1
|
Chen R, Zhu H, Zhang X, Li L, Xu J, Tan Z, Su J, Feng K, Chen K, Xu H. Characterization and Functional Analysis of the 17-Beta Hydroxysteroid Dehydrogenase 2 ( hsd17b2) Gene during Sex Reversal in the Ricefield Eel ( Monopterus albus). Int J Mol Sci 2024; 25:9063. [PMID: 39201749 PMCID: PMC11354438 DOI: 10.3390/ijms25169063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
In mammals, 17-beta hydroxysteroid dehydrogenase 2 (Hsd17b2) enzyme specifically catalyzes the oxidation of the C17 hydroxyl group and efficiently regulates the activities of estrogens and androgens to prevent diseases induced by hormone disorders. However, the functions of the hsd17b2 gene involved in animal sex differentiation are still largely unclear. The ricefield eel (Monopterus albus), a protogynous hermaphroditic fish with a small genome size (2n = 24), is usually used as an ideal model to study the mechanism of sex differentiation in vertebrates. Therefore, in this study, hsd17b2 gene cDNA was cloned and its mRNA expression profiles were determined in the ricefield eel. The cloned cDNA fragment of hsd17b2 was 1230 bp, including an open reading frame of 1107 bp, encoding 368 amino acid residues with conserved catalytic subunits. Moreover, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis showed that hsd17b2 mRNA expressed strongly in the ovaries at early developmental stages, weakly in liver and intestine, and barely in testis and other tissues. In particular, hsd17b2 mRNA expression was found to peak in ovaries of young fish and ovotestis at the early stage, and eventually declined in gonads from the late ovotestis to testis. Likewise, chemical in situ hybridization results indicated that the hsd17b2 mRNA signals were primarily detected in the cytoplasm of oogonia and oocytes at stage I-II, subsequently concentrated in the granulosa cells around the oocytes at stage Ⅲ-Ⅳ, but undetectable in mature oocytes and male germ cells. Intriguingly, in ricefield eel ovaries, hsd17b2 mRNA expression could be significantly reduced by 17β-estradiol (E2) or tamoxifen (17β-estradiol inhibitor, E2I) induction at a low concentration (10 ng/mL) and increased by E2I induction at a high concentration (100 ng/mL). On the other hand, both the melatonin (MT) and flutamide (androgen inhibitor, AI) induction could significantly decrease hsd17b2 mRNA expression in the ovary of ricefield eel. This study provides a clue for demonstrating the mechanism of sexual differentiation in fish. The findings of our study imply that the hsd17b2 gene could be a key regulator in sexual differentiation and modulate sex reversal in the ricefield eel and other hermaphroditic fishes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kaili Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Chongqing 402460, China; (R.C.); (H.Z.); (X.Z.); (L.L.); (J.X.); (Z.T.); (J.S.); (K.F.)
| | - Hongyan Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development Ministry of Education, Key Laboratory of Aquatic Sciences of Chongqing, Southwest University, Chongqing 402460, China; (R.C.); (H.Z.); (X.Z.); (L.L.); (J.X.); (Z.T.); (J.S.); (K.F.)
