1
|
Hough D, Robinson JE, Bellingham M, Fleming LM, McLaughlin M, Jama K, Haraldsen IRH, Solbakk AK, Evans NP. Peripubertal GnRH and testosterone co-treatment leads to increased familiarity preferences in male sheep. Psychoneuroendocrinology 2019; 108:70-77. [PMID: 31229635 PMCID: PMC6712355 DOI: 10.1016/j.psyneuen.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
Chronic gonadotropin-releasing hormone agonist (GnRHa) treatment is effective for the medical suppression of the hypothalamic-pituitary-gonadal axis in situations like central precocious puberty and gender dysphoria. However, its administration during the peripubertal period could influence normal brain development and function because GnRH receptors are expressed in brain regions that regulate emotions, cognition, motivation and memory. This study used an ovine model to determine whether chronic peripubertal GnRHa-treatment affected the developmental shift from preference of familiarity to novelty. Experimental groups included Controls and GnRHa-treated rams. To differentiate between effects of altered GnRH signaling and those associated with the loss of sex steroids, a group was also included that received testosterone replacement as well as GnRHa (GnRHa + T). Preference for a novel versus familiar object was assessed during 5-min social isolation at 8, 28 and 46 weeks of age. Approach behavior was measured as interactions with and time spent near the objects, whereas avoidance behavior was measured by time spent in the entrance zone and attempts to escape the arena via the entry point. Emotional reactivity was measured by the number of vocalizations, escape attempts and urinations. As Control and GnRHa-treated rams aged, their approach behaviors showed a shift from preference for familiarity (8 weeks) to novelty (46 weeks). In contrast, relative to the Controls the GnRHa + T rams exhibited more approach behaviors towards both objects, at 28 and 46 weeks of age and preferred familiarity at 46 weeks of age. Vocalisation rate was increased in GnRHa treated rams in late puberty (28 weeks) compared to both Control and GnRHa + T rams but this effect was not seen in young adulthood (46 weeks). These results suggest that the specific suppression of testosterone during a developmental window in late puberty may reduce emotional reactivity and hamper learning a flexible adjustment to environmental change. The results also suggest that disruption of either endogenous testosterone signalling or a synergistic action between GnRH and testosterone signalling, may delay maturation of cognitive processes (e.g. information processing) that affects the motivation of rams to approach and avoid objects.
Collapse
Affiliation(s)
- D Hough
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - JE Robinson
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - M Bellingham
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - LM Fleming
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - M McLaughlin
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - K Jama
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - IRH Haraldsen
- Department of Neuropsychiatry and Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital – Rikshospitalet, 0027 Oslo, Norway
| | - AK Solbakk
- Department of Neurosurgery, Division of Surgery and Clinical Neuroscience, Oslo University Hospital – Rikshospitalet, 0027 Oslo, Norway,Department of Psychology, University of Oslo, Pb 1094 Blindern, 0317 Oslo, Norway,Department of Neuropsychology, Helgeland Hospital, 8607 Mosjøen, Norway
| | - NP Evans
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK,Corresponding author.
| |
Collapse
|
2
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
3
|
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. FSH and LH control steroidogenesis and gametogenesis in the gonads so GnRH mediates control of reproduction by the central nervous system. GnRH is secreted in short pulses and the effects of GnRH on its target cells are dependent on the dynamics of these pulses. Here we provide a brief overview of the signaling network activated by GnRH with emphasis on the use of high content imaging for their examination. We also describe computational approaches that we have used to simulate GnRH signaling in order to explore dynamics, noise, and information transfer in this system.
