in Nsun7, a Member of the Sun Domain-Containing Family of Putative RNA Methyltransferases1. Biol Reprod 2007; 77:376-82. [PMID: 17442852 DOI: 10.1095/biolreprod.106.058669] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Poor sperm quality is the major cause of infertility in humans. Other than sex-linked factors, the genetic basis for male infertility is poorly defined, largely due to practical difficulties in studying the inheritance of this trait in humans. As an alternative, we have conducted forward genetic screens in mice to generate relevant models. We report on the identification and characterization of a chemically-induced mutation, Ste5Jcs1, which causes affected male mice to be sterile or subfertile. Mutant sperm exhibited depressed progressive motility associated with a rigid flagellar midpiece (but not principal piece) segment, which could not be rescued by treatment with agents that stimulate cAMP or calcium signaling pathways. Overall mutant sperm ultrastructure appeared normal, including the axoneme, although the midpiece mitochondrial sheath showed abnormal electron density patterns. Positional cloning of Ste5Jcs1 led to the identification of a mutation in a novel gene called Nsun7, which encodes a protein with a Sun domain that is homologous to tRNA and rRNA cytosine methyltransferases. Therefore, Ste5Jcs1 mutation uncovers a previously unrecognized biological process in sperm that underscores the functional compartmentalization of the midpiece and principal piece of the flagellum.
Collapse
Affiliation(s)
- Tanya Harris
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|