1
|
Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater 2022; 12:327-339. [PMID: 35128180 PMCID: PMC8784310 DOI: 10.1016/j.bioactmat.2021.10.029] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Bone tissue engineering has emerged as a significant research area that provides promising novel tools for the preparation of biomimetic hydrogels applied in bone-related diseases (e.g., bone defects, cartilage damage, osteoarthritis, etc.). Herein, thermal sensitive polymers (e.g., PNIPAAm, Soluplus, etc.) were introduced into main chains to fabricate biomimetic hydrogels with injectability and compatibility for those bone defect need minimally invasive surgery. Mineral ions (e.g., calcium, copper, zinc, and magnesium), as an indispensable role in maintaining the balance of the organism, were linked with polymer chains to form functional hydrogels for accelerating bone regeneration. In the chemically triggered hydrogel section, advanced hydrogels crosslinked by different molecular agents (e.g., genipin, dopamine, caffeic acid, and tannic acid) possess many advantages, including extensive selectivity, rapid gel-forming capacity and tunable mechanical property. Additionally, photo crosslinking hydrogel with rapid response and mild condition can be triggered by different photoinitiators (e.g., I2959, LAP, eosin Y, riboflavin, etc.) under specific wavelength of light. Moreover, enzyme triggered hydrogels were also utilized in the tissue regeneration due to its rapid gel-forming capacity and excellent biocompatibility. Particularly, some key factors that can determine the therapy effect for bone tissue engineering were also mentioned. Finally, brief summaries and remaining issues on how to properly design clinical-oriented hydrogels were provided in this review.
Collapse
Affiliation(s)
- Xu Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 201900, China
| | - Xiao Chen
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, China
| |
Collapse
|
2
|
Guo Y, Zhou YH, Wu XP, Tang CY, Wang M, Mo ZH, Shepherd JA, Ng BK, Fan B, Zhou HD. Changes in Bone Mineral Density Following Conventional Oral Phosphonate Treatment of Hypophosphatemic Osteomalacia: A Non-Randomized Controlled Study. Int J Gen Med 2021; 14:7925-7931. [PMID: 34795510 PMCID: PMC8593346 DOI: 10.2147/ijgm.s332534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose There are limited clinical studies aimed at solving the problem of the efficiency of conventional treatment with oral phosphate and calcitriol in adults with hypophosphatemic osteomalacia (HO). In addition, there still had no good non-hazardous markers to evaluate the severity of bone loss of osteomalacia before and after treatment. Therefore, the purpose of this study was to assess the efficacy of conventional treatment with a self-blended phosphate supplementation and calcitriol on patients with HO and whether bone mineral density (BMD) can be helpful for monitoring the efficacy. Patients and Methods A total of 21 HO patients and 105 healthy controls were enrolled. All patients were tested for serum biomarkers and BMD of the lumbar spine (L1-L4), femoral neck, and total left hip. After three years of treatment, 11 of 21 HO patients were recalled for BMD measurement. According to the administration of drugs, HO patients with calcium and calcitriol were divided into three phosphate treatment groups: patients in group A (n = 3) received continuous phosphate supplementation, patients in group B (n = 5) received intermittent phosphate supplementation and patients in group C (n = 3) received no phosphate supplementation. Results The diagnoses of 21 HO patients were 5 cases of hereditary hypophosphatemic rickets, 4 cases of Fanconi syndrome with the features of renal tubular acidosis and vitamin D deficiency, and 12 cases of hereditary vitamin D abnormality. The average initial serum phosphorus level of the patient group was approximately 50% lower than that of the control group. Lower BMD was significantly observed in the HO group than the control group at the lumbar spine and total hip. Continuous treatment with the phosphate supplement could increase BMD in the lumbar spine and total hip by 33.4-52.3% and in the femoral neck increased by 43.2-79.3% compared with baseline, and the effect appears to be continued once treatment is discontinued. Conclusion These findings suggest that conventional therapy can improve bone mineral defects in patients with HO, especially in the femoral neck. Detection of BMD in HO patients is a good tool to assess the extent of bone defects and the therapeutic effect. Trial Registration Chinese Clinical Trial Registry, ChiCTR-OOC-16010095. Registered 7 December 2016. Retrospectively registered.