| |
Collapse
|
2
|
Tremblay Y, Morin-Labbé A. Neonatal Lung Diseases: A Clinical Potential for Sex Steroids and a Novel Intracrine Organ. Front Med (Lausanne) 2021; 8:664969. [PMID: 34026792 PMCID: PMC8131950 DOI: 10.3389/fmed.2021.664969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yves Tremblay
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada.,Department of Obstetric, Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Laval University, Québec, QC, Canada
| | - Alexia Morin-Labbé
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada
| |
Collapse
|
3
|
Sallon C, Provost PR, LeBlanc D, Soulet D, Tremblay Y. Essential Intracrine Androgenic Action in Lung Development for Both Sexes. J Steroid Biochem Mol Biol 2018; 183:184-191. [PMID: 29940312 DOI: 10.1016/j.jsbmb.2018.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 11/22/2022]
Abstract
Albeit their recognized negative effects on lung maturation, androgens have been proposed to play an essential positive role in lung development. This work aimed to evaluate the impact of blocking endogenous androgen and estrogen actions and to study the effect of an excess of androgen and estrogen during the end of saccular stage and the beginning of the alveolar stage on lung development. This was performed with normal oxygen atmosphere and with hyperoxia, a model of alveolar simplification, which is observed in new bronchopulmonary dysplasia. Mouse lung samples were collected on postnatal day 9 after exposure to 21% or 80% oxygen (postnatal days 1 to 4), and after administration (postnatal days 3 to 8) of vehicle, pure antiandrogen (flutamide), dihydrotestosterone, pure antiestrogen (fulvestrant), or 17β-estradiol. With 21% oxygen, the major effects on morphometric parameters were induced by flutamide. In contrast, with hyperoxia, both flutamide and dihydrotestosterone had similar effects on several morphometric parameters. For instance, a decrease in the relative frequency of closed areas (mainly composed of saccules/alveoli) < 1000 μm2 and an increase for those > 2500 μm2 were observed after flutamide administration. In conclusion, during the junction between the saccular and the alveolar stages, endogenous androgens play an essential intracrine role in lung development for both sexes while an excess of androgens are deleterious when combined with a hyperoxia treatment, but not with normal oxygen levels. Endogenous estrogens have no effects on the lungs during the developmental window studied, while exogenous estrogens had only isolated effects on some morphometric parameters.
Collapse
Affiliation(s)
- Céline Sallon
- Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Pierre R Provost
- Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de médecine, Université Laval, Québec, QC, Canada; Département d'obstétrique/gynécologie & reproduction, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Danahé LeBlanc
- Axe neuroscience, Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Denis Soulet
- Axe neuroscience, Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Yves Tremblay
- Axe reproduction, santé de la mère et de l'enfant, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Faculté de médecine, Université Laval, Québec, QC, Canada; Département d'obstétrique/gynécologie & reproduction, Faculté de médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
5
|
Prenatal exposure to an environmentally relevant mixture of Canadian Arctic contaminants decreases male reproductive function in an aging rat model. J Dev Orig Health Dis 2018; 9:511-518. [DOI: 10.1017/s2040174418000491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractElevated levels of organochlorines (OC) have been reported in Inuit populations in the Arctic. We hypothesized that prenatal exposure to a Canadian Arctic OC mixture adversely affects male reproductive function and health with age. Sprague–Dawley female rats (F0) were gavaged with an environmentally relevant concentration of an Arctic OC mixture or corn oil (Control) during mating with untreated males until parturition (F1 litters). After postnatal day (PND) 90, the weights of the OC F1 males differed dramatically relative to Controls (P<0.05;n=10) and they exhibited respiratory distress. Except for possible thinning of the alveolar barrier, histological observation of the lungs revealed no apparent pathology to explain the respiratory distress. At PND 365, OC F1 males had reduced relative reproductive organ weights and lower sperm quality than Controls (P<0.05). At PND 90, OC F1 males were subfertile (P<0.05), but were infertile at PND 365. In conclusion, environmentally relevant prenatal OC exposure reduced reproductive function and health in aging male rats, providing new insight into the effects of early-life exposures to these contaminants.