Collapse
|
4
|
Hough D, Bellingham M, Haraldsen I, McLaughlin M, Rennie M, Robinson J, Solbakk A, Evans N. Spatial memory is impaired by peripubertal GnRH agonist treatment and testosterone replacement in sheep. Psychoneuroendocrinology 2017; 75:173-182. [PMID: 27837697 PMCID: PMC5140006 DOI: 10.1016/j.psyneuen.2016.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023]
Abstract
Chronic gonadotropin-releasing hormone agonist (GnRHa) is used therapeutically to block activity within the reproductive axis through down-regulation of GnRH receptors within the pituitary gland. GnRH receptors are also expressed in non-reproductive tissues, including areas of the brain such as the hippocampus and amygdala. The impact of long-term GnRHa-treatment on hippocampus-dependent cognitive functions, such as spatial orientation, learning and memory, is not well studied, particularly when treatment encompasses a critical window of development such as puberty. The current study used an ovine model to assess spatial maze performance and memory of rams that were untreated (Controls), had both GnRH and testosterone signaling blocked (GnRHa-treated), or specifically had GnRH signaling blocked (GnRHa-treated with testosterone replacement) during the peripubertal period (8, 27 and 41 weeks of age). The results demonstrate that emotional reactivity during spatial tasks was compromised by the blockade of gonadal steroid signaling, as seen by the restorative effects of testosterone replacement, while traverse times remained unchanged during assessment of spatial orientation and learning. The blockade of GnRH signaling alone was associated with impaired retention of long-term spatial memory and this effect was not restored with the replacement of testosterone signaling. These results indicate that GnRH signaling is involved in the retention and recollection of spatial information, potentially via alterations to spatial reference memory, and that therapeutic medical treatments using chronic GnRHa may have effects on this aspect of cognitive function.
Collapse
Affiliation(s)
- D. Hough
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - I.R.H. Haraldsen
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway
| | - M. McLaughlin
- Division of Veterinary Bioscience and Education, School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Rennie
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - J.E. Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - A.K. Solbakk
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway,Department of Psychology, University of Oslo, Pb 1094 Blindern, 0317 Oslo, Norway,Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - N.P. Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK,Corresponding author.
| |
Collapse
|
5
|
Madziva MT, Mkhize NN, Flanagan CA, Katz AA. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor. Mol Cell Endocrinol 2015; 411:187-97. [PMID: 25957085 DOI: 10.1016/j.mce.2015.04.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization.
Collapse
Affiliation(s)
- Michael T Madziva
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Nonhlanhla N Mkhize
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Colleen A Flanagan
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Medical School, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | - Arieh A Katz
- Medical Research Council Research Unit for Receptor Biology, Institute of Infectious Disease and Molecular Medicine and Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 Cape Town, South Africa.
| |
Collapse
|
6
|
Perrett RM, Voliotis M, Armstrong SP, Fowkes RC, Pope GR, Tsaneva-Atanasova K, McArdle CA. Pulsatile hormonal signaling to extracellular signal-regulated kinase: exploring system sensitivity to gonadotropin-releasing hormone pulse frequency and width. J Biol Chem 2014; 289:7873-83. [PMID: 24482225 PMCID: PMC3953298 DOI: 10.1074/jbc.m113.532473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo.
Collapse
Affiliation(s)
- Rebecca M Perrett
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
7
|
Armstrong SP, Seeber RM, Ayoub MA, Feldman BJ, Pfleger KDG. Characterization of three vasopressin receptor 2 variants: an apparent polymorphism (V266A) and two loss-of-function mutations (R181C and M311V). PLoS One 2013; 8:e65885. [PMID: 23762448 PMCID: PMC3675069 DOI: 10.1371/journal.pone.0065885] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/30/2013] [Indexed: 02/01/2023] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary and controls water homeostasis. AVP binding to vasopressin V2 receptors (V2Rs) located on kidney collecting duct epithelial cells triggers activation of Gs proteins, leading to increased cAMP levels, trafficking of aquaporin-2 water channels, and consequent increased water permeability and antidiuresis. Typically, loss-of-function V2R mutations cause nephrogenic diabetes insipidus (NDI), whereas gain-of-function mutations cause nephrogenic syndrome of inappropriate antidiuresis (NSIAD). Here we provide further characterization of two mutant V2Rs, R181C and M311V, reported to cause complete and partial NDI respectively, together with a V266A variant, in a patient diagnosed with NSIAD. Our data in HEK293FT cells revealed that for cAMP accumulation, AVP was about 500- or 30-fold less potent at the R181C and M311V mutants than at the wild-type receptor respectively (and about 4000- and 60-fold in COS7 cells respectively). However, in contrast to wild type V2R, the R181C mutant failed to increase inositol phosphate production, while with the M311V mutant, AVP exhibited only partial agonism in addition to a 37-fold potency decrease. Similar responses were detected in a BRET assay for β-arrestin recruitment, with the R181C receptor unresponsive to AVP, and partial agonism with a 23-fold decrease in potency observed with M311V in both HEK293FT and COS7 cells. Notably, the V266A V2R appeared functionally identical to the wild-type receptor in all assays tested, including cAMP and inositol phosphate accumulation, β-arrestin interaction, and in a BRET assay of receptor ubiquitination. Each receptor was expressed at comparable levels. Hence, the M311V V2R retains greater activity than the R181C mutant, consistent with the milder phenotype of NDI associated with this mutant. Notably, the R181C mutant appears to be a Gs protein-biased receptor incapable of signaling to inositol phosphate or recruiting β-arrestin. The etiology of NSIAD in the patient with V266A V2R remains unknown.
