1
|
Davis D, Dovey J, Sagoshi S, Thaweepanyaporn K, Ogawa S, Vasudevan N. Steroid hormone-mediated regulation of sexual and aggressive behaviour by non-genomic signalling. Steroids 2023; 200:109324. [PMID: 37820890 DOI: 10.1016/j.steroids.2023.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Sex and aggression are well studied examples of social behaviours that are common to most animals and are mediated by an evolutionary conserved group of interconnected nuclei in the brain called the social behaviour network. Though glucocorticoids and in particular estrogen regulate these social behaviours, their effects in the brain are generally thought to be mediated by genomic signalling, a slow transcriptional regulation mediated by nuclear hormone receptors. In the last decade or so, there has been renewed interest in understanding the physiological significance of rapid, non-genomic signalling mediated by steroids. Though the identity of the membrane hormone receptors that mediate this signalling is not clearly understood and appears to be different in different cell types, such signalling contributes to physiologically relevant behaviours such as sex and aggression. In this short review, we summarise the evidence for this phenomenon in the rodent, by focusing on estrogen and to some extent, glucocorticoid signalling. The use of these signals, in relation to genomic signalling is manifold and ranges from potentiation of transcription to the possible transduction of environmental signals.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, United Kingdom
| | - Janine Dovey
- School of Biological Sciences, University of Reading, United Kingdom
| | - Shoko Sagoshi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States; Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | | | - Sonoko Ogawa
- Laboratory of Behavioural Neuroendocrinology, University of Tsukuba, Tsukuba, Japan
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, United Kingdom.
| |
Collapse
|
2
|
Davis D, Vajaria R, Delivopoulos E, Vasudevan N. Localisation of oestrogen receptors in stem cells and in stem cell-derived neurons of the mouse. J Neuroendocrinol 2023; 35:e13220. [PMID: 36510342 PMCID: PMC10909416 DOI: 10.1111/jne.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
Oestrogen receptors (ER) transduce the effects of the endogenous ligand, 17β-estradiol in cells to regulate a number of important processes such as reproduction, neuroprotection, learning and memory and anxiety. The ERα or ERβ are classical intracellular nuclear hormone receptors while some of their variants or novel proteins such as the G-protein coupled receptor (GPCR), GPER1/GPR30 are reported to localise in intracellular as well as plasma membrane locations. Although the brain is an important target for oestrogen with oestrogen receptors expressed differentially in various nuclei, subcellular organisation and crosstalk between these receptors is under-explored. Using an adapted protocol that is rapid, we first generated neurons from mouse embryonic stem cells. Our immunocytochemistry approach shows that the full length ERα (ERα-66) and for the first time, that an ERα variant, ERα-36, as well as GPER1 is present in embryonic stem cells. In addition, these receptors typically decrease their nuclear localisation as neuronal maturation proceeds. Finally, although these ERs are present in many subcellular compartments such as the nucleus and plasma membrane, we show that they are specifically not colocalised with each other, suggesting that they initiate distinct signalling pathways.
Collapse
Affiliation(s)
- DeAsia Davis
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ruby Vajaria
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
3
|
Duliban M, Gurgul A, Szmatola T, Pawlicki P, Milon A, Arent ZJ, Grzmil P, Kotula-Balak M, Bilinska B. Mouse testicular transcriptome after modulation of non-canonical oestrogen receptor activity. Reprod Fertil Dev 2020; 32:903-913. [PMID: 32586420 DOI: 10.1071/rd20025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/08/2020] [Indexed: 12/30/2022] Open
Abstract
The aims of this study were to shed light on the role of G-protein-coupled membrane oestrogen receptor (GPER) and oestrogen-related receptor (ERR) in mouse testis function at the gene expression level, as well as the involvement of GPER and ERR in cellular and molecular processes. Male mice were injected (50µg kg-1,s.c.) with the GPER antagonist G-15, the ERRα inverse agonist XCT790 or the ERRβ/ERRγ agonist DY131. Next-generation sequencing (RNA-Seq) was used to evaluate gene expression. Bioinformatic analysis of read abundance revealed that 50, 86 and 171 transcripts were differentially expressed in the G-15-, XCT790- and DY131-treated groups respectively compared with the control group. Annotated genes and their protein products were categorised regarding their associated biological processes and molecular functions. In the XCT790-treated group, genes involved in immunological processes were upregulated. In the DY131-treated group, genes with increased expression were primarily engaged in protein modification (protein folding and small protein conjugation). In addition, the expression of genes recognised as oncogenes, such as BMI1 proto-oncogene, polycomb ring finger (Bmi1) and nucleophosphin 1 (Npm1), was significantly increased in all experimental groups. This study provides detailed information regarding the genetic changes in the testicular transcriptome of the mouse in response to modulation of non-canonical oestrogen receptor activity.