Collapse
|
6
|
Bouhaddioui W, Provost PR, Tremblay Y. Expression profile of androgen-modulated microRNAs in the fetal murine lung. Biol Sex Differ 2016; 7:20. [PMID: 27042289 PMCID: PMC4818395 DOI: 10.1186/s13293-016-0072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Background Androgens are known to delay lung development. As a consequence, the incidence and morbidity of respiratory distress syndrome of the neonate are higher for male than for female premature infants. We previously reported that many genes were expressed with a sex difference in the mouse developing lung and that several genes were under the control of androgens in the male fetal lung. microRNAs are small non-coding RNAs known to negatively regulate the expression of specific genes. In this study, we examined whether murine miRNAs are under the control of androgens in the male developing lung. Methods Expression profiling of microRNAs was performed by microarrays using RNA extracted from male fetal lungs isolated on gestational day (GD) 17.0 and GD 18.0 after daily injection of pregnant mice from GD 10.0 with the antiandrogen flutamide or vehicle only. To identify putative miRNA target genes, the data obtained here were combined with gene profiling data reported previously using the same RNA preparations. qPCR was used to confirm microarray data with fetal lungs from other litters than those used in microarrays. Results Flutamide induced downregulation and upregulation of several miRNAs on GD 17.0 and GD 18.0. Of the 43 mature miRNAs modulated by flutamide on GD 17.0, 60 % were downregulated, whereas this proportion was only of 34 % for the 35 mature miRNAs modulated on GD 18.0. For 29 and 26 flutamide-responsive miRNAs, we found a corresponding target inversely regulated by androgens on GD 17.0 and 18.0, respectively. The androgen-regulated target genes were involved in several biological processes (lipid metabolism, cell proliferation, and lung development) and molecular functions, mainly transcription factor binding. Conclusions Regulation of male lung development involves several miRNAs that are under androgen modulation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0072-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| |
Collapse
|
7
|
Zarazúa A, González-Arenas A, Ramírez-Vélez G, Bazán-Perkins B, Guerra-Araiza C, Campos-Lara MG. Sexual Dimorphism in the Regulation of Estrogen, Progesterone, and Androgen Receptors by Sex Steroids in the Rat Airway Smooth Muscle Cells. Int J Endocrinol 2016; 2016:8423192. [PMID: 27110242 PMCID: PMC4823480 DOI: 10.1155/2016/8423192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 01/16/2023] Open
Abstract
The role of sex hormones in lung is known. The three main sex steroid receptors, estrogen, progesterone, and androgen, have not been sufficiently studied in airway smooth muscle cells (ASMC), and the sex hormone regulation on these receptors is unknown. We examined the presence and regulation of sex hormone receptors in female and male rat ASMC by Western blotting and flow cytometry. Gonadectomized rats were treated with 17β-estradiol, progesterone, 17β-estradiol + progesterone, or testosterone. ASMC were enzymatically isolated from tracheas and bronchi. The experiments were performed with double staining flow cytometry (anti-α-actin smooth muscle and antibodies to each hormone receptor). ERα, ERβ, tPR, and AR were detected in females or males. ERα was upregulated by E2 and T and downregulated by P4 in females; in males, ERα was downregulated by P4, E + P, and T. ERβ was downregulated by each treatment in females, and only by E + P and T in males. tPR was downregulated by P4, E + P, and T in females. No hormonal regulation was observed in male receptors. AR was downregulated in males treated with E + P and T. We have shown the occurrence of sex hormone receptors in ASMC and their regulation by the sex hormones in female and male rats.