Collapse
MESH Headings
- Animals
- Aquaporin 2/genetics
- Aquaporin 2/metabolism
- Arginine Vasopressin/metabolism
- Arrestins/genetics
- Arrestins/metabolism
- COS Cells
- Chlorocebus aethiops
- Cyclic AMP/metabolism
- Diabetes Insipidus, Nephrogenic/genetics
- Diabetes Insipidus, Nephrogenic/metabolism
- Diabetes Insipidus, Nephrogenic/pathology
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression Regulation
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Genetic Diseases, X-Linked/pathology
- HEK293 Cells
- Humans
- Inappropriate ADH Syndrome/genetics
- Inappropriate ADH Syndrome/metabolism
- Inappropriate ADH Syndrome/pathology
- Inositol Phosphates/metabolism
- Mutation
- Polymorphism, Genetic
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Signal Transduction
- beta-Arrestins
Collapse
Affiliation(s)
- Stephen P. Armstrong
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Ruth M. Seeber
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
| | - Mohammed Akli Ayoub
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
- Protein Research Chair - Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Brian J. Feldman
- Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California, United States of America
| | - Kevin D. G. Pfleger
- Laboratory for Molecular Endocrinology-G Protein-Coupled Receptors, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
8
|
Schang AL, Granger A, Quérat B, Bleux C, Cohen-Tannoudji J, Laverrière JN. GATA2-induced silencing and LIM-homeodomain protein-induced activation are mediated by a bi-functional response element in the rat GnRH receptor gene. Mol Endocrinol 2012; 27:74-91. [PMID: 23211524 DOI: 10.1210/me.2012-1182] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GATA2 transcription factor and LIM homeodomain proteins Islet1 (ISL1) and LIM homeobox 3 (LHX3) are suspected to be involved in gonadotrope cell fate and maintenance. The GnRH receptor gene (Gnrhr), crucial for gonadotrope function, is expressed in the pituitary gland from embryonic day 13.5 onward, well before LH and FSH β-subunits. This expression pattern together with the presence of WGATAR and TAAT motifs in Gnrhr promoter sequences suggests the involvement of early transcription factors in promoter activation. In this study, using a well-characterized transgenic mouse model, GATA2 was found colocalized with Gnrhr promoter activity in the pituitary. Transient transfection of Gnrhr promoter luciferase fusion constructs together with either GATA2 expression vectors or small interfering RNA in gonadotrope cell lines indicated that GATA2, which typically acts as a trans-activator, unexpectedly repressed Gnrhr promoter activity. Using DNA chromatography affinity and EMSA, we demonstrated that GATA2 operates via a response element containing a peculiar palindromic GATA motif that overlaps a critical TAAT motif involved in LHX3/ISL1 trans-activation. Indeed, despite the inhibitory action of GATA2, this element displayed a clear-cut enhancer activity in gonadotrope cells. Chromatin immunoprecipitation assays indicated that GATA2, LHX3, and ISL1 interact with a Gnrhr promoter fragment encompassing this element. The trans-repressive action of GATA2 on Gnrhr promoter activity is likely balanced or even hindered by trans-activating effects of LIM homeodomain proteins via this novel bifunctional LIM/GATA response element. Such a hierarchical interplay may contribute to finely adjust Gnrhr gene expression in gonadotrope cell lineage during pituitary development as well as in the adult animal.
