1
|
Chuphal B, Sathoria P, Rai U, Roy B. Crosstalk between reproductive and immune systems: the teleostean perspective. JOURNAL OF FISH BIOLOGY 2023; 102:302-316. [PMID: 36477945 DOI: 10.1111/jfb.15284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The bidirectional interaction between the hypothalamic-pituitary-gonadal (HPG) axis and the immune system plays a crucial role in the adaptation of an organism to its environment, its survival and the continuance of a species. Nonetheless, very little is known about this interaction among teleost, the largest group of extant vertebrates. Fishes being seasonal breeders, their immune system is exposed to seasonally changing levels of HPG hormones. On the contrary, the presence and infiltration of leukocytes, the expression of pattern recognition receptors as well as cytokines in gonads suggest their key role in teleostean gametogenesis as in the case of mammals. Moreover, the modulation of gametogenesis and steroidogenesis by lipopolysaccharide implicates the pathological significance of inflammation on reproduction. Thus, it is important to engage in the understanding of the interaction between these two important physiological systems, not only from a phylogenetic perspective but also due to the importance of fish as an important economic resource. In view of this, the authors have reviewed the crosstalk between the reproductive and immune systems in teleosts and tried to explore the importance of this interaction in their survival and reproductive fitness.
Collapse
Affiliation(s)
- Bhawna Chuphal
- Department of Zoology, University of Delhi, Delhi, India
| | - Priyanka Sathoria
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| | - Umesh Rai
- University of Jammu, Jammu, Jammu and Kashmir, India
| | - Brototi Roy
- Department of Zoology, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
2
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|
3
|
Liu XR, Wang YY, Dan XG, Kumar A, Ye TZ, Yu YY, Yang LG. Anti-inflammatory potential of β-cryptoxanthin against LPS-induced inflammation in mouse Sertoli cells. Reprod Toxicol 2015; 60:148-55. [PMID: 26686910 DOI: 10.1016/j.reprotox.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 11/04/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
β-cryptoxanthin (CX), a major carotenoid pigment, can inhibit inflammatory gene expression in mice with nonalcoholic steatohepatitis. In the present study, we examined the anti-inflammatory effects of CX on lipopolysaccharide (LPS)-induced inflammation in mouse primary Sertoli cells and the possible molecular mechanisms behind its effects. The results showed that CX significantly inhibited LPS-induced decreases in cell viability and in the percentage of apoptotic cells. Moreover, CX inhibited the LPS-induced up-regulation of tumor necrosis factor α (TNF-α), interleukin-10 (IL-10), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in Sertoli cells. In addition, CX significantly limited the LPS-induced down-regulation of AR, HSF2, CREB, FSHR, INHBB and ABP in Sertoli cells. Western blot analysis showed that CX significantly suppressed NF-κB (p65) activation as well as MAPK phosphorylation. All the results suggested that CX suppressed inflammation, possibly associated with the NF-κB activation and MAPK of phosphorylation. Thus, CX may possess therapeutic potential against inflammation-related diseases.
Collapse
Affiliation(s)
- Xiao-Ran Liu
- Key Laboratory of China Education Ministry in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China, 430070
| | - Yue-Ying Wang
- Key Laboratory of China Education Ministry in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China, 430070
| | - Xin-Gang Dan
- Key Laboratory of China Education Ministry in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China, 430070
| | - Ashok Kumar
- College of Life Science and Technology, State Key laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P.R. China, 430070
| | - Ting-Zhu Ye
- Key Laboratory of China Education Ministry in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China, 430070
| | - Yao-Yao Yu
- Key Laboratory of China Education Ministry in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China, 430070
| | - Li-Guo Yang
- Key Laboratory of China Education Ministry in Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China, 430070.
| |
Collapse
|
4
|
Wang Y, Zhang JJ, Yang WR, Luo HY, Zhang JH, Wang XZ. Lipopolysaccharide-induced expression of FAS ligand in cultured immature boar sertoli cells through the regulation of pro-inflammatory cytokines andmiR-187. Mol Reprod Dev 2015; 82:880-91. [DOI: 10.1002/mrd.22534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 07/26/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Wei-Rong Yang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment; Southwest University; Beibei Chongqing P. R. China
| | - Jia-Hua Zhang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore; College of Animal Science and Technology; Southwest University; Beibei Chongqing P. R. China
| |
Collapse
|
5
|
|
6
|
Chen Y, Rothnie C, Spring D, Verrier E, Venardos K, Kaye D, Phillips DJ, Hedger MP, Smith JA. Regulation and actions of activin A and follistatin in myocardial ischaemia-reperfusion injury. Cytokine 2014; 69:255-62. [PMID: 25052838 DOI: 10.1016/j.cyto.2014.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 04/13/2014] [Accepted: 06/23/2014] [Indexed: 12/14/2022]
Abstract
Activin A, a member of the transforming growth factor-β superfamily, is stimulated early in inflammation via the Toll-like receptor (TLR) 4 signalling pathway, which is also activated in myocardial ischaemia-reperfusion. Neutralising activin A by treatment with the activin-binding protein, follistatin, reduces inflammation and mortality in several disease models. This study assesses the regulation of activin A and follistatin in a murine myocardial ischaemia-reperfusion model and determines whether exogenous follistatin treatment is protective against injury. Myocardial activin A and follistatin protein levels were elevated following 30 min of ischaemia and 2h of reperfusion in wild-type mice. Activin A, but not follistatin, gene expression was also up-regulated. Serum activin A did not change significantly, but serum follistatin decreased. These responses to ischaemia-reperfusion were absent in TLR4(-/-) mice. Pre-treatment with follistatin significantly reduced ischaemia-reperfusion induced myocardial infarction. In mouse neonatal cardiomyocyte cultures, activin A exacerbated, while follistatin reduced, cellular injury after 3h of hypoxia and 2h of re-oxygenation. Neither activin A nor follistatin affected hypoxia-reoxygenation induced reactive oxygen species production by these cells. However, activin A reduced cardiomyocyte mitochondrial membrane potential, and follistatin treatment ameliorated the effect of hypoxia-reoxygenation on cardiomyocyte mitochondrial membrane potential. Taken together, these data indicate that myocardial ischaemia-reperfusion, through activation of TLR4 signalling, stimulates local production of activin A, which damages cardiomyocytes independently of increased reactive oxygen species. Blocking activin action by exogenous follistatin reduces this damage.
Collapse
Affiliation(s)
- Yi Chen
- Department of Surgery, Monash Medical Centre, Monash University, Clayton, Victoria 3168, Australia; MIMR-PHI Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| | - Christine Rothnie
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98195-6410, USA
| | - Denise Spring
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98195-6410, USA
| | - Edward Verrier
- Department of Surgery, School of Medicine, University of Washington, Seattle, WA 98195-6410, USA
| | - Kylie Venardos
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - David Kaye
- Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - David J Phillips
- MIMR-PHI Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia; Epworth Research Institute, Epworth HealthCare, Richmond, Victoria 3121, Australia
| | - Mark P Hedger
- MIMR-PHI Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Julian A Smith
- Department of Surgery, Monash Medical Centre, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
7
|
Wu H, Chen Y, Winnall WR, Phillips DJ, Hedger MP. Regulation of activin A release from murine bone marrow-derived neutrophil precursors by tumour necrosis factor-α and insulin. Cytokine 2013; 61:199-204. [DOI: 10.1016/j.cyto.2012.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/06/2012] [Accepted: 09/23/2012] [Indexed: 12/13/2022]
|
8
|
Hedger MP, Winnall WR. Regulation of activin and inhibin in the adult testis and the evidence for functional roles in spermatogenesis and immunoregulation. Mol Cell Endocrinol 2012; 359:30-42. [PMID: 21964464 DOI: 10.1016/j.mce.2011.09.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/16/2011] [Accepted: 09/16/2011] [Indexed: 02/03/2023]
Abstract
Activin A provides a unique link between reproduction and immunity, which is especially significant in the adult testis. This cytokine, together with inhibin B and follistatin acting as regulators of activin A activity, is fundamentally involved in the regulation of spermatogenesis and testicular steroidogenesis. However, activin A also has a much broader role in control of inflammation, fibrosis and immunity. In the Sertoli cell, activin A is regulated by signalling pathways that normally regulate stress and inflammation, signalling pathways that intersect with the classical hormonal regulatory pathways mediated by FSH. Modulation of activin A production and activity during spermatogenesis is implicated in the fine control of the cycle of the seminiferous epithelium. The immunoregulatory properties of activin A also suggest that it may be involved in maintaining testicular immune privilege. Consequently, elevated activin A production within the testis during inflammation and infection may contribute to spermatogenic failure, fibrosis and testicular damage.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
9
|
Hedger MP. Immunophysiology and pathology of inflammation in the testis and epididymis. ACTA ACUST UNITED AC 2011; 32:625-40. [PMID: 21764900 PMCID: PMC7166903 DOI: 10.2164/jandrol.111.012989] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of spermatogenic cells to evade the host immune system and the ability of systemic inflammation to inhibit male reproductive function represent two of the most intriguing conundrums of male reproduction. Clearly, an understanding of the underlying immunology of the male reproductive tract is crucial to resolving these superficially incompatible observations. One important consideration must be the very different immunological environments of the testis, where sperm develop, and the epididymis, where sperm mature and are stored. Compared with the elaborate blood-testis barrier, the tight junctions of the epididymis are much less effective. Unlike the seminiferous epithelium, immune cells are commonly observed within the epithelium, and can even be found within the lumen, of the epididymis. Crucially, there is little evidence for extended allograft survival (immune privilege) in the epididymis, as it exists in the testis, and the epididymis is much more susceptible to loss of immune tolerance. Moreover, the incidence of epididymitis is considerably greater than that of orchitis in humans, and susceptibility to sperm antibody formation after damage to the epididymis or vas deferens increases with increasing distance of the damage from the testis. Although we still know relatively little about testicular immunity, we know less about the interactions between the epididymis and the immune system. Given that the epididymis appears to be more susceptible to inflammation and immune reactions than the testis, and thereby represents the weaker link in protecting developing sperm from the immune system, it is probably time this imbalance in knowledge was addressed.
Collapse
Affiliation(s)
- Mark P Hedger
- Monash Institute of Medical Research, Monash University, 27-31 Wright St, Clayton, Victoria, Australia.
| |
Collapse
|
10
|
Kazutaka S, Winnall WR, Muir JA, Hedger MP. Regulation of Sertoli cell activin A and inhibin B by tumour necrosis factor α and interleukin 1α: interaction with follicle-stimulating hormone/adenosine 3',5'-cyclic phosphate signalling. Mol Cell Endocrinol 2011; 335:195-203. [PMID: 21256182 DOI: 10.1016/j.mce.2011.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
Regulation of crucial events during spermatogenesis involves dynamic changes in cytokine production and interactions across the cycle of the seminiferous epithelium. Regulation of activin A and inhibin B production by the inflammatory cytokines, tumour necrosis factor α (TNFα) and interleukin 1α (IL1α), alone and in conjunction with FSH or a cAMP analogue (dibutyryl cAMP), was examined in cultures of Sertoli cells from 20-day old rats. Both TNFα and IL1α stimulated activin A secretion and expression of its subunit (β(A)) mRNA, and suppressed inhibin B secretion and expression of its subunit (α and β(B)) mRNAs. The actions of TNFα and IL1α were opposed by FSH and dibutyryl cAMP. Both cytokines inhibited FSH/dibutyryl cAMP-stimulated inhibin B secretion and mRNA expression as well as stem cell factor mRNA expression. Both cytokines also inhibited FSH-induced cAMP production, and reduced baseline FSH receptor mRNA expression. These data highlight the reciprocal relationship that exists between FSH/cAMP signalling and inflammatory cytokine signalling pathways in the control of Sertoli cell function, and production of activin A/inhibin B in particular. It is anticipated that these interactions play important roles in the fine control of events during the cycle of the seminiferous epithelium and in the inhibition of spermatogenesis during inflammation.
Collapse
Affiliation(s)
- Saito Kazutaka
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
11
|
Tumour necrosis factor‐α stimulates human neutrophils to release preformed activin A. Immunol Cell Biol 2011; 89:889-96. [DOI: 10.1038/icb.2011.12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Hedger MP. Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation--a perspective. J Reprod Immunol 2011; 88:130-41. [PMID: 21333360 PMCID: PMC7127151 DOI: 10.1016/j.jri.2011.01.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 02/06/2023]
Abstract
It is self-evident that infection and inflammation in the reproductive tract can inhibit male fertility, but the observation that fertility may also be compromised by systemic inflammation and disease is more difficult to explain. Recent studies implicating microbial pattern-recognition receptors, such as the Toll-like receptors (TLRs), as well as inflammatory cytokines and their signalling pathways, in testicular function have cast new light on this mysterious link between infection/inflammation and testicular dysfunction. It is increasingly evident that signalling pathways normally involved in controlling inflammation play fundamental roles in regulating Sertoli cell activity and responses to reproductive hormones, in addition to promoting immune responses within the testis. Many of the negative effects of inflammation on spermatogenesis may be attributed to elevated production of inflammation-related gene products within the circulation and the testis, which subsequently exert disruptive effects on spermatogenic cell development and survival, as well as the ability of the Sertoli cells to provide support for spermatogenesis. These interactions have important implications for testicular dysfunction and disease, and may eventually provide new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Mark P Hedger
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
13
|
Winnall WR, Muir JA, Hedger MP. Differential responses of epithelial Sertoli cells of the rat testis to Toll-like receptor 2 and 4 ligands: Implications for studies of testicular inflammation using bacterial lipopolysaccharides. Innate Immun 2009; 17:123-36. [DOI: 10.1177/1753425909354764] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The relative contribution of epithelial Sertoli cells in response to bacterial infection of the testis remains poorly characterised, since studies on inflammatory properties of these cells have invariably used unpurified lipopolysaccharide (LPS) preparations contaminated with bacterial lipopeptides. Consequently, isolated rat Sertoli cells were stimulated with either unextracted or phenol re-extracted LPS, and analysed for Toll-like receptor (TLR) 4, TLR2 and inflammatory cytokine gene expression by quantitative reverse transcription polymerase chain reaction (RT-PCR). Expression of TLR4 and its co-receptor protein myeloid differentiation (MD) 2 in Sertoli cells and testicular macrophages were similar, but Sertoli cells displayed low basal or LPS-induced expression of the TLR4 accessory protein, CD14. In Sertoli cells, unextracted LPS produced cytokine responses which were considerably greater in magnitude and duration compared with their response to purified LPS. Sertoli cells also responded to the synthetic lipopeptide, Pam3Cys (a TLR2 ligand) with a similar pattern of prolonged gene expression. Sertoli cells were more than 10-fold less sensitive to purified LPS than macrophages, but expressed similar levels of interleukin (IL)-1α and IL-6, and much greater levels of the immunoregulatory cytokine activin A, when maximally stimulated. These data demonstrate that Sertoli cells display differential cytokine responses to bacterial stimuli, mediated by both TLR2 and TLR4, that are distinct from those of testicular macrophages.
Collapse
Affiliation(s)
- Wendy R. Winnall
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia,
| | - Julie A. Muir
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia
| | - Mark P. Hedger
- Centre for Reproduction and Development, Monash Institute of Medical Research, Monash University, Clayton, Melbourne, Australia
| |
Collapse
|