Collapse
Affiliation(s)
- Abraham Zarazúa
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06725 Ciudad de México, Mexico
| | - Aliesha González-Arenas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Gabriela Ramírez-Vélez
- Facultad de Ciencias Químicas de la Universidad La Salle, 06140 Ciudad de México, Mexico
| | - Blanca Bazán-Perkins
- Departamento de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Ciudad de México, Mexico
| | - Christian Guerra-Araiza
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06725 Ciudad de México, Mexico
| | - María G. Campos-Lara
- Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, 06725 Ciudad de México, Mexico
- Hospital Infantil de México Federico Gómez, 06720 Ciudad de México, Mexico
- *María G. Campos-Lara:
| |
Collapse
|
8
|
Boucher E, Provost PR, Tremblay Y. C21-steroids inactivation and glucocorticoid synthesis in the developing lung. J Steroid Biochem Mol Biol 2015; 147:70-80. [PMID: 25434283 DOI: 10.1016/j.jsbmb.2014.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/05/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Glucocorticoids (GCs) are important regulators of lung development. The genes normally involved in GC synthesis in adrenals are co-expressed with 20α-hydroxysteroid dehydrogenase (20α-HSD) in the developing lung. In this study, C21-steroid metabolism was investigated in fetal and postnatal mouse lungs. Incubation of [(3)H]-progesterone with lung explant cultures of different perinatal developmental time points revealed two different (antenatal vs. postnatal) complex metabolization patterns. Progesterone inactivation was predominant. 20αOH-derivatives were more abundant after birth and some metabolites were 5α-reduced. Using [(3)H]-progesterone as substrate, corticosterone synthesis was only observed in a fraction of lung explants from gestation day (GD) 15.5. Neither aldosterone synthase nor P450c17 activity was observed. With epithelial-enriched primary cell cultures, deoxycorticosterone synthesis from [(3)H]-progesterone was observed. With lung explants incubated with [(3)H]-corticosterone as substrate, [(3)H]-4-pregnen-21-ol-3,11,20-trione (11-dehydrocorticosterone), the product of 11β-HSD2, accumulated in higher proportion on GD 15.5 than at later developmental time points. The temporal correlation observed between levels of progesterone inactivation by 20α-HSD (higher after birth) and the sensitivity of lung development to GCs suggests a role for 20α-HSD in the modulation of GR occupancy through the control of 21-hydroxylase substrate and product levels. In conclusion, the developing lung is characterized by effective inactivation of c21-steroids by 20α-HSD. The formation of active GCs from the "adrenal"-like pathway was observed with some lung explants and primary epithelial cell cultures. Coexistence of this GC synthesis pathway with 20α-HSD activity strongly suggests local regulation of GC action and is compatible with intracrine/paracrine actions of GC.
Collapse
Affiliation(s)
- Eric Boucher
- Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de recherche du CHU de Québec, Québec, QC, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculty of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|
9
|
Boucher E, Provost PR, Tremblay Y. Ontogeny of adrenal-like glucocorticoid synthesis pathway and of 20α-hydroxysteroid dehydrogenase in the mouse lung. BMC Res Notes 2014; 7:119. [PMID: 24580729 PMCID: PMC3944916 DOI: 10.1186/1756-0500-7-119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucocorticoids exert recognized positive effects on lung development. The genes involved in the classical pathway of glucocorticoid synthesis normally occurring in adrenals were found to be expressed on gestation day (GD) 15.5 in the developing mouse lung. Recently, expression of two of these genes was also detected on GD 17.5 suggesting a more complex temporal regulation than previously expected. Here, we deepen the knowledge on expression of "adrenal" glucocorticoid synthesis genes in the mouse lung during the perinatal period and we also study expression of the gene encoding for the steroid inactivating enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). RESULTS We performed an ontogenic study of P450scc, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase 1 (3β-HSD1), 21-hydroxylase, 11β-hydroxylase, 11β-HSD1, and 11β-HSD2 expression up to post natal day (PN) 15. The substrate (progesterone) and the product (deoxycorticosterone) of 21-hydroxylase are substrates of 20α-HSD, thus 20α-HSD (Akr1c18) gene expression was investigated. In lung samples collected between GD 15.5 and PN 15, 11β-hydroxylase was only detected on GD 15.5. In contrast, all the other tested genes were expressed throughout the analyzed period with different temporal expression patterns. P450scc, 21-hydroxylase, 20α-HSD and 11β-HSD2 mRNA levels increased after birth with different patterns including an increase from PN 3 with a possible sex difference for 21-hydroxylase mRNA. Also, the 21-hydroxylase protein was observed by Western blot in perinatal lungs with higher levels after birth. CONCLUSION Progesterone is present at high levels during gestation and the product of 21-hydroxylase, deoxycorticosterone, can bind the glucocorticoid receptor with an affinity close to that of corticosterone. Detection of 21-hydroxylase at the protein level during antenatal lung development is the first evidence that the adrenal-like glucocorticoid synthesis pathway detected during lung development has the machinery to produce glucocorticoids in the fetal lung. Glucocorticoids from lung 21-hydroxylase appear to modulate lung ontogenesis through paracrine/intracrine actions.