Collapse
Affiliation(s)
- Anne-Laure Schang
- University of Paris Diderot Paris 7, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Centre National de la Recherche Scientifique Equipe d'Accueil Conventionnée 4413, Physiologie de l'Axe Gonadotrope, Bâtiment Buffon, Case Courrier 7007, 75205 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
9
|
Melamed P, Savulescu D, Lim S, Wijeweera A, Luo Z, Luo M, Pnueli L. Gonadotrophin-releasing hormone signalling downstream of calmodulin. J Neuroendocrinol 2012; 24:1463-75. [PMID: 22775470 DOI: 10.1111/j.1365-2826.2012.02359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/24/2012] [Accepted: 07/03/2012] [Indexed: 01/26/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) regulates reproduction via binding a G-protein coupled receptor on the surface of the gonadotroph, through which it transmits signals, mostly via the mitogen-activated protein (MAPK) cascade, to increase synthesis of the gonadotrophin hormones: luteinising hormone (LH) and follicle-stimulating hormone (FSH). Activation of the MAPK cascade requires an elevation in cytosolic Ca(2+) levels, which is a result of both calcium influx and mobilisation from intracellular stores. However, Ca(2+) also transmits signals via an MAPK-independent pathway, through binding calmodulin (CaM), which is then able to bind a number of proteins to impart diverse downstream effects. Although the ability of GnRH to activate CaM was recognised over 20 years ago, only recently have some of the downstream effects been elucidated. GnRH was shown to activate the CaM-dependent phosphatase, calcineurin, which targets gonadotrophin gene expression both directly and indirectly via transcription factors such as nuclear factor of activated T-cells and Nur77, the Transducer of Regulated CREB (TORC) co-activators and also the prolyl isomerase, Pin1. Gonadotrophin gene expression is also regulated by GnRH-induced CaM-dependent kinases (CaMKs); CaMKI is able to derepress the histone deacetylase-inhibition of β-subunit gene expression, whereas CaMKII appears to be essential for the GnRH-activation of all three subunit genes. Asides from activating gonadotrophin gene expression, GnRH also exerts additional effects on gonadotroph function, some of which clearly occur via CaM, including the proliferation of immature gonadotrophs, which is dependent on calcineurin. In this review, we summarise these pathways, and discuss the additional functions that have been proposed for CaM with respect to modifying GnRH-induced signalling pathways via the regulation of the small GTP-binding protein, Gem, and/or the regulator of G-protein signalling protein 2.
Collapse
Affiliation(s)
- P Melamed
- Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
10
|
Binder AK, Grammer JC, Herndon MK, Stanton JD, Nilson JH. GnRH regulation of Jun and Atf3 requires calcium, calcineurin, and NFAT. Mol Endocrinol 2012; 26:873-86. [PMID: 22446101 DOI: 10.1210/me.2012-1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GnRH binds to its receptor on gonadotropes and activates multiple members of the MAPK signaling family that in turn regulates the expression of several immediate early genes (IEGs) including Jun, Fos, Atf3, and Egr1. These IEGs confer hormonal responsiveness to gonadotrope-specific genes including Gnrhr, Cga, Fshb, and Lhb. In this study we tested the hypothesis that GnRH specifically regulates the accumulation of Jun and Atf3 mRNA through a pathway that includes intracellular Ca²⁺, calcineurin, and nuclear factor of activated T cells (NFAT). Our results indicate that pretreatment of murine LβT2 cells with 1, 2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl)-ester, a Ca²⁺ chelator, reduced the expression of all the IEGs to varying degrees, whereas treatment with thapsigargin, an intracellular Ca²⁺ protein pump inhibitor, increased the expression of the IEG. Furthermore, cyclosporin A, a calcineurin-specific inhibitor, reduced the ability of GnRH to regulate accumulation of Jun and Atf3 mRNA and to a lesser extent Fos. In contrast, Egr1 mRNA was unaffected. NFATs are transcription factors regulated by calcineurin and were detected in LβT2 cells. GnRH increased luciferase activity of an NFAT-dependent promoter reporter that was dependent on intracellular Ca²⁺ and calcineurin activity. Additionally, although small interfering RNA specific for Nfat4 only marginally reduced GnRH regulation of Jun, Fos, and Atf3 mRNA accumulation, activity of an activator protein-1-responsive reporter construct was reduced by 48%. Together these data suggest that calcineurin and NFAT are new members of the gonadotrope transcriptional network that confer hormonal responsiveness to several key genes required for gonadotropin synthesis and secretion.
Collapse
Affiliation(s)
- April K Binder
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
In the past two decades, an increasing body of evidence has demonstrated that several G protein-coupled receptor (GPCR)-ligand pairs are critical for normal human reproductive development and function. Patients harboring genetic insults in either the receptors or their cognate ligands have presented with reproductive disorders characterized by varying degrees of GnRH deficiency. These disorders include idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann Syndrome (KS). Conversely, mutations in some of these ligand-receptor pairs have been associated with accelerated reproductive maturation, manifested as central precocious puberty (CPP). To date, a series of elegant studies have characterized four GPCRs that play important roles in the neuroendocrine control of human reproductive development and function: GnRHR, KISS1R, PROKR2 and NK3R. Furthermore, these studies provide insights into the mechanisms by which mutations in these receptors give rise to reproductive disease phenotypes. This report will review mutations identified in GPCRs involved in the neuroendocrine control of the human reproductive axis with the aims of elucidating structure-function relationships of these GPCRs and identifying correlations between these structure-function relationships and the genotypic-phenotypic characterization of the patients.
Collapse
Affiliation(s)
- Sekoni D Noel
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
12
|
Conn PM, Ulloa-Aguirre A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:109-41. [PMID: 21907908 DOI: 10.1016/b978-0-12-385952-5.00008-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Structural alterations provoked by mutations or genetic variations in the gene sequence of G protein-coupled receptors (GPCRs) may lead to abnormal function of the receptor molecule. Frequently, this leads to disease. While some mutations lead to changes in domains involved in agonist binding, receptor activation, or coupling to effectors, others may cause misfolding and lead to retention/degradation of the protein molecule by the quality control system of the cell. Several strategies, including genetic, chemical, and pharmacological approaches, have been shown to rescue function of trafficking-defective misfolded GPCRs. Among these, pharmacological strategies offer the most promising therapeutic tool to promote proper trafficking of misfolded proteins to the plasma membrane (PM). Pharmacological chaperones or "pharmacoperones" are small compounds that permeate the PM, enter cells, and bind selectively to misfolded proteins and correct folding allowing routing of the target protein to the PM, where the receptor may bind and respond to agonist stimulation. In this review, we describe new therapeutic opportunities based on mislocalization of otherwise functional human gonadotropin-releasing hormone receptors. This particular receptor is highly sensitive to single changes in chemical charge, and its intracellular traffic is delicately balanced between expression at the PM or retention/degradation in the endoplasmic reticulum; it is, therefore, a particularly instructive model to understand both the protein routing and the molecular mechanisms, whereby pharmacoperones rescue misfolded intermediates or conformationally defective receptors.
Collapse
Affiliation(s)
- P Michael Conn
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | | |
Collapse
|
13
|
Elliott-Hunt CR, Holmes FE, Hartley DM, Perez S, Mufson EJ, Wynick D. Endogenous galanin protects mouse hippocampal neurons against amyloid toxicity in vitro via activation of galanin receptor-2. J Alzheimers Dis 2011; 25:455-62. [PMID: 21471641 PMCID: PMC3145121 DOI: 10.3233/jad-2011-110011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Expression of the neuropeptide galanin is known to be upregulated in the brain of patients with Alzheimer's disease (AD). We and others have shown that galanin plays a neuroprotective role in a number of excitotoxic injury paradigms, mediated by activation of the second galanin receptor subtype (GAL2). In the present study, we investigated whether galanin/GAL2 plays a similar protective role against amyloid-β(Aβ) toxicity. Here we report that galanin or the GAL2/3-specific peptide agonist Gal2-11, both equally protect primary dispersed mouse wildtype (WT) neonatal hippocampal neurons from 250 nM Aβ1-42 toxicity in a dose dependent manner. The amount of Aβ1-42 induced cell death was significantly greater in mice with loss-of-function mutations in galanin (Gal-KO) or GAL2 (GAL2-MUT) compared to strain-matched WT controls. Conversely, cell death was significantly reduced in galanin over-expressing (Gal-OE) transgenic mice compared to strain-matched WT controls. Exogenous galanin or Gal2-11 rescued the deficits in the Gal-KO but not the GAL2-MUT cultures, confirming that the protective effects of endogenous or exogenous galanin are mediated by activation of GAL2. Despite the high levels of endogenous galanin in the Gal-OE cultures, the addition of exogenous 100 nM or 50 nM galanin or 100 nM Gal2-11 further significantly reduced cell death, implying that GAL2-mediated neuroprotection is not at maximum in the Gal-OE mice. These data further support the hypothesis that galanin over-expression in AD is a neuroprotective response and imply that the development of a drug-like GAL2 agonist might reduce the progression of symptoms in patients with AD.
Collapse
Affiliation(s)
- Caroline R. Elliott-Hunt
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | - Fiona E. Holmes
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| | - Dean M. Hartley
- Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA
| | - Sylvia Perez
- Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA
| | - Elliott J. Mufson
- Department of Neurological Sciences, Rush University Medical Center, Chicago University, Chicago, IL, USA
| | - David Wynick
- Schools of Physiology and Pharmacology and Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|