Collapse
Affiliation(s)
- Yue Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.,Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xian-Ping Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Chen-Yi Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, 410008, People's Republic of China
| | - Zhao-Hui Mo
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, People's Republic of China
| | - John A Shepherd
- Department of Radiology & Biomedical Imaging, University of California at San Francisco, San Francisco, CA, 94143, USA
| | - Bennett K Ng
- Department of Radiology & Biomedical Imaging, University of California at San Francisco, San Francisco, CA, 94143, USA
| | - Bo Fan
- Department of Radiology & Biomedical Imaging, University of California at San Francisco, San Francisco, CA, 94143, USA
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| |
Collapse
|
3
|
Yokoyama A, Hasegawa T, Hiraga T, Yamada T, Hongo H, Yamamoto T, Abe M, Yoshida T, Imanishi Y, Kuroshima S, Sasaki M, de Fraitas PHL, Li M, Amizuka N, Yamazaki Y. Altered immunolocalization of FGF23 in murine femora metastasized with human breast carcinoma MDA-MB-231 cells. J Bone Miner Metab 2021; 39:810-823. [PMID: 33834310 DOI: 10.1007/s00774-021-01220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/28/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION After the onset of bone metastasis, tumor cells appear to modify surrounding microenvironments for their benefit, and particularly, the levels of circulating fibroblast growth factor (FGF) 23 in patients with tumors have been highlighted. MATERIALS AND METHODS We have attempted to verify if human breast carcinoma MDA-MB-231 cells metastasized in the long bone of nu/nu mice would synthesize FGF23. Serum concentrations of calcium, phosphate (Pi) and FGF23 were measured in control nu/nu mice, bone-metastasized mice, and mice with mammary gland injected with MDA-MB-231 cells mimicking primary mammary tumors. RESULTS AND CONCLUSIONS MDA-MB-231 cells revealed intense FGF23 reactivity in metastasized lesions, whereas MDA-MB-231 cells cultured in vitro or when injected into the mammary glands (without bone metastasis) showed weak FGF23 immunoreactivity. Although the bone-metastasized MDA-MB-231 cells abundantly synthesized FGF23, osteocytes adjacent to the FGF23-immunopositive tumors, unlike intact osteocytes, showed no FGF23. Despite significantly elevated serum FGF23 levels in bone-metastasized mice, there was no significant decrease in the serum Pi concentration when compared with the intact mice and mice with a mass of MDA-MB-231 cells in mammary glands. The metastasized femora showed increased expression and FGFR1 immunoreactivity in fibroblastic stromal cells, whereas femora of control mice showed no obvious FGFR1 immunoreactivity. Taken together, it seems likely that MDA-MB-231 cells synthesize FGF23 when metastasized to a bone, and thus affect FGFR1-positive stromal cells in the metastasized tumor nest in a paracrine manner.
Collapse
Affiliation(s)
- Ayako Yokoyama
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
- Gerodontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan.