Collapse
Affiliation(s)
| | | | - Yves Tremblay
- Reproduction, mother and youth health, Centre de recherche du CHU de Québec, Québec, QC, Canada.
| |
Collapse
|
10
|
Provost PR, Boucher E, Tremblay Y. Glucocorticoid metabolism in the developing lung: adrenal-like synthesis pathway. J Steroid Biochem Mol Biol 2013; 138:72-80. [PMID: 23537622 DOI: 10.1016/j.jsbmb.2013.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/05/2013] [Accepted: 03/18/2013] [Indexed: 12/25/2022]
Abstract
Glucocorticoids (GCs) are essential to normal lung development. They participate in the regulation of important developmental events including morphological changes, and lung maturation leading to the surge of surfactant synthesis by type II epithelial cells. Antenatal GC is administered to mothers at risk of premature delivery to reduce the risk of respiratory distress syndrome (RDS). Sex differences were reported in RDS, in the efficiency of antenatal GC treatment independently of surfactant levels, and in surfactant lipid synthesis. Type II epithelial cell maturation is regulated by epithelial-fibroblast cell-cell communication and involves paracrine factors secreted by fibroblasts under the stimulatory effect of GC. This positive action of GC can be inhibited by androgens through the androgen receptor (AR) present in fibroblasts. In fact, lung development is regulated not only by GC and androgens but also by GC and androgen metabolisms within the developing lung. We recently reviewed the metabolism of androgens in the fetal lung [45]. Here, we review multiple aspects of GC metabolism in the developing lung including inactivation and re-activation by 11β-HSDs, synthesis from the adrenal-like synthesis pathway expressed within the lung and the putative role of CRH and ACTH originating from lung in the regulation of this pathway. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.
Collapse
Affiliation(s)
- Pierre R Provost
- Reproduction Axis, Perinatal and Child Health, Rm T-1-49, CHUQ Research Center, Québec City, Québec, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec City, Québec, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada
| | | | | |
Collapse
|
11
|
Tremblay Y, Provost PR. Major enzymes controlling the androgenic pressure in the developing lung. J Steroid Biochem Mol Biol 2013; 137:93-8. [PMID: 23542660 DOI: 10.1016/j.jsbmb.2013.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/08/2023]
Abstract
A sex difference is observed in the incidence and morbidity of respiratory distress syndrome (RDS) of the neonate and in bronchopulmonary dysplasia (BPD). The involvement of androgens is well evidenced in RDS and it is suspected in BPD. Interestingly, the developing lung is not an inert tissue just exposed to circulating androgens, but is rather an active androgen metabolizing tissue, expressing enzymes involved in both androgen synthesis and inactivation. The present review focuses on the major enzymes involved in androgen metabolism within the developing lung. Testosterone synthesis and inactivation by AKR1C3/Akr1c6 (human/mouse 17β-hydroxysteroid dehydrogenases (HSDs) type 5) and HSD17B2 (17β-HSD type 2), respectively, play an important role in the developing lung. Akr1c14 (3α-HSD) shows a strong increase in expression according to developmental time. The canalicular stage of lung development corresponding to the surge of surfactant lipid synthesis, which is linked to RDS, as well as saccularization/alveolarization, which are linked to BPD, are covered by this review for the mouse and human species. The androgen metabolizing enzymes expressed within the developing lung can become potential pharmaceutical targets in the objective of accelerating lung maturation by specific treatments. The classic deleterious effects of androgens on lung maturation and the surge of surfactant synthesis in males are well known. Conversely, androgens also have positive impacts on the development of both male and female lungs. Steroidogenic enzymes are key regulators of these positive effects. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Yves Tremblay
- Reproduction Axis, Perinatal and Child Health, Rm T-1-49, CHUQ Research Center, Canada; Department of Obstetrics/Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec City, Québec, Canada; Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Québec City, Québec, Canada.
| | | |
Collapse
|
12
|
Wang CL, Ying SJ, Wang ZY, Xing HJ, Wang LZ, He DY, Xiao SH, Wang F. Molecular cloning and expression of 17β-hydroxysteroid dehydrogenase type 2 gene in Hu sheep. Mol Biol Rep 2012; 40:1073-80. [PMID: 23096084 DOI: 10.1007/s11033-012-2149-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) catalyzes the NADP+-dependent oxidation of the most potent estrogen 17β-estradiol into the weak estrogen estrone, and the conversion of testosterone to androstenedione. It has been reported that 17β-HSD2 was expressed in many tissues in human, rats, however, the full-length sequence of 17β-HSD2 gene and its expression in ewe were still unknown. In this study, we cloned the full-length cDNA sequence and investigated mRNA differential expression in 28 tissues of 12 adult Hu-Sheep which were fed with high- and low- dietary intake. The 1,317 bp full-length cDNA sequence was first cloned. The coding region was 1,167 bp in length, and the monomer was estimated to contain 389 amino acid residues. It shares high AA sequence identity with that of bos Taurus (96.13 %), sus scrofa (77.06 %), canis lupus familiaris (70.44 %), Callithrix jacchus (65.72 %), Nomascus leucogenys (65.46 %), pan troglodytes (65.21 %), human (64.69 %), mus musculus (58.35 %), and a comparatively lower identity to danio rerio (37.85 %). 17β-HSD2 gene was high expressed in gastrointestinal (GI) tract, liver, but weakly expressed in other tissues. No detected expression was examined in lung. 17β-HSD2 gene expression was significantly difference in rumen, omasum, duodenum, cecum, hypophysis after high- and low- dietary intake. Results from the present study suggested that 17β-HSD2 plays a crucial role in almost all tissues protecting against excessive levels of active steroid hormone, and GI tract maybe an important steroid hormone metabolizing organ in Hu-Sheep. This present study is the first to provide the primary foundation for further insight into this ovine gene.
Collapse
Affiliation(s)
- Chang Long Wang
- Institute of Sheep & Goat Science, and Center of Animal Embryo Engineering & Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tondreau MY, Boucher E, Simard M, Tremblay Y, Bilodeau JF. Sex-specific perinatal expression of glutathione peroxidases during mouse lung development. Mol Cell Endocrinol 2012; 355:87-95. [PMID: 22326323 DOI: 10.1016/j.mce.2012.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/25/2012] [Indexed: 02/07/2023]
Abstract
Reports indicate that antioxidant enzymes like the glutathione peroxidases (GPx) can be regulated by sex steroids. The GPx, a major class of antioxidants involved in H(2)O(2) and lipid hydroperoxides neutralization, showed an age- and sex-specific expression in many adult organs including the lung. High levels of androgens in the male lung are known to delay the surge of surfactant synthesis during gestation in several species. However, the impact of male androgens on antioxidant GPx early in life remains to be determined. The objective was to study the lung sex-specific expression of GPx during BALB/c mouse perinatal development. The mRNA expression of four seleno-dependent Gpx (Gpx1 to 4) in the lung of both sexes was characterized by real-time PCR from gestational day 15 to postnatal day 30, covering the entire canalicular, saccular and alveolar stages. Immunohistochemistry of GPx-1, -3 and -4, and seleno-dependent GPx enzymatic assays were also performed in the lung. We found a transient lower Gpx1 mRNA level in male than in female lungs during the first 5 days after birth, corresponding to the saccular phase. This dimorphic expression was concomitant to a sex difference in GPx enzymatic activity corrected for blood. It is, to our knowledge, the first report of a sex dimorphism for murine lung enzymatic antioxidant defenses during the perinatal period.
Collapse
Affiliation(s)
- Maxime Y Tondreau
- Axe reproduction, santé périnatale et santé de l'enfant, Centre de Recherche en Biologie de la Reproduction, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
14
|
Seaborn T, Simard M, Provost PR, Piedboeuf B, Tremblay Y. Sex hormone metabolism in lung development and maturation. Trends Endocrinol Metab 2010; 21:729-38. [PMID: 20971653 DOI: 10.1016/j.tem.2010.09.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 12/22/2022]
Abstract
Sex hormones are increasingly recognized as regulators of lung development. Respiratory distress syndrome (RDS) is the leading cause of morbidity in preterm neonates and occurs with a higher incidence in males. The mechanisms underlying the effects of androgens on lung development and the occurrence of RDS are only partially deciphered, and positive roles of estrogens on surfactant production and alveologenesis are relevant to our understanding of pulmonary diseases. This manuscript reviews current knowledge on androgen and estrogen metabolism and on relevant hormone targets in the fetal lung. Further investigations are needed to elucidate mechanisms orchestrating sex hormone effects on lung development. These studies aim to decrease mortality and morbidity associated with RDS and other pathologies related to lung immaturity at birth.
Collapse
Affiliation(s)
- Tommy Seaborn
- Laboratory of Ontogeny and Reproduction, Centre de Recherche en Biologie de la Reproduction, Centre Hospitalier Universitaire de Québec, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
15
|
Boucher E, Provost PR, Devillers A, Tremblay Y. Levels of Dihydrotestosterone, Testosterone, Androstenedione, and Estradiol in Canalicular, Saccular, and Alveolar Mouse Lungs. Lung 2010; 188:229-33. [DOI: 10.1007/s00408-010-9231-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 01/26/2010] [Indexed: 11/29/2022]
|
16
|
Plante J, Simard M, Rantakari P, Côté M, Provost PR, Poutanen M, Tremblay Y. Epithelial cells are the major site of hydroxysteroid (17beta) dehydrogenase 2 and androgen receptor expression in fetal mouse lungs during the period overlapping the surge of surfactant. J Steroid Biochem Mol Biol 2009; 117:139-45. [PMID: 19737616 DOI: 10.1016/j.jsbmb.2009.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/24/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
Many genes involved in the peripheral metabolism of androgens, including hydroxysteroid (17beta) dehydrogenases (HSD17B) 2 and 5, steroid 5alpha reductase 1, and 3alpha-HSD, are expressed in the developing lung. Because lung development is delayed by androgens and pathologies related to lung immaturity are major concerns for preterm neonates, we are interested in the elucidation of the androgen metabolism in developing lung. In the present report we have identified the cell types expressing HSD17B2 (testosterone into androstenedione) and androgen receptor in normal male and female mouse developing lung between the gestation days 15.5 and 17.5. In situ hybridization and immunohistochemistry revealed that HSD17B2 is expressed in epithelial cells of respiratory and conducting zones, and in mesenchymal cells. The androgen receptor protein was observed in the same cell types that HSD17B2, and in alpha-smooth muscle actin-positive cells surrounding arteries. No difference was observed for the location of HSD17B2 and androgen receptor expression at any time points studied, or according to sex. Taken together, our results are in concordance with the hypothesis that in mouse fetal lungs the level of androgen receptor occupancy is finely tuned by local HSD17B2 expression.
Collapse
Affiliation(s)
- Julie Plante
- Laboratory of Ontogeny and Reproduction, Centre Hospitalier Universitaire de Québec (CHUQ), Pavillon CHUL, Faculty of Medicine, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|