Collapse
Affiliation(s)
- M Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland; and Corresponding author.
| | - A Gurgul
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - T Szmatola
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - A Milon
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Z J Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - P Grzmil
- Department of Genetics and Evolution Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - M Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
5
|
Prossnitz ER, Arterburn JB. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators. Pharmacol Rev 2015; 67:505-40. [PMID: 26023144 PMCID: PMC4485017 DOI: 10.1124/pr.114.009712] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| | - Jeffrey B Arterburn
- Department of Internal Medicine (E.R.P.) and University of New Mexico Cancer Center (E.R.P., J.B.A.), The University of New Mexico Health Sciences Center, Albuquerque, New Mexico; and Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico (J.B.A.)
| |
Collapse
|
6
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Akama KT, Thompson LI, Milner TA, McEwen BS. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. J Biol Chem 2013; 288:6438-50. [PMID: 23300088 DOI: 10.1074/jbc.m112.412478] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity.
Collapse
Affiliation(s)
- Keith T Akama
- Laboratory of Neuroendocrinology, The Rockefeller University, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | | | |
Collapse
|
8
|
Lehmann C, Sharawy N, Zhou J, Pavlovic D. Metabolomic analysis as biomarker to study steroid hormone administration in sepsis. Med Hypotheses 2012; 79:329-30. [PMID: 22658360 DOI: 10.1016/j.mehy.2012.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/13/2012] [Indexed: 10/28/2022]
Abstract
Sepsis is a life-threatening disease requiring rapid diagnosis and treatment. Steroid hormones (e.g., estradiol, dehydroepiandosterone) have been suggested to reduce the hyper-inflammatory response of the immune system and to improve outcome in sepsis. We hypothesize that the impact of steroid hormones on the metabolic profile (metabolomic fingerprint) can be used to study and guide steroid hormone administration in sepsis. Potential biomarker candidates are sphingomyelines and phosphatidylcholines.
Collapse
Affiliation(s)
- C Lehmann
- Klinik für Anästhesiologie und Intensivmedizin, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | |
Collapse
|
9
|
Marchais-Oberwinkler S, Henn C, Möller G, Klein T, Negri M, Oster A, Spadaro A, Werth R, Wetzel M, Xu K, Frotscher M, Hartmann RW, Adamski J. 17β-Hydroxysteroid dehydrogenases (17β-HSDs) as therapeutic targets: protein structures, functions, and recent progress in inhibitor development. J Steroid Biochem Mol Biol 2011; 125:66-82. [PMID: 21193039 DOI: 10.1016/j.jsbmb.2010.12.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 12/03/2010] [Accepted: 12/20/2010] [Indexed: 01/18/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) are oxidoreductases, which play a key role in estrogen and androgen steroid metabolism by catalyzing final steps of the steroid biosynthesis. Up to now, 14 different subtypes have been identified in mammals, which catalyze NAD(P)H or NAD(P)(+) dependent reductions/oxidations at the 17-position of the steroid. Depending on their reductive or oxidative activities, they modulate the intracellular concentration of inactive and active steroids. As the genomic mechanism of steroid action involves binding to a steroid nuclear receptor, 17β-HSDs act like pre-receptor molecular switches. 17β-HSDs are thus key enzymes implicated in the different functions of the reproductive tissues in both males and females. The crucial role of estrogens and androgens in the genesis and development of hormone dependent diseases is well recognized. Considering the pivotal role of 17β-HSDs in steroid hormone modulation and their substrate specificity, these proteins are promising therapeutic targets for diseases like breast cancer, endometriosis, osteoporosis, and prostate cancer. The selective inhibition of the concerned enzymes might provide an effective treatment and a good alternative to the existing endocrine therapies. Herein, we give an overview of functional and structural aspects for the different 17β-HSDs. We focus on steroidal and non-steroidal inhibitors recently published for each subtype and report on existing animal models for the different 17β-HSDs and the respective diseases. Article from the Special issue on Targeted Inhibitors.
Collapse
|
10
|
Recchia AG, De Francesco EM, Vivacqua A, Sisci D, Panno ML, Andò S, Maggiolini M. The G protein-coupled receptor 30 is up-regulated by hypoxia-inducible factor-1alpha (HIF-1alpha) in breast cancer cells and cardiomyocytes. J Biol Chem 2011; 286:10773-82. [PMID: 21266576 DOI: 10.1074/jbc.m110.172247] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
GPR30, also known as GPER, has been suggested to mediate rapid effects induced by estrogens in diverse normal and cancer tissues. Hypoxia is a common feature of solid tumors involved in apoptosis, cell survival, and proliferation. The response to low oxygen environment is mainly mediated by the hypoxia-inducible factor named HIF-1α, which activates signaling pathways leading to adaptive mechanisms in tumor cells. Here, we demonstrate that the hypoxia induces HIF-1α expression, which in turn mediates the up-regulation of GPER and its downstream target CTGF in estrogen receptor-negative SkBr3 breast cancer cells and in HL-1 cardiomyocytes. Moreover, we show that HIF-1α-responsive elements located within the promoter region of GPER are involved in hypoxia-dependent transcription of GPER, which requires the ROS-induced activation of EGFR/ERK signaling in both SkBr3 and HL-1 and cells. Interestingly, the apoptotic response to hypoxia was prevented by estrogens through GPER in SkBr3 cells. Taken together, our data suggest that the hypoxia-induced expression of GPER may be included among the mechanisms involved in the anti-apoptotic effects elicited by estrogens, particularly in a low oxygen microenvironment.
Collapse
Affiliation(s)
- Anna Grazia Recchia
- Department of Pharmaco-Biology, University of Calabria, 87030 Rende (Cosenza), Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Ladenburger A, Seehase M, Kramer BW, Thomas W, Wirbelauer J, Speer CP, Kunzmann S. Glucocorticoids potentiate IL-6-induced SP-B expression in H441 cells by enhancing the JAK-STAT signaling pathway. Am J Physiol Lung Cell Mol Physiol 2010; 299:L578-84. [PMID: 20693312 PMCID: PMC2957422 DOI: 10.1152/ajplung.00055.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/30/2010] [Indexed: 01/09/2023] Open
Abstract
The respiratory distress syndrome (RDS) contributes to perinatal morbidity and mortality associated with preterm birth. Surfactant protein B (SP-B) is decreased in RDS. Both maternal antenatal steroid administration and chorioamnionitis reduce the incidence and severity of RDS. An important mediator in chorioamnionitis is IL-6 using the JAK-STAT signaling pathway for signal transduction. We hypothesized that the steroids, betamethasone (BTM) and dexamethasone (DXM), and IL-6 had synergistic effects on SP-B gene expression and STAT3 phosphorylation in H441 cells. DXM and BTM increased SP-B mRNA levels by 16.5 (13.3)-fold and IL-6 alone by 2.3-fold. After 48-h exposure of cells to DXM or BTM, IL-6 caused a significantly greater increase in SP-B mRNA levels (28.1-fold) than IL-6 or glucocorticoids alone. Whereas IL-6 stimulated tyrosine phosphorylation of STAT3 in a time- and dose-dependent way, DXM and BTM had no effect on STAT3 phosphorylation. Both DXM and BTM could potentiate IL-6-induced phosphorylation of STAT3. The synergism of glucocorticoids and IL-6 on SP-B gene expression and the effect of glucocorticoids on IL-6-induced STAT3 phosphorylation could be blocked by a JAK inhibitor. Expression level analysis showed that glucocorticoids increased the expression of the IL-6-binding α-subunit receptor (IL-6R) on mRNA and protein level. Our findings could represent an example of a pulmonary regulation system in which one role of glucocorticoids is to increase the effect of a cytokine by upregulation of its receptor. The described in vitro interaction of IL-6 and glucocorticoids could help explain the clinical observation that prenatal inflammation in preterm babies with antenatal steroid administration can attenuate severity of RDS.
Collapse
|
12
|
Haller F, Moman E, Hartmann RW, Adamski J, Mindnich R. Molecular Framework of Steroid/Retinoid Discrimination in 17β-Hydroxysteroid Dehydrogenase Type 1 and Photoreceptor-associated Retinol Dehydrogenase. J Mol Biol 2010; 399:255-67. [DOI: 10.1016/j.jmb.2010.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/30/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
|
13
|
Balhuizen A, Kumar R, Amisten S, Lundquist I, Salehi A. Activation of G protein-coupled receptor 30 modulates hormone secretion and counteracts cytokine-induced apoptosis in pancreatic islets of female mice. Mol Cell Endocrinol 2010; 320:16-24. [PMID: 20122988 DOI: 10.1016/j.mce.2010.01.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/21/2010] [Accepted: 01/21/2010] [Indexed: 12/22/2022]
Abstract
The role of the newly discovered estrogen receptor GPR30 in islet physiology and pathophysiology is unclear. We examined GPR30 expression in relation to hormone secretion and possible anti-apoptotic effects in isolated mouse islets using the synthetic GPR30 ligand G-1. The mRNA and protein expression of GPR30 was analyzed by qPCR, Western blot and confocal microscopy. Hormone secretion and cAMP content were determined with RIA and apoptosis in islet cells with the Annexin-V method. GPR30 mRNA and protein expression was markedly higher in islets from females compared to male. This gender difference was not found for the genomic estrogen receptors ER alpha and ER beta, the ER alpha expression being 10-fold higher than ER beta in both genders. Confocal microscopy revealed abounden GPR30 expression in insulin, glucagon and somatostatin cells. Dose-response studies of G-1 vs 17beta-estradiol in isolated islets at 1 or 12 mM glucose showed an almost identical pattern in that both compounds increased insulin and inhibited glucagon and somatostatin secretion. ICI-182,780 and EM-652, potent antagonists of the 17beta-estradiol receptors (ER alpha and ER beta) did not influence the amplifying effect of G-1 or 17beta-estradiol on cAMP content or insulin secretion from isolated islets. Cytokine-induced (IL-1 beta+TNFalpha+INF gamma) apoptosis in islets, cultured for 24h at 5mM glucose, was almost abolished by G-1 or 17beta-estradiol treatment. Addition of ICI-182,780 or EM-652 did not affect this beneficial effect of G-1 or 17beta-estradiol. Taken together, our findings show that GPR30 is expressed in most islet endocrine cells. The synthetic GPR30 ligand G-1 mimics the non-genomic effects of 17beta-estradiol on islet hormone secretion, cAMP content in islets and its anti-apoptotic effects. G-1 or analogs thereof might be new potential candidates in the therapeutic strategy for type 2 diabetes in women.
Collapse
Affiliation(s)
- Alexander Balhuizen
- Department of Clinical Science, Islet Cell Physiology, University of Lund, Sweden
| | | | | | | | | |
Collapse
|