| | - Toru Hiraga
- Department of Oral Anatomy, Matsumoto Dental University, Shiojiri, Japan
| | - Tamaki Yamada
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
- Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces,, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Taiji Yoshida
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Yasuo Imanishi
- Department of Nephrology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | - Minqi Li
- Division of Basic Science of Stomatology, The School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Kita-13, Nishi-7, Kita-Ku, Sapporo, Japan
| | - Yutaka Yamazaki
- Gerodontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Lacroix JS, Urena-Torres P. Potentielle application de l’axe fibroblast growth factor 23-Klotho dans la maladie rénale chronique. Nephrol Ther 2020; 16:83-92. [DOI: 10.1016/j.nephro.2019.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022]
|
5
|
Shen G, Ren H, Shang Q, Qiu T, Yu X, Zhang Z, Huang J, Zhao W, Zhang Y, Liang D, Jiang X. Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cell Mol Life Sci 2018; 75:2683-2693. [PMID: 29427075 PMCID: PMC11105583 DOI: 10.1007/s00018-018-2776-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 02/07/2023]
Abstract
Autophagy takes part in regulating the eukaryotic cells function and the progression of numerous diseases, but its clinical utility has not been fully developed yet. Recently, mounting evidences highlight an important correlation between autophagy and bone homeostasis, mediated by osteoclasts, osteocytes, bone marrow mesenchymal stem cells, and osteoblasts, and autophagy plays a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The combinations of autophagy activators/inhibitors with anti-GIOP first-line drugs or some new autophagy-based manipulators, such as regulation of B cell lymphoma 2 family proteins and caspase-dependent clearance of autophagy-related gene proteins, are likely to be the promising approaches for GIOP clinical treatments. In view of the important role of autophagy in the pathogenesis of GIOP, here we review the potential mechanisms about the impacts of autophagy in GIOP and its association with GIOP therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yuzhuo Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
6
|
Shen G, Ren H, Qiu T, Zhang Z, Zhao W, Yu X, Huang J, Tang J, Liang D, Yao Z, Yang Z, Jiang X. Mammalian target of rapamycin as a therapeutic target in osteoporosis. J Cell Physiol 2017; 233:3929-3944. [PMID: 28834576 DOI: 10.1002/jcp.26161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
The mechanistic target of rapamycin (mTOR) plays a key role in sensing and integrating large amounts of environmental cues to regulate organismal growth, homeostasis, and many major cellular processes. Recently, mounting evidences highlight its roles in regulating bone homeostasis, which sheds light on the pathogenesis of osteoporosis. The activation/inhibition of mTOR signaling is reported to positively/negatively regulate bone marrow mesenchymal stem cells (BMSCs)/osteoblasts-mediated bone formation, adipogenic differentiation, osteocytes homeostasis, and osteoclasts-mediated bone resorption, which result in the changes of bone homeostasis, thereby resulting in or protect against osteoporosis. Given the likely importance of mTOR signaling in the pathogenesis of osteoporosis, here we discuss the detailed mechanisms in mTOR machinery and its association with osteoporosis therapy.
Collapse
Affiliation(s)
- Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhidong Yang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Minisola S, Peacock M, Fukumoto S, Cipriani C, Pepe J, Tella SH, Collins MT. Tumour-induced osteomalacia. Nat Rev Dis Primers 2017; 3:17044. [PMID: 28703220 DOI: 10.1038/nrdp.2017.44] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumour-induced osteomalacia (TIO), also known as oncogenic osteomalacia, is a rare paraneoplastic disorder caused by tumours that secrete fibroblast growth factor 23 (FGF23). Owing to the role of FGF23 in renal phosphate handling and vitamin D synthesis, TIO is characterized by decreased renal tubular reabsorption of phosphate, by hypophosphataemia and by low levels of active vitamin D. Chronic hypophosphataemia ultimately results in osteomalacia (that is, inadequate bone mineralization). The diagnosis of TIO is usually suspected when serum phosphate levels are chronically low in the setting of bone pain, fragility fractures and muscle weakness. Locating the offending tumour can be very difficult, as the tumour is often very small and can be anywhere in the body. Surgical removal of the tumour is the only definitive treatment. When the tumour cannot be located or when complete resection is not possible, medical treatment with phosphate salts or active vitamin D is necessary. One of the most promising emerging treatments for unresectable tumours that cause TIO is the anti-FGF23 monoclonal antibody KRN23. The recent identification of a fusion of fibronectin and fibroblast growth factor receptor 1 (FGFR1) as a molecular driver in some tumours not only sheds light on the pathophysiology of TIO but also opens the door to a better understanding of the transcription, translocation, post-translational modification and secretion of FGF23, as well as suggesting approaches to targeted therapy. Further study will reveal if the FGFR1 pathway is also involved in tumours that do not harbour the translocation.
Collapse
Affiliation(s)
- Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Munro Peacock
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Seijii Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Cristiana Cipriani
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Jessica Pepe
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Sri Harsha Tella
- Section on Skeletal Disorders and Mineral Homeostasis, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,Endocrinology and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael T Collins
- Section on Skeletal Disorders and Mineral Homeostasis, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Hikone K, Hasegawa T, Tsuchiya E, Hongo H, Sasaki M, Yamamoto T, Kudo A, Oda K, Haraguchi M, de Freitas PHL, Li M, Iida J, Amizuka N. Histochemical Examination on Periodontal Tissues of Klotho-Deficient Mice Fed With Phosphate-Insufficient Diet. J Histochem Cytochem 2017; 65:207-221. [PMID: 28122194 DOI: 10.1369/0022155416689670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To elucidate which of elevated serum concentration of inorganic phosphate (Pi) or disrupted signaling linked to αklotho/fibroblast growth factor 23 (FGF23) is a predominant regulator for senescence-related degeneration seen in αKlotho-deficient mice, we have examined histological alteration of the periodontal tissues in the mandibular interalveolar septum of αKlotho-deficient mice fed with Pi-insufficient diet. We prepared six groups of mice: wild-type, kl/kl, and αKlotho-/- mice with normal diet or low-Pi diet. As a consequence, kl/klnorPi and αKlotho-/-norPi mice showed the same abnormalities in periodontal tissues: intensely stained areas with hematoxylin in the interalveolar septum, dispersed localization of alkaline phosphatase-positive osteoblasts and tartrate-resistant acid phosphatase-reactive osteoclasts, and accumulation of dentin matrix protein 1 in the osteocytic lacunae. Although kl/kllowPi mice improved these histological abnormalities, αKlotho-/- lowPi mice failed to normalize those. Gene expression of αKlotho was shown to be increased in kl/kl lowPi specimens. It seems likely that histological abnormalities of kl/kl mice have been improved by the rescued expression of αKlotho, rather than low concentration of serum Pi. Thus, the histological malformation in periodontal tissues in αKlotho-deficient mice appears to be due to not only increased concentration of Pi but also disrupted αklotho/FGF23 signaling.
Collapse
Affiliation(s)
- Kumiko Hikone
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.,Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Erika Tsuchiya
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Unit of Translational Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan (MS)
| | - Tomomaya Yamamoto
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ai Kudo
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Kimimitsu Oda
- Division of Biochemistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan (KO)
| | - Mai Haraguchi
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China (ML)
| | - Junichiro Iida
- Department of Orthodontics (KH, JI), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue (KH, TH, ET, HH, TY, AK, MH, NA), Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Ronca R, Giacomini A, Rusnati M, Presta M. The potential of fibroblast growth factor/fibroblast growth factor receptor signaling as a therapeutic target in tumor angiogenesis. Expert Opin Ther Targets 2015; 19:1361-77. [PMID: 26125971 DOI: 10.1517/14728222.2015.1062475] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) are endowed with a potent pro-angiogenic activity. Activation of the FGF/FGF receptor (FGFR) system occurs in a variety of human tumors. This may lead to neovascularization, supporting tumor progression and metastatic dissemination. Thus, a compelling biologic rationale exists for the development of anti-FGF/FGFR agents for the inhibition of tumor angiogenesis in cancer therapy. AREAS COVERED A comprehensive search on PubMed was performed to identify studies on the role of the FGF/FGFR system in angiogenesis. Endothelial FGFR signaling, the pro-angiogenic function of canonical FGFs, and their role in human tumors are described. In addition, experimental approaches aimed at the identification and characterization of nonselective and selective FGF/FGFR inhibitors and their evaluation in clinical trials are summarized. EXPERT OPINION Different approaches can be envisaged to inhibit the FGF/FGFR system, a target for the development of 'two-compartment' anti-angiogenic/anti-tumor agents, including FGFR selective and nonselective small-molecule tyrosine kinase inhibitors, anti-FGFR antibodies, and FGF ligand traps. Further studies are required to define the correlation between tumor vascularization and activation of the FGF/FGFR system and for the identification of cancer patients more likely to benefit from anti-FGF/FGFR treatments. In addition, advantages and disadvantages about the use of selective versus non-selective FGF inhibitors remain to be elucidated.
Collapse
Affiliation(s)
- Roberto Ronca
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Arianna Giacomini
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Rusnati
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| | - Marco Presta
- a University of Brescia, Department of Molecular and Translational Medicine , Brescia, Italy +39 030 371 7311 ;
| |
Collapse
|
10
|
Kubota T, Kitaoka T, Miura K, Fujiwara M, Ohata Y, Miyoshi Y, Yamamoto K, Takeyari S, Yamamoto T, Namba N, Ozono K. Serum fibroblast growth factor 23 is a useful marker to distinguish vitamin D-deficient rickets from hypophosphatemic rickets. Horm Res Paediatr 2015; 81:251-7. [PMID: 24577200 DOI: 10.1159/000357142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/05/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Vitamin D-deficient rickets (DR) has recently re-emerged among developed countries. Vitamin D deficiency can influence biochemical results of patients with fibroblast growth factor 23 (FGF23)-related hereditary hypophosphatemic rickets (HR), making differential diagnosis difficult. In the present study we evaluated the utility of serum FGF23 levels in the diagnosis of DR and during its treatment. METHODS The study group comprised 24 children with DR and 8 children with HR. Serum FGF23 levels and bone metabolism-related measurements were assessed. RESULTS Serum FGF23 levels in patients with DR were less than 19 pg/ml, while those in patients with HR were more than 57 pg/ml. There were significant differences in serum levels of calcium, phosphate, parathyroid hormone, and 1,25-dihydroxyvitamin D, as well as tubular maximum phosphate reabsorption per glomerular filtration rate between patients with DR and HR, but these values were not fully mutually exclusive. In addition, serum FGF23 and phosphate levels were increased following treatment. CONCLUSION Serum FGF23 level is the most critical biochemical marker for distinguishing DR from HR and might be a good indicator of biochemical response to the intervention. Serum FGF23 levels show utility for the diagnosis of DR and in the assessment of its response to treatment.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee JW, Yamaguchi A, Iimura T. Functional heterogeneity of osteocytes in FGF23 production: the possible involvement of DMP1 as a direct negative regulator. BONEKEY REPORTS 2014; 3:543. [PMID: 24991406 PMCID: PMC4078414 DOI: 10.1038/bonekey.2014.38] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/11/2014] [Indexed: 01/25/2023]
Abstract
Fibroblast growth factor 23 (FGF23) and dentin matrix protein (DMP1) are hallmarks of osteocytes in bone. However, the mechanisms underlying the actions of DMP1 as a local factor regulating FGF23 and bone mineralization are not well understood. We first observed spatially distinct distributions of FGF23- and DMP1-positive osteocytic lacunae in rat femurs using immunohistochemistry. Three-dimensional immunofluorescence morphometry further demonstrated that the distribution and relative expression levels of these two proteins exhibited reciprocally reversed patterns especially in midshaft cortical bone. These in vivo findings suggest a direct role of DMP1 in FGF23 expression in osteocytes. We next observed that the inoculation of recombinant DMP1 in UMR-106 osteoblast/osteocyte-like cells and long-cultured MC3T3-E1 osteoblastic cells showed significant downregulation of FGF23 production. This effect was rescued by incubation with an focal adhesion kinase (FAK) inhibitor or MEK (mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK)) inhibitor but not inhibitors of phosphoinositide 3-kinase or Rho kinase. Consistently, the levels of phosphorylated FAK, ERK and p38 were significantly elevated, indicating that exogenous DMP1 is capable of activating FAK-mediated MAPK signaling. These findings suggest that DMP1 is a local, direct and negative regulator of FGF23 production in osteocytes involved in the FAK-mediated MAPK pathway, proposing a relevant pathway that coordinates the extracellular environment of osteocytic lacunae and bone metabolism.
Collapse
Affiliation(s)
- Ji-Won Lee
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadahiro Iimura
- Division of Bio-Imaging, Proteo-Science Center (PROS), Ehime University, Ehime, Japan
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Translational Research Center and Artificial Joint Integrated Center, Ehime University Hospital, Ehime, Japan
| |
Collapse
|
12
|
Sasaki M, Hasegawa T, Yamada T, Hongo H, de Freitas PHL, Suzuki R, Yamamoto T, Tabata C, Toyosawa S, Yamamoto T, Oda K, Li M, Inoue N, Amizuka N. Altered distribution of bone matrix proteins and defective bone mineralization in klotho-deficient mice. Bone 2013; 57:206-19. [PMID: 23954506 DOI: 10.1016/j.bone.2013.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022]
Abstract
In an attempt to identify the histological properties of the klotho-deficient (kl/kl) bone matrix, bone mineralization and the localization of Ca(2+)-binding bone matrix proteins - osteocalcin, dentin matrix protein-1 (DMP-1) and matrix Gla protein (MGP) - were examined in kl/kl tibiae. While a widespread osteocalcin staining could be verified in the wild-type bone matrix, localization of the same protein in the kl/kl tibiae seemed rather restricted to osteocytes with only a faint staining of the whole bone matrix. In wild-type mice, MGP immunoreactivity was present at the junction between the epiphyseal bone and cartilage, and at the insertion of the cruciate ligaments. In kl/kl mice, however, MGP was seen around the cartilaginous cores of the metaphyseal trabeculae and in the periphery of some cells of the bone surface. DMP-1 was identified in the osteocytic canalicular system of wild-type tibiae, but in the kl/kl tibiae this protein was mostly found in the osteocytic lacunae and in the periphery of some cells of the bone surface. Mineralization of the kl/kl bone seemed somewhat defective, with broad unmineralized areas within its matrix. In these areas, mineralized osteocytes along with their lacunae and osteocytic cytoplasmic processes were found to have intense osteocalcin and DMP-1 staining. Taken together, it might be that the excessive production of Ca(2+)-binding molecules such as osteocalcin and DMP-1 by osteocytes concentrates mineralization around such cells, disturbing the completeness of mineralization in the kl/kl bone matrix.
Collapse
Affiliation(s)
- Muneteru Sasaki
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Department of Gerodontology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
14
|
Sasaki M, Hongo H, Hasegawa T, Suzuki R, Zhusheng L, de Freitas PHL, Yamada T, Oda K, Yamamoto T, Li M, Totsuka Y, Amizuka N. Morphological aspects of the biological function of the osteocytic lacunar canalicular system and of osteocyte-derived factors. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/s1348-8643(12)00009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE. Glucocorticoid dose determines osteocyte cell fate. FASEB J 2011; 25:3366-76. [PMID: 21705669 DOI: 10.1096/fj.11-182519] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In response to cellular insult, several pathways can be activated, including necrosis, apoptosis, and autophagy. Because glucocorticoids (GCs) have been shown to induce both osteocyte apoptosis and autophagy, we sought to determine whether osteocyte cell fate in the presence of GCs was dose dependent by performing in vivo and in vitro studies. Male Swiss-Webster mice were treated with slow-release prednisolone pellets at 1.4, 2.8, and 5.6 mg/kg/d for 28 d. An osteocyte cell line, MLO-Y4 cells, was treated with various doses of dexamethasone. We found that GC treatments dose dependently decreased activation of antioxidant-, autophagy-, and antiapoptosis-focused RT-PCR gene pathways in mouse cortical bone. The activation of antioxidant genes was correlated with autophagy gene expression after the GC treatments. The presence of osteocyte autophagy, as detected by immunostaining for LC3, increased ∼50% at the distal femur cortical bone region but not at trabecular bone region at the 1.4 and 2.8 mg/kg/d GC dose levels. The number of apoptotic osteocytes was increased at the cortical bone region by ∼40% initially observed at the 2.8 mg/kg/d dose level. In addition, the presence of the osteocyte autophagy was associated with an increased protein level of cathepsin K in vitro after the GC treatments. In summary, we found that GC treatment dose-dependently decreased antioxidant gene expression, with lower GC doses activating autophagy, whereas a higher dose increased apoptosis. These data suggest that autophagy may provide a mechanism for osteocytes to survive the stress after GC exposure and provide further insight into how GCs alter bone cell fate.
Collapse
Affiliation(s)
- Junjing Jia
- Department of Medicine, University of California at Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res 2010; 342:1-11. [PMID: 20730630 PMCID: PMC2948652 DOI: 10.1007/s00441-010-1024-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/14/2010] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factors (Fgfs) are proteins with diverse functions in development, repair, and metabolism. The human Fgf gene family with 22 members can be classified into three groups, canonical, intracellular, and hormone-like Fgf genes. In contrast to canonical and intracellular Fgfs identified in invertebrates and vertebrates, hormone-like Fgfs, Fgf15/19, Fgf21, and Fgf23, are vertebrate-specific. The ancestral gene of hormone-like Fgfs was generated from the ancestral gene of canonical Fgfs by gene duplication early in vertebrate evolution. Later, Fgf15/19, Fgf21, and Fgf23 were generated from the ancestral gene by genome duplication events. Canonical Fgfs act as autocrine/paracrine factors in an Fgf receptor (Fgfr)-dependent manner. In contrast, hormone-like Fgfs act as endocrine factors in an Fgfr-dependent manner. Canonical Fgfs have a heparin-binding site necessary for the stable binding of Fgfrs and local signaling. In contrast, hormone-like Fgfs acquired endocrine functions by reducing their heparin-binding affinity during their evolution. Fgf15/19 and Fgf23 require βKlotho and αKlotho as cofactors, respectively. However, Fgf21 might physiologically require neither. Hormone-like Fgfs play roles in metabolism at postnatal stages, although they also play roles in development at embryonic stages. Fgf15/19 regulates bile acid metabolism in the liver. Fgf21 regulates lipid metabolism in the white adipose tissue. Fgf23 regulates serum phosphate and active vitamin D levels. Fgf23 signaling disorders caused by hereditary diseases or tumors result in metabolic disorders. In addition, serum Fgf19 or Fgf21 levels are significantly increased by metabolic disorders. Hormone-like Fgfs are newly emerging and quite unique in their evolution and function.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto, Japan.
| |
Collapse
|
18
|
Suzuki A, Ammann P, Nishiwaki-Yasuda K, Sekiguchi S, Asano S, Nagao S, Kaneko R, Hirabayashi M, Oiso Y, Itoh M, Caverzasio J. Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism. J Bone Miner Metab 2010; 28:139-48. [PMID: 19795094 DOI: 10.1007/s00774-009-0121-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 08/09/2009] [Indexed: 01/30/2023]
Abstract
The type III inorganic phosphate (Pi) transporter Pit-1 was previously found to be preferentially expressed in developing long bones. Several studies also described a regulation of its expression in cultured bone cells by osteotropic factors, suggesting a role of this transporter in bone metabolism. In the present study, we investigated the effects of the transgenic overexpression of Pit-1 in Wistar male rats on calcium phosphate and bone metabolism. A threefold increase and doubling of Pi transport activity were recorded in primary cultured osteoblastic cells derived from calvaria of two transgenic (Tg) lines compared with wild-type littermates (WT), respectively. Skeletal development was not affected by the transgene, and bone mass, analyzed by DXA, was slightly decreased in Tg compared with WT. Enhanced Pi uptake in calvaria-derived osteoblasts from Pit-1 Tg was associated with a significantly decreased expression of alkaline phosphatase activity and a normal deposition and calcification of the collagenous matrix. In 4-month-old adult Tg rats, serum Pi and renal Pi transport were increased compared with WT. The decrease of serum Ca concentration was associated with increased serum parathyroid hormone levels. Variations in serum Pi in Pit-1 Tg rats were negatively correlated with serum fibroblast growth factor-23, whereas 1,25-dihydroxyvitamin D(3) was not affected by Pit-1 overexpression. In conclusion, transgenic Pit-1 overexpression in rats affected bone and calcium phosphate metabolism. It also decreased alkaline phosphatase activity in osteoblasts without influencing bone matrix mineralization as well as skeletal